
The EDG Workload Management System – n° 1

The EDG Workload
Management System

The EDG Workload Management System – n° 2

EDG Tutorial Overview

Data Management Services

Fabric Management

Networking

Information Service

Workload Management Services

The EDG Workload Management System – n° 3

Contents

The EDG Workload Management System

Job Preparation
Job Description Language

Job submission and job status monitoring

WMS Matchmaking

Different job types
Normal jobs

Interactive jobs

Checkpointable jobs

Parallel jobs

The EDG Workload Management System – n° 4

The EDG WMS

The user interacts with Grid via a Workload Management
System (WMS)

The Goal of WMS is the distributed scheduling and
resource management in a Grid environment.

What does it allow Grid users to do?

To submit their jobs

To execute them on the “best resources”
The WMS tries to optimize the usage of resources

To get information about their status

To retrieve their output

The EDG Workload Management System – n° 5

Job preparation

Information to be specified when a job has to be submitted:

Job characteristics

Job requirements and preferences on the computing resources
Also including software dependencies

Job data requirements

Information specified using a Job Description Language (JDL)

Based upon Condor’s CLASSified ADvertisement language (ClassAd)
Fully extensible language
A ClassAd

Constructed with the classad construction operator []
It is a sequence of attributes separated by semi-colons.
An attribute is a pair (key, value), where value can be a Boolean, an Integer, a list
of strings, …

<attribute> = <value>;

So, the JDL allows definition of a set of attribute, the WMS takes into
account when making its scheduling decision

The EDG Workload Management System – n° 6

Job Description Language (JDL)

The supported attributes are grouped in two categories:

Job Attributes
Define the job itself

Resources
Taken into account by the RB for carrying out the matchmaking
algorithm (to choose the “best” resource where to submit the job)

Computing Resource

Used to build expressions of Requirements and/or Rank attributes
by the user

Have to be prefixed with “other.”

Data and Storage resources

Input data to process, SE where to store output data, protocols
spoken by application when accessing SEs

The EDG Workload Management System – n° 7

JDL: relevant attributes

JobType
Normal (simple, sequential job), Interactive, MPICH, Checkpointable

Or combination of them

Executable (mandatory)
The command name

Arguments (optional)
Job command line arguments

StdInput, StdOutput, StdError (optional)
Standard input/output/error of the job

Environment
List of environment settings

InputSandbox (optional)
List of files on the UI local disk needed by the job for running

The listed files will automatically staged to the remote resource

OutputSandbox (optional)
List of files, generated by the job, which have to be retrieved

The EDG Workload Management System – n° 8

JDL: relevant attributes

Requirements

Job requirements on computing resources

Specified using attributes of resources published in the Information Service

If not specified, default value defined in UI configuration file is considered
Default: other.GlueCEStateStatus == "Production" (the resource has to be able to accept
jobs and dispatch them on WNs)

Rank

Expresses preference (how to rank resources that have already met the
Requirements expression)

Specified using attributes of resources published in the Information Service

If not specified, default value defined in the UI configuration file is considered
Default: - other.GlueCEStateEstimatedResponseTime (the lowest estimated traversal
time)

Default: other.GlueCEStateFreeCPUs (the highest number of free CPUs) for parallel jobs
(see later)

The EDG Workload Management System – n° 9

JDL: relevant attributes

InputData

Refers to data used as input by the job: these data are published in the
Replica Location Service (RLS) and stored in the SEs)

LFNs and/or GUIDs

DataAccessProtocol (mandatory if InputData has been specified)

The protocol or the list of protocols which the application is able to
speak with for accessing InputData on a given SE

OutputSE

The Uniform Resource Identifier of the output SE

RB uses it to choose a CE that is compatible with the job and is close to
SE

The EDG Workload Management System – n° 10

Example of JDL File

[

JobType=“Normal”;

Executable = “gridTest”;

StdError = “stderr.log”;

StdOutput = “stdout.log”;

InputSandbox = {“home/joda/test/gridTest”};

OutputSandbox = {“stderr.log”, “stdout.log”};

InputData = {“lfn:green”, “guid:red”};

DataAccessProtocol = “gridftp”;

Requirements = other.GlueHostOperatingSystemNameOpSys == “LINUX”

&& other.GlueCEStateFreeCPUs>=4;

Rank = other.GlueCEPolicyMaxCPUTime;

]

The EDG Workload Management System – n° 11

Job Submission

edg-job-submit [–r <res_id>] [-c <config file>]
[-vo <VO>] [-o <output file>] <job.jdl>

-r the job is submitted directly to the computing element identified by
<res_id>

-c the configuration file <config file> is pointed by the UI instead of the
standard configuration file

-vo the Virtual Organization (if user is not happy with the one specified in
the UI configuration file)

-o the generated edg_jobId is written in the <output file>
Useful for other commands, e.g.:

edg-job-status –i <input file> (or edg_jobId)
-i the status information about edg_jobId contained in the <input file> are
displayed

The EDG Workload Management System – n° 12

Job submission

UI

Network
Server

Job Contr.
-

CondorG

Workload
Manager

RLS

Inform.
Service

Computing
Element

Storage
Element

RB node

CE characts
& status

SE characts
& status

Job submission

UI

Network
Server

Job Contr.
-

CondorG

Workload
Manager

Replica
Catalog

Inform.
Service

Computing
Element

Storage
Element

RB node

CE characts
& status

SE characts
& status

submitted

Job
Status

UI: allows users to
access the functionalities
of the WMS
(via command line, GUI,
C++ and Java APIs)

Job submission

UI

Network
Server

Job Contr.
-

CondorG

Workload
Manager

Replica
Catalog

Inform.
Service

Computing
Element

Storage
Element

RB node

CE characts
& status

SE characts
& status

edg-job-submit myjob.jdl
Myjob.jdl

JobType = “Normal”;
Executable = "$(CMS)/exe/sum.exe";
InputSandbox = {"/home/user/WP1testC","/home/file*”, "/home/user/DATA/*"};
OutputSandbox = {“sim.err”, “test.out”, “sim.log"};
Requirements = other. GlueHostOperatingSystemName == “linux" &&
other. GlueHostOperatingSystemRelease == "Red Hat 6.2“ &&
other.GlueCEPolicyMaxWallClockTime > 10000;
Rank = other.GlueCEStateFreeCPUs;

submitted

Job
Status

Job Description Language
(JDL) to specify job
characteristics and
requirements

Job submission

UI

Network
Server

Job Contr.
-

CondorG

Workload
Manager

RLS

Inform.
Service

Computing
Element

Storage
Element

RB node

CE characts
& status

SE characts
& status

RB
storage

Input
Sandbox
files

Job
waiting

submitted

Job StatusNS: network daemon
responsible for accepting
incoming requests

Job submission

UI

Network
Server

Job Contr.
-

CondorG

Workload
Manager

RLS

Inform.
Service

Computing
Element

Storage
Element

RB node

CE characts
& status

SE characts
& status

RB
storage

waiting

submitted

Job Status

WM: responsible to take
the appropriate actions to
satisfy the request

Job

Job submission

UI

Network
Server

Job Contr.
-

CondorG

Workload
Manager

RLS

Inform.
Service

Computing
Element

Storage
Element

RB node

CE characts
& status

SE characts
& status

RB
storage

waiting

submitted

Job Status

Match-
Maker/
Broker

Where must this
job be
executed ?

Job submission

UI

Network
Server

Job Contr.
-

CondorG

Workload
Manager

RLS

Inform.
Service

Computing
Element

Storage
Element

RB node

CE characts
& status

SE characts
& status

RB
storage

waiting

submitted

Job Status

Match-
Maker/
Broker

Matchmaker: responsible
to find the “best” CE
where to submit a job

Job submission

UI

Network
Server

Job Contr.
-

CondorG

Workload
Manager

RLS

Inform.
Service

Computing
Element

Storage
Element

RB node

CE characts
& status

SE characts
& status

RB
storage

waiting

submitted

Job Status

Match-
Maker/
Broker

Where are (which SEs)
the needed data ?

What is the
status of the

Grid ?

Job submission

UI

Network
Server

Job Contr.
-

CondorG

Workload
Manager

RLS

Inform.
Service

Computing
Element

Storage
Element

RB node

CE characts
& status

SE characts
& status

RB
storage

waiting

submitted

Job Status

Match-
Maker/
Broker

CE choice

Job submission

UI

Network
Server

Job Contr.
-

CondorG

Workload
Manager

RLS

Inform.
Service

Computing
Element

Storage
Element

RB node

CE characts
& status

SE characts
& status

RB
storage

waiting

submitted

Job Status

Job
Adapter

JA: responsible for the final “touches”
to the job before performing submission
(e.g. creation of wrapper script, etc.)

Job submission

UI

Network
Server

Job Contr.
-

CondorG

Workload
Manager

RLS

Inform.
Service

Computing
Element

Storage
Element

RB node

CE characts
& status

SE characts
& status

RB
storage

Job Status

JC: responsible for the
actual job management
operations (done via
CondorG)

Job

submitted

waiting

ready

Job submission

UI

Network
Server

Job Contr.
-

CondorG

Workload
Manager

RLS

Inform.
Service

Computing
Element

Storage
Element

RB node

CE characts
& status

SE characts
& status

RB
storage

Job Status

Job

Input
Sandbox
files

submitted

waiting

ready

scheduled

Job submission

UI

Network
Server

Job Contr.
-

CondorG

Workload
Manager

RLS

Inform.
Service

Computing
Element

Storage
Element

RB node

RB
storage

Job Status

Input
Sandbox

submitted

waiting

ready

scheduled

running

“Grid enabled”
data transfers/

accesses

Job

Job submission

UI

Network
Server

Job Contr.
-

CondorG

Workload
Manager

RLS

Inform.
Service

Computing
Element

Storage
Element

RB node

RB
storage

Job Status

Output
Sandbox
files

submitted

waiting

ready

scheduled

running

done

Job submission

UI

Network
Server

Job Contr.
-

CondorG

Workload
Manager

RLS

Inform.
Service

Computing
Element

Storage
Element

RB node

RB
storage

Job Status

Output
Sandbox

submitted

waiting

ready

scheduled

running

done

edg-job-get-output <dg-job-id>

Job submission

UI

Network
Server

Job Contr.
-

CondorG

Workload
Manager

RLS

Inform.
Service

Computing
Element

Storage
Element

RB node

RB
storage

Job Status

Output
Sandbox
files

submitted

waiting

ready

scheduled

running

done

cleared

The EDG Workload Management System – n° 28

Job monitoring

UI

Log
Monitor

Logging &
Bookkeeping

Network
Server

Job Contr.
-

CondorG

Workload
Manager

Computing
Element

RB node

LM: parses CondorG log
file (where CondorG logs
info about jobs) and notifies LB

LB: receives and stores
job events; processes
corresponding job status

Log of
job events

edg-job-status <dg-job-id>
edg-job-get-logging-info <dg-job-id>

Job
status

The EDG Workload Management System – n° 29

Possible job states

The EDG Workload Management System – n° 30

Job resubmission

If something goes wrong, the WMS tries to reschedule
and resubmit the job (possibly on a different resource
satisfying all the requirements)

Maximum number of resubmissions: min(RetryCount,
MaxRetryCount)

RetryCount: JDL attribute

MaxRetryCount: attribute in the “RB” configuration file

E.g., to disable job resubmission for a particular job:
RetryCount=0; in the JDL file

The EDG Workload Management System – n° 31

Other (most relevant) UI commands

edg-job-list-match

Lists resources matching a job description

Performs the matchmaking without submitting the job

edg-job-cancel
Cancels a given job

edg-job-status
Displays the status of the job

edg-job-get-output

Returns the job-output (the OutputSandbox files) to the user

edg-job-get-logging-info
Displays logging information about submitted jobs (all the events “pushed” by
the various components of the WMS)

Very useful for debug purposes

The EDG Workload Management System – n° 32

UI configuration files

Two UI configuration files

Common UI conf file
$EDG_WL_LOCATION/etc/edg_wl_ui_cmd_var.conf

User can create his own conf file, and refers to it with option
–-config

VO UI conf file
$EDG_WL_LOCATION/etc/<vo>/edg_wl_ui.conf

User can create his own VO conf file, and refers to it with
option -–vo / –-config-vo

The EDG Workload Management System – n° 33

Common UI configuration file

Most relevant attributes

Default JDL Requirements
other.GlueCEStateStatus == “Production”

Default JDL Rank
- other.GlueCEStateEstimatedresponseTime

Default VO

Default verbosity level for edg-job-status and edg-job-get-
logging-info

Default value for RetryCount

The EDG Workload Management System – n° 34

VO UI configuration file

Most relevant attributes

NS(s)
When submitting a job, the first specified RB is tried, if the
operation fails the second one is considered, etc.

LB server(s)
The LB server to be used for a given job to be submitted is
chosen in a random way among the listed one

When a –all query (e.g. edg-job-status –all) is issued, all
these LB servers are queried

The EDG Workload Management System – n° 35

WMS Matchmaking

The RB (Matchmaker) has to find the best suitable computing resource
(CE) where the job will be executed

It interacts with Data Management Service and Information Services

They supply RB with all the information required for the resolution of the
matches

The CE chosen by RB has to match the job requirements (e.g. runtime
environment, data access requirements, and so on)

If FuzzyRank=False (default):

If 2 or more CEs satisfy all the requirements, the one with the best Rank is
chosen

If there are two or more CEs with the same best rank, the choice is done in a
random way among them

If FuzzyRank=True in the JDL:

Fuzziness in CE choice: the CE with highest rank has the highest probability to be
chosen

The EDG Workload Management System – n° 36

WMS matchmaking scenarios

Possible scenarios for matchmaking:

1. Direct job submission
edg-job-submit –r <CEId>

2. Job submission with only computational
requirements

Nor InputData nor OutputSE specified in the JDL

3. Job submission with also data access requirements
InputData and/or OutputSE specified in the JDL

4. Matchmaking with getAccessCost

The EDG Workload Management System – n° 37

Direct job submission

edg-job-submit –r CEId

Job is simply submitted on the given CE

RB doesn’t perform any matchmaking algorithm

Information services not queried at all

The EDG Workload Management System – n° 38

Job submission with only comput. reqs

Nor InputData nor OutputSE specified in the JDL

Matchmaking algorithm:

Requirements check
RB contacts the IS to check which CEs satisfy all the requirements

This includes also authorization check (where is the user allowed to submit
jobs ?)

Suitable resources directly queried (GRISes queried) to evaluate Rank
expression (which usually refers to dynamic values)

If more than one CE satisfies the job requirements, the CE with the best
rank is chosen by the RB (or has the highest probability to be chosen, if
Fuzzyrank enabled)

The EDG Workload Management System – n° 39

Job submission with data access reqs

InputData and/or OutputSE specified in the JDL

RB strategy: submit jobs close to data

Matchmaking algorithm:

Requirements check as in the previous case

CE chosen among the suitable ones (the CEs which passed the
requirements check) and where most of the needed files are “close” to it
(where most of the needed files are stored on SEs close to the
considered CE)

The EDG Workload Management System – n° 40

Matchmaking with GetAccessCost

Can be used when InputData has been specified in the JDL

Used when Rank = other.DataAccessCost has been specified in the
JDL

Matchmaking algorithm:

Requirements check as in the previous case

The CE is chosen by the ‘getAccessCost’ method provided by data
Management Services among the suitable CEs (the CEs which passed
the requirements check), taking into account data location and network
information

The EDG Workload Management System – n° 41

Example of job submission

User logs in on the UI

User issues a grid-proxy-init and enters his certificate’s password, getting a
valid Globus proxy

User sets up his or her JDL file

Example of Hello World JDL file :

[

Executable = “/bin/echo”;

Arguments = “Hello World”;

StdOutput = “Messagge.txt”;

StdError = “stderr.log”;

OutputSandbox = {“Message.txt”,”stderr.log”};

]

The EDG Workload Management System – n° 42

Example of job submission

User issues a: edg-job-submit HelloWorld.jdl

and gets back from the system a unique Job Identifier (JobId)

User issues a: edg-job-status JobId

to get logging information about the current status of his Job

When the “Output” status is reached, the user can issue a
edg-job-get-output JobId

and the system returns the name of the temporary directory where the job output
can be found on the UI machine.

The EDG Workload Management System – n° 43

Example of job submission

$ edg-job-submit HelloWorld.jdl

**

JOB SUBMIT OUTCOME

The job has been successfully submitted to the Network Server.

Use edg-job-status command to check job current status. Your job identifier
(edg_jobId) is:

- https://lxshare0403.cern.ch:9000/KoBA-IgxZyVpLKhANfrhHw

JobId

The EDG Workload Management System – n° 44

Example of job submission

$ edg-job-status https://lxshare0403.cern.ch:9000/KoBA-IgxZyVpLKhANfrhHw

BOOKKEEPING INFORMATION:

Printing status info for the Job : https://lxshare0403.cern.ch:9000/KoBA-
IgxZyVpLKhANfrhHw

Current Status: Done (Success)

Exit code: 0

Status Reason: Job terminated successfully

Destination: lxshare0405.cern.ch:2119/jobmanager-pbs-infinite

reached on: Wed Jun 18 12:06:10 2003

The EDG Workload Management System – n° 45

Example of job submission
$ edg-job-get-output --dir Results https://lxshare0403.cern.ch:9000/KoBA-

IgxZyVpLKhANfrhHw

JOB GET OUTPUT OUTCOME

Output sandbox files for the job:

- https://lxshare0403.cern.ch:9000/KoBA-IgxZyVpLKhANfrhHw

have been successfully retrieved and stored in the directory:

/shift/lxshare072d/data01/UIhome/sgaravat/Results/KoBA-IgxZyVpLKhANfrhHw

$ more Results/KoBA-IgxZyVpLKhANfrhHw/Message.txt

Hello World

$ more Results/KoBA-IgxZyVpLKhANfrhHw/stderr.log

$

The EDG Workload Management System – n° 46

Proxy renewal

Why?

To avoid job failure because it outlived the validity of the initial proxy, avoiding
considering long term user proxies

Solution

Short term proxies created as usual in the UI machine
grid-proxy-init –hours <hours>

User registers proxy into a MyProxy server:
myproxy-init –s <server> [-t <cred> -c <proxy>]

server is the server address (e.g. lxshare0375.cern.ch)
cred is the number of hours the proxy should be valid on the server
proxy is the number of hours renewed proxies should be valid

User specifies the MyProxy server in the JDL to enable proxy renewal:
MyProxyServer=myproxy.host.name;

The Proxy is automatically renewed by WMS without user intervention for all the
job life

The EDG Workload Management System – n° 47

Interactive jobs

Specified setting JobType = “Interactive” in JDL

When an interactive job is executed, a window for the stdin, stdout, stderr
streams is opened

Possibility to send the stdin to

the job

Possibility the have the stderr

and stdout of the job when it

is running

Possibility to start a window for

the standard streams for a

previously submitted interactive

job with command edg-job-attach

The EDG Workload Management System – n° 48

Job checkpointing

Checkpointing: saving from time to time job state

Useful to prevent data loss, due to unexpected failures

Approach: provide users with a “trivial” logical job checkpointing service

User can save from time to time the state of the job (defined by the application)

A job can be restarted from an intermediate (i.e. “previously” saved) job state

Different than “classical checkpointing (i.e. saving all the information
related to a process: process’s data and stack segments, open files, etc.)

Very difficult to apply (e.g. problems to save the state of open network
connections)

Not necessary for many applications

To submit a checkpointable job

Code must be instrumented (see next slides)

JobType=Checkpointable to be specified in JDL

The EDG Workload Management System – n° 49

Job checkpointing example

int main ()
{
…
for (int i=event; i < EVMAX; i++)

{ < process event i>;}
...

exit(0); }

Example of
Application
(e.g. HEP MonteCarlo
simulation)

The EDG Workload Management System – n° 50

Job checkpointing example
#include "checkpointing.h"

int main ()
{ JobState state(JobState::job);

event = state.getIntValue("first_event");
PFN_of_file_on_SE = state.getStringValue("filename");
….
var_n = state.getBoolValue("var_n");
< copy file_on_SE locally>;

…
for (int i=event; i < EVMAX; i++)

{ < process event i>;
...
state.saveValue("first_event", i+1);
< save intermediate file on a SE>;
state.saveValue("filename", PFN of file_on_SE);
...
state.saveValue("var_n", value_n);
state.saveState(); }

…
exit(0); }

User code
must be easily
instrumented in order
to exploit the
checkpointing
framework …

The EDG Workload Management System – n° 51

Job checkpointing example
#include "checkpointing.h"

int main ()
{ JobState state(JobState::job);

event = state.getIntValue("first_event");
PFN_of_file_on_SE = state.getStringValue("filename");
….
var_n = state.getBoolValue("var_n");
< copy file_on_SE locally>;

…
for (int i=event; i < EVMAX; i++)

{ < process event i>;
...
state.saveValue("first_event", i+1);
< save intermediate file on a SE>;
state.saveValue("filename", PFN of file_on_SE);
...
state.saveValue("var_n", value_n);
state.saveState(); }

…
exit(0); }

•User defines what is a state
•Defined as <var, value> pairs
• Must be “enough” to restart a

computation from a
previously saved state

The EDG Workload Management System – n° 52

Job checkpointing example
#include "checkpointing.h"

int main ()
{ JobState state(JobState::job);

event = state.getIntValue("first_event");
PFN_of_file_on_SE = state.getStringValue("filename");
….
var_n = state.getBoolValue("var_n");
< copy file_on_SE locally>;

…
for (int i=event; i < EVMAX; i++)

{ < process event i>;
...
state.saveValue("first_event", i+1);
< save intermediate file on a SE>;
state.saveValue("filename", PFN of file_on_SE);
...
state.saveValue("var_n", value_n);
state.saveState(); }

…
exit(0); }

User can save
from time to time
the state of the job

The EDG Workload Management System – n° 53

Job checkpointing example
#include "checkpointing.h"

int main ()
{ JobState state(JobState::job);

event = state.getIntValue("first_event");
PFN_of_file_on_SE = state.getStringValue("filename");
….
var_n = state.getBoolValue("var_n");
< copy file_on_SE locally>;

…
for (int i=event; i < EVMAX; i++)

{ < process event i>;
...
state.saveValue("first_event", i+1);
< save intermediate file on a SE>;
state.saveValue("filename", PFN of file_on_SE);
...
state.saveValue("var_n", value_n);
state.saveState(); }

…
exit(0); }

Retrieval of the last saved state
The job can restart from that
point

The EDG Workload Management System – n° 54

Job checkpointing scenarios

Scenario 1

Job submitted to a CE

When job runs it saves from time to time its state

Job failure, due to a Grid problems (e.g. CE problem)

Job resubmitted by the WMS possibly to a different CE

Job restarts its computation from the last saved state
No need to restart from the beginning
The computation done till that moment is not lost

Scenario 2

Job failure, but not detected by the Grid middleware

User can retrieved a saved state for the job (typically the last one)
edg-job-get-chkpt –o <state><edg-jobid>

User resubmits the job, specifying that the job must start from a specific (the
retrieved one) initial state

edg-job-submit –chkpt <state> <JDL file>

The EDG Workload Management System – n° 55

Submission of parallel jobs

Possibility to submit MPI jobs

MPICH implementation supported

Only parallel jobs inside a single CE can be submitted

Submission of parallel jobs very similar to normal jobs

Just needed to specify in the JDL:
JobType= “MPICH”
NodeNumber = n;

The number (n) of requested CPUs

Matchmaking

CE chosen by RB has to have MPICH sw installed, and at least n total
CPUs

If there are two or more CEs satisfying all the requirements, the one
with the highest number of free CPUs is chosen

The EDG Workload Management System – n° 56

Further information

The EDG User’s Guide

http://marianne.in2p3.fr

EDG WP1 Web site

http://www.infn.it/workload-grid

In particular WMS User & Admin Guide and JDL docs

ClassAd

https://www.cs.wisc.edu/condor/classad

