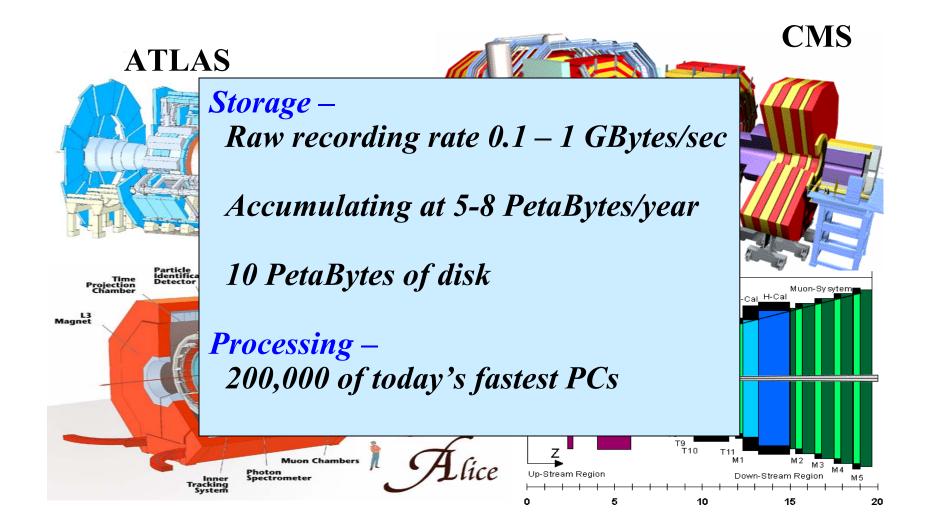
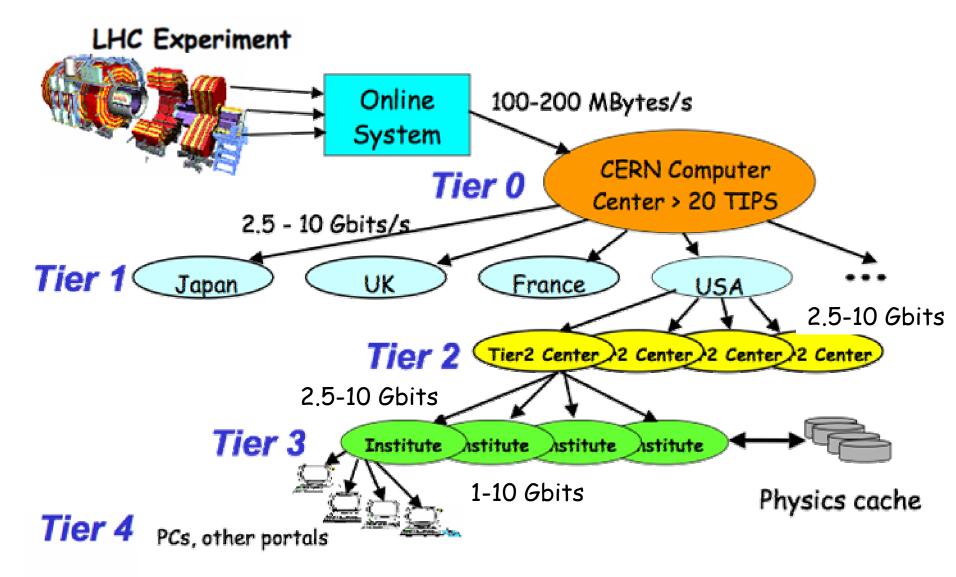
Deploying the LHC Computing Grid The LCG Project



Flavia Donno IT Division, CERN Grid Technology Workhhop Islamabad, 20 October 2003

The Large Hadron Collider Project 4 detectors


Summary of Computing Capacity Required for all LHC Experiments in 2008

	CERN			Other	Total	CERN as	Total	CERN as
	Tier 0	Tier 1	Total	Tier 1	Tier 1	% of Tier 1	Tier 0 + 1	% of total
								Tier 0 + 1
Processing (K SI2000)	12,000	8,000	20,000	49,000	57,000	14%	69,000	29%
Disk (PetaBytes)	1.1	1.0	2.1	8.7	9.7	10%	10.8	20%
Magnetic tape (PetaBytes)	12.3	1.2	13.5	20.3	21.6	6%	33.9	40%

- CERN will provide the data reconstruction & recording service (Tier 0)
 -- but only a small part of the analysis capacity
- current planning for capacity at CERN + principal Regional Centres
 - 2002: 650 KSI2000 \rightarrow <1% of capacity required in 2008
 - 2005: 6,600 KSI2000 → < 10% of 2008 capacity



LHC Computing Model

The LCG Project

Goals:

Prepare and deploy the computing environment for the LHC experiments

- Common applications, tools, frameworks and environments,
- Move from testbed systems to real production services:
 - Operated and Supported 24x7 globally
 - Computing fabrics run as production physics services
 - Computing environment must be robust, stable, predictable, and supportable
- Foster collaboration, coherence of the LHC computing centres
- LCG is not a middleware development or grid technology project:

It is a grid deployment project

Two phases

Phase 1 – 2002-05

- Development and prototyping
- Approved by CERN Council 20 September 2001

Phase 2 - 2006-08

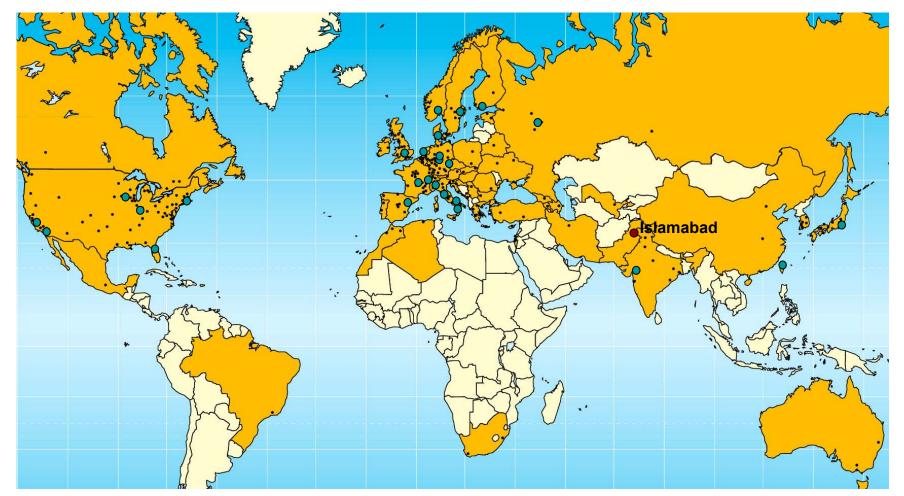
- Installation and operation of the full world-wide initial production Grid
- Costs (materials + staff) included in the LHC cost to completion estimates

Phase 1 Goals –

- Prepare the LHC computing environment
 - provide the common tools and infrastructure for the physics application software
 - establish the technology for fabric, network and grid management (buy, borrow, or build)
 - develop models for building the Phase 2 Grid
 - validate the technology and models by building progressively more complex Grid prototypes
 - operate a series of data challenges for the experiments
 - maintain reasonable opportunities for the re-use of the results of the project in other fields
- Deploy a 50% model* production GRID including the committed LHC Regional Centres
- Produce a Technical Design Report for the full LHC Computing Grid to be built in Phase 2 of the project

* 50% of the complexity of one of the LHC experiments

M1.1 - July 03 (Sept 03)	First Global Grid Service (LCG-1) available			
M1.2 - June 03	Hybrid Event Store (Persistency Framework) available for general users			
M1.3a - November 03	LCG-1 reliability and performance targets achieved			
M1.3b - November 03	Distributed batch production using grid services			
M1.4 - May 04	Distributed end-user interactive analysis from "Tier 3" centre			
M1.5 - December 04	"50% prototype" (LCG-3) available			
M1.6 - March 05	Full Persistency Framework			
M1.7 - June 05	LHC Global Grid TDR			



- > To be ready for data taking in Spring 2007
- > Need 1 year to procure, build and test the full LHC computing fabrics
- > The Computing TDR must be written in mid-2005
- Need at least 1 year of experience in operating a production grid to validate the computing model
- > Thus LCG must be running the experiments' data challenges in 2004
 - With a reasonable level of "production" service

Centres taking part in the LCG prototype service (2003-05)

around the world \rightarrow around the clock

Centres taking part in the LCG prototype service – 2003-05

Other Centres

- Academica Sinica (Taipei)
- Barcelona
- > Caltech
- GSI Darmstadt
- Italian Tier 2s(Torino, Milano, Legnaro)
- Manno (Switzerland)
- Moscow State University
- NCP National Centre for Physics (Islamabad,PK)
- NIKHEF Amsterdam
- Ohio Supercomputing Centre
- Sweden (NorduGrid)
- > Tata Institute (India)
- Triumf (Canada)
- > UCSD
- UK Tier 2s

.

- > University of Florida– Gainesville
- University of Prague

Tier 0

> CERN

Tier 1 Centres

- Brookhaven National Lab
- CNAF Bologna
- > Fermilab
- FZK Karlsruhe
- IN2P3 Lyon
- Rutherford Appleton Lab (UK)
- University of Tokyo
- > CERN

Confirmed Resources: <u>http://cern.ch/lcg/peb/rc_resources</u>

 \triangleright

LCG Resource Commitments – 1Q04

LCG

	CPU (kSl2K)	Disk TB	Support FTE	Tape TB
CERN	700	160	10.0	1000
Czech Republic	60	5	2.5	5
France	420	81	10.2	540
Germany	207	40	9.0	62
Holland	124	3	4.0	12
Italy	507	60	16.0	100
Japan	220	45	5.0	100
Poland	86	9	5.0	28
Russia	120	30	10.0	40
Taiwan	220	30	4.0	120
Spain	150	30	4.0	100
Sweden	179	40	2.0	40
Switzerland	26	5	2.0	40
UK	1780	455	24.0	300
USA	801	176	15.5	1741
Total	5600	1169	123.2	4228

Four work areas –

- > Applications
- Grid Technology
- > Fabrics
- Grid deployment

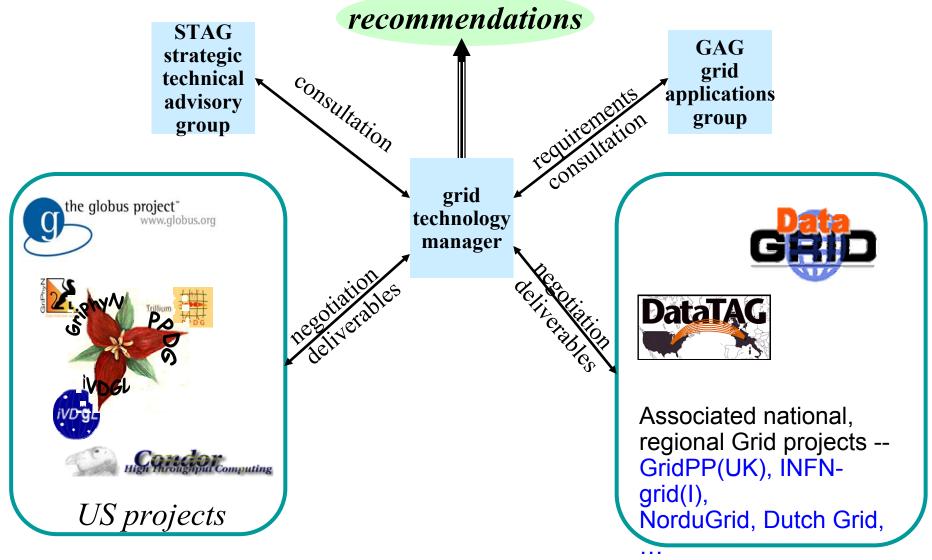
- Base support for the development process, infrastructure, tools, libraries
- Frameworks for simulation and analysis
- Projects common to several experiments
 - everything that is not an experiment-specific component is a potential candidate for a common project
 - long term advantages in use of resources, support, maintenance
- Object persistency and data management

LCG expects to obtain Grid Technology from

- projects funded by national and regional e-science initiatives -and
- from industry
- concentrating ourselves on deploying a global grid service

A few of the Grid Projects with strong HEP collaboration

This area of the project is concerned with


- ensuring that the LCG requirements are known to current and potential Grid projects
- active lobbying for suitable solutions influencing plans and priorities
- evaluating potential solutions
- negotiating support for tools developed by Grid projects
- developing a plan to supply solutions that do not emerge from other sources

BUT this must be done with caution – important to avoid HEP-SPECIAL solutions important to migrate to standards as they emerge

(avoid emotional attachment to prototypes)

LCG Grid Technology Organisation

Flavia.Donno@cern.ch

- > A base set of requirements has been defined (HEPCAL)
 - 43 use cases
 - ~2/3 of which should be satisfied ~2003 by currently funded projects
- Good experience of working with Grid projects in Europe and the United States
- Practical results from testbeds used for physics simulation campaigns
- LCG-1: (which will evolve)
 - VDT as the basis
 - EDG components provide higher level functionality

- Ieverage the massive investments being made
 - proposals being prepared both in the EU and US
- > target:

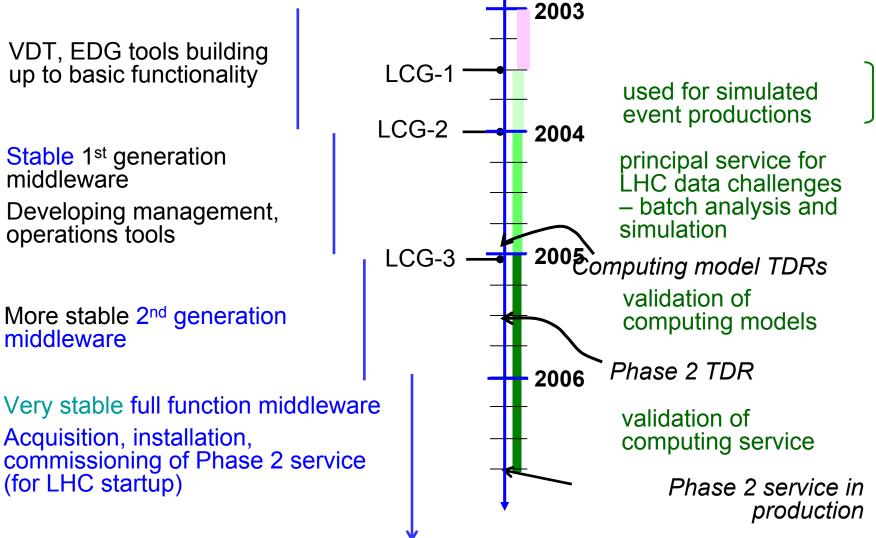
solid (re-)engineering of current prototypes

> expect several major architectural changes before things mature

- CERN Tier 0+1 centre
 - Automated systems management package autonomic computing
 - Evolution & operation of CERN prototype integrating the base LHC computing services into the LCG grid
- Tier 1,2 centre collaboration
 - develop/share experience on installing and operating a Grid
 - exchange information on planning and experience of large fabric management
 - look for areas for collaboration and cooperation
 - use HEPiX as the communications forum
- Technology tracking & costing
 - new technology assessment nearing completion (PASTA III)
 - re-costing of Phase II is being done in light of
 - PASTA III
 - re-assessment of experiment trigger rates, event sizes (LHCC)

Grid Deployment

Deploying a production service


- Production service for Data Challenges in 2H03 & 2004
 - Initially focused on batch production work
- > Experience in close collaboration between the Regional Centres
 - Must have wide enough participation to understand the issues,
- > Learn how to maintain and operate a global grid
- Focus on a production-quality service
 - Robustness, fault-tolerance, predictability, and supportability take precedence; additional functionality gets prioritized
- LCG should be integrated into the sites' physics computing services

 should not be something apart
 - This requires coordination between participating sites in:
 - Policies and collaborative agreements
 - Resource planning and scheduling
 - Operations and Support

Grid Technology Workshop, Islamabad

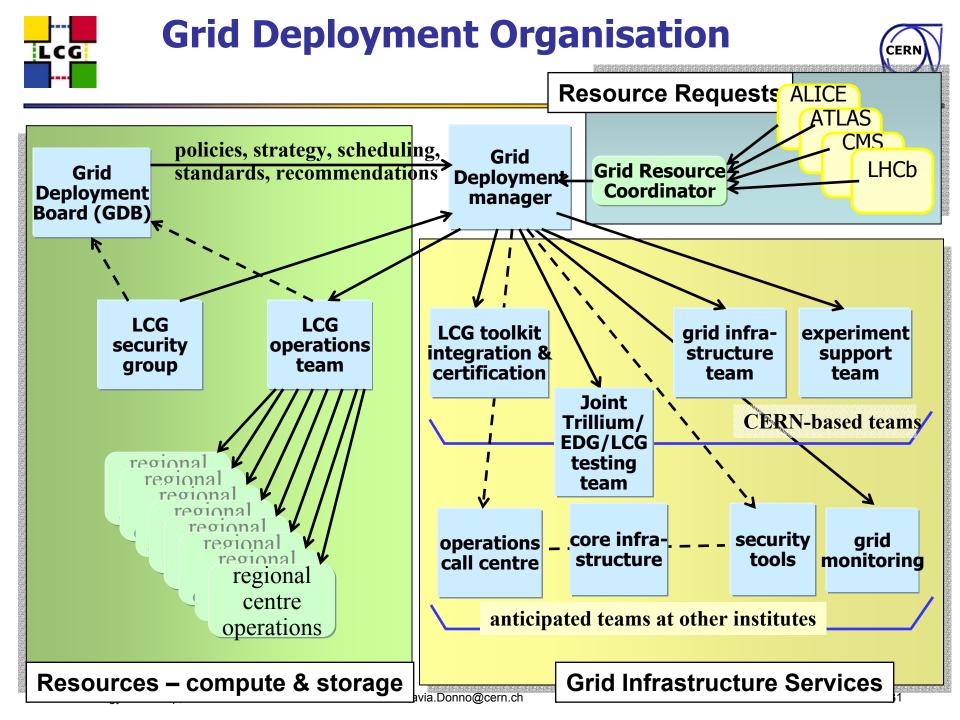
Flavia.Donno@cern.ch

Timeline for the LCG computing service

LCG-1 – First Pilot – Delivered in September 2003 –

- data replication, migration
- sustained 24 X 7 service
- including sites from three continents
- several times the capacity of the CERN facility
- and as easy to use
- > And then evolve to the LHC production service:
 - reliability, availability
 - add more sites, more capacity
 - service quality
 - performance, efficiency
 - scheduling, data migration, data transfer
 - develop interactive services
 - migrate to de-facto standards as they emerge

- Middleware:
 - Testing and certification
 - Packaging, configuration, distribution and site validation
 - Support problem determination and resolution; feedback to middleware developers
- > Operations:
 - Grid infrastructure services
 - Site fabrics run as production services
 - Operations centres trouble and performance monitoring, problem resolution 24x7 globally
- > Support:
 - Experiment integration ensure optimal use of system
 - User support call centres/helpdesk global coverage; documentation; training



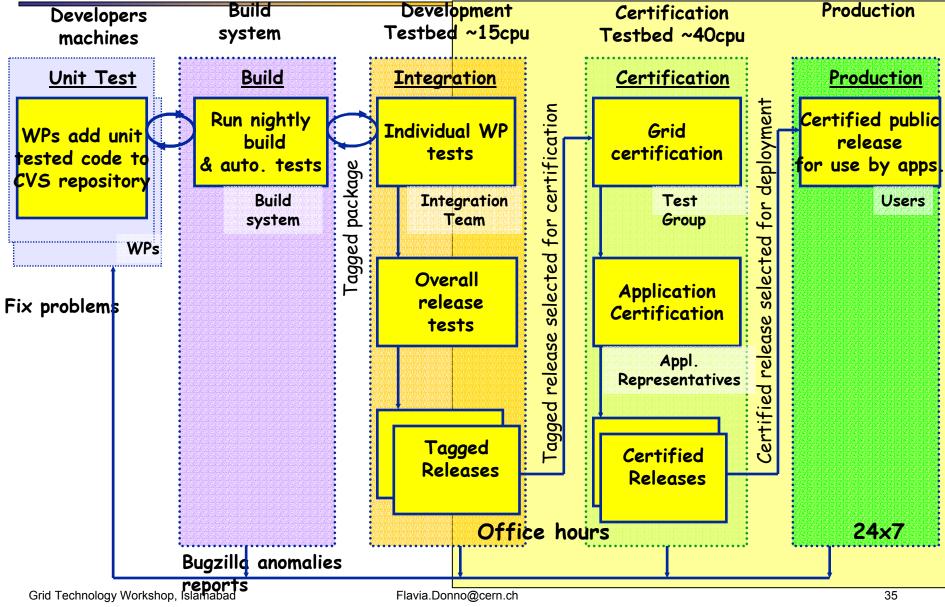
- > Use middleware, software, tools that exist
 - Developed by the various grid projects
- Integrate these tools as needed, with a well-defined testing and certification process
- Forge collaborations, common projects, agreements, to fill in the missing pieces, support, etc.
 - With grid development projects
 - With other deployment projects
 - With standards bodies (e.g. GGF)

- Combined US and EU toolkits:
- > Now:
 - VDT 1.1.8 + EDG 2.0 + GLUE schema
 - This is being used to:
 - Set up the first prototype of a production system, exercize testing & certification, deployment process, support structures
 - Address issues of integration into regional centre production environments
- This is significant should allow inter-operation between EDG and VDT sites and LCG

Grid Deployment Board

- representatives from the experiments and from each country with an active Regional Centre taking part in the LCG Grid Service
- forges the agreements, takes the decisions, defines the standards and policies that are needed to set up and manage the LCG Global Grid Services
- coordinates the planning of resources for physics and computing data challenges
- Initial task was the detailed definition of LCG-1, the initial LCG Global Grid Service
 - included defining the set of grid middleware tools to be deployed, the deployment schedule, security model, operations and support model

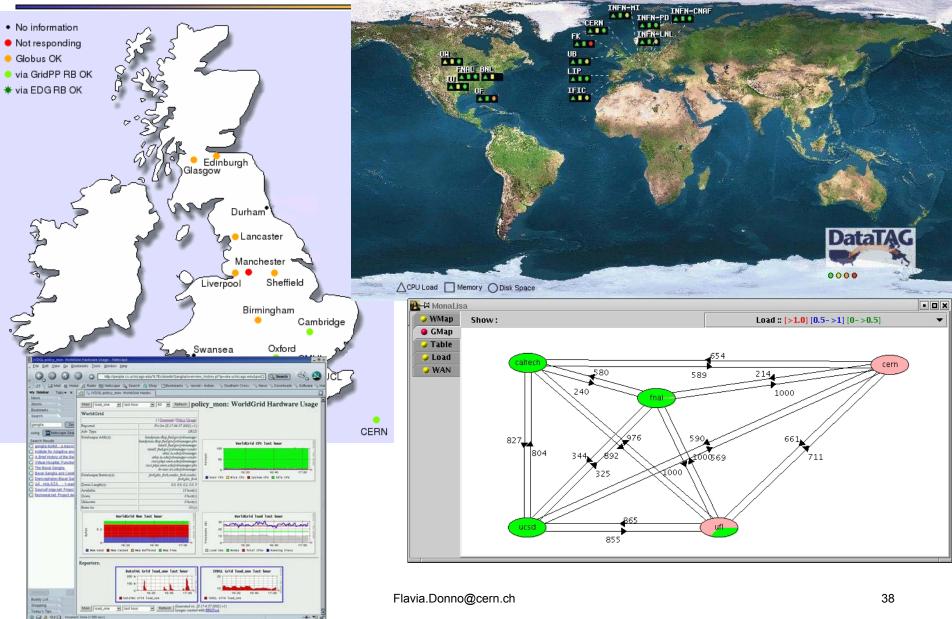
- > Will be an ongoing major activity of LCG
 - Part of what will make LCG a production-level service
- ➢ Goals:
 - Certify/validate that middleware behaves as advertised and provides the required functionality (HEPCAL)
 - Stabilise and robustify middleware
 - Provide debugging, problem resolution *and feedback to developers*
- > Testing activities at all levels
 - Component/unit tests
 - Basic functional tests, including tests of distributed (grid) services
 - Application level tests based on HEPCAL use-cases
 - Experiment beta-testing before release
 - Site configuration verification


Certification process – agreed a common process with EDG

- Have agreed joint project with VDT (US):
 - VDT provide basic level (Globus, Condor) testing suites
 - We provide higher level testing
- Will also have applications-level testing standard benchmarks as well as experiment beta-testing, and HEPCAL tests
- Look at using common tools and frameworks (where it makes sense) NMI/VDT-LCG
- Certification testbeds
 - Local "grid" at CERN
 - Extended to distributed test bed U. Wisc. and others
- Site verification
 - Also an essential component
- > Exception handling has not really been addressed at all ...

Test and Validation process

- Obviously a major issue for a deployment project
- > Want to provide a tool that satisfies needs of the participating sites,
 - Interoperate with existing tools where appropriate and necessary
 - Does not force solution on sites with established infrastructure
 - Solution for sites with nothing
- Configuration is essential component
 - Essential to understand and validate correct site configuration
 - Effort will be devoted to providing configuration tools
 - Verification of correct configuration will be required before sites join LCG
- Subject of a collaborative project


- Responsible for operating and maintaining the grid infrastructure and associated services
 - Gateways, information services, resource broker etc. i.e. grid specific services
 - Will be a coordination between teams at CERN and at Regional Centres
 - Responsible also for the VO infrastructure, Authentication and Authorisation services
 - Security operations incident response etc.
- Build Grid Operations Centre(s)
 - Performance and problem monitoring;
 - Troubleshooting and coordination with
 - site operations,
 - user support,
 - network operations etc.
 - Accounting and reporting
 - Leverage existing experience/ideas
 - Assemble monitoring, reporting, performance, etc. tools

Flavia.Donno@cern.ch

Monitoring tools

- GOAL: Do not want to make exceptions for LCG services they must run integrated into a site infrastructure, and be subject to all usual security and good management procedures and policies
- BUT: Initially, certain to need exceptions and compromises since until now most grid middleware has sidestepped security issues
- THUS: We must have a sound security policy and an agreed plan that provides for these exceptions in the short term, but shows a clear path to reach the state that the sites require
- > This area represents a significant effort and must address many issues:
 - VO management
 - Usage agreements brings up legal issues, privacy, …
 - Incident response
 - Auditing

- Essential for a production level service
- Experiment integration and consultancy
 - Support for data challenges
 - Ensure optimal use of resources, ensure experiment applications use middleware optimally
- Middleware support problem determination, resolution, feedback to developers
- Call centres: 24x7 support, single point of contact
 - User support for expert users
 - Coordination of local support activities
 - Documentation
 - Training
 - Collaborate with operations centres, local user support (helpdesks)

- Many LCG sites
 - Participate in other grids
 - Provide resources for other HEP experiments
 - Provide resources for other sciences
- LCG cannot exist in isolation
 - Must collaborate on standards, projects and implementations of mutual benefit
 - Essential to benefit from experience of currently running experiments trying to use grid services

- Deploy middleware to support essential functionality, but goal is to evolve and incrementally add functionality
 - Added value is to robustify, support and make into a 24x7 production service
- ➤ How?
 - Certification & test procedure tight feedback to developers
 - must develop support agreements with grid projects to ensure this
 - Define missing functionality require from providers
 - Provide documentation and training
 - Provide missing operational services
 - Provide a 24x7 Operations and Call Centre
 - Guarantee to respond
 - Single point of contact for a user
 - Make software easy to install facilitate new centres joining
- Deployment is a major activity of LCG
 - Encompasses all operational and practical aspects of a grid
 - There is a lot of work already done that must be leveraged
 - Many opportunities for synergy and collaboration

Flavia.Donno@cern.ch

- Moving from development to production is difficult
- Requires a lot of detailed work needs significant investment
- > There is a growing body of experience that must be built upon
- There is a good chance now to build common toolkits, share developments, and work on certification, packaging etc.
- We are forced to interoperate with other HENP experiments, other science applications: LCG cannot exist in isolation
 - This is a good thing, although it makes life harder initially
- ➢ The success of LCG will come from active collaborations with all centers participating. We are looking forward to a good collaboration with NCP.