Paleoseismology, A tool for Earthquake Risk Assessment

Haydar A-Shukri

Department Applied Science, UALR

International Conference on Global Change November 13 – 17, 2006

> National Centre for Physics Islamabad

Overview:

- > What is Paleoseismology?
- > What are the Typical Method used?
- > Applications
- How it is used for Risk Assessment?
- Final Remarks

Paleoseismology is a fairly new field that involves the delineation and study of the past behavior of earthquake source zone.

What are we looking for?

Soil disturbance Faulting Lateral extension **Subsidence & uplift** Liquefaction Sand Blows **Tsunami deposits** Landslides

Satellite Imaging

Satellite Imaging Aerial Photography

Satellite Imaging Aerial Photography **Surface Geology**

Satellite Imaging Aerial Photography Surface Geology **Geomorphology**

Satellite Imaging Aerial Photography Surface Geology Geomorphology **Geophysics**

Satellite Imaging Aerial Photography Surface Geology Geomorphology Geophysics **Trenching and Logging**

Satellite Imaging Aerial Photography Surface Geology Geomorphology Geophysics Inipled Long puintaner T Dating

Radiocarbon

Optically Stimulated Luminescence (OSL)

Archeology & Artifacts

Satellite Imaging Aerial Photography Surface Geology Geomorphology Geophysics Inipled Long puintaner T Dating **Geotechnical Testing**

Satellite Imaging Aerial Photography Surface Geology Geomorphology Geophysics Inipled Long puintaner T Deiting **Geotechnical Testing Data Integration & Interpretatipon**

Earthquake Risk Assessment?

- Earthquake source location and identification
- Magnitude estimation
- Time of event(s)
- Recurrence period
- Soil characteristics

Application

Central United States

Collaborators: Hanan Mahdi **Martitia Tuttle Support: USGS ASTA** NASA **ADEM** UALR

Historic Seismicity Sites (1800 - 1983)

Recent Seismicity (1974-1996; St Louis University).

 Earthquake Epicenters Scenario PGA Hazard Map NM SW Segment, M 7.7

2Sand Blows

Big Creeks Fault 20me

Marteur San Escarponent San Escarponent St. Francis 500 Site

Reelfoot four Sand Blows Esc Reelfoot Jun Sand Blows Esc Marianna

> Daytona Beach Site

> > NOC

10 km

St. Francis 500 Site

UUIIU .

6

Subsurface Exploration Unit

HOGENTOG: LR

6

*Soil behavior type and SPT based on data from UBC-1983

Scenario PGA Hazard Map NM SW Segment, M 7.7

Scenario PGA Hazard Map NM SW Segment, M 7.7

