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Projecting future climate change given future

concentrations - temperature
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Projecting future climate change given future

concentrations - precipitatior
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UKCIP "02

= Based on the state-of-the-art s, G, CelConre HE
at the tlme = HadCMS, Climate Change Scenarios
el r e Ued Koo
HadAM3H time-slice, 50km

HadRM3 experiments

» Used by many private and
public-sector organisations to
make decisions and spend
money

= “Scenario” based with no
guantification of uncertainties
(although plenty of caveats
pointing this out)
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We can produce very detailed projections of climate
change with no idea of how reliable they might be
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UKCIPnext —Aims and Objectives

= To provide joint probabillity distribution functions (pdfs)
of projected changes in a selection of key UK climate
variables at 25km resolution for each decade during
the 21st century

» Results will be presented for each variable by month
and summarised as quantiles indicating both mean
and extreme outcomes

* The set of climate variables will be determined in
consultation with stakeholders

=\We aim to deliver the final report and the pdfs during
the first half of 2008



Modelling impacts

Emissions

Concentrations
CO,, methane, sulphates, etc.

Global climate change
Temperature, rainfall, sea level, etc.

Regional detail

Mountain effects, islands, extreme weather, etc.

Impacts
Flooding, food supply, etc.

Scenarios from population, energy,
economics models

Carbon cycle and chemistry models

Coupled global climate models

Regional climate models

Impacts models
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Modelling impacts

EMISSIONS Scenarios from

population, energy,
economics models

CONCENTRATIONS <

CO,, methane, etc.

| Carbon cycle and
chemistry models

Feedbacks
| HEATING EFEECT <I

‘Climate Forcing’. Gas properties

Feedbacks

_I Coupled climate
models
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Development of climate models

The Development of Climate models, Past, Present and Future

Mid-1970s Mid-1980s Early 1990s Late 1990s Present day Early 2000s?
Atmosphere Atmosphere Atmosphere Atmosphere Atmosphere '
Land surface Land surface Land surface Land surface :

Ocean & sea-ice  Ocean & sea-ice

Sulphate Sulphate Sulphate
aerosol aerosol aerosol
Non-sulphate Non-sulphate
aerosol aerosol
/ Carboncycle  Carboncycle
Ocean & sea-ice Sulphur Non-sulphate
model cycle model aerosols
Land carbon
cycle model * cl; z rbor& |
cycle mode
Ocean carbon s
cycle model
Dynamic Dynamic
vegetation vegetation

From IPCC TAR, 2001 Atospheric  Almospheric

chemistry chemistry

Page 11



Assessment of model uncertainties

= Uncertainty in representing physical and
biological processes in climate models

1. Uncertainties due to different representations of
processes (structural)

2. Uncertainties in key parameters in models

3. Omitted processes
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The HadCM3 perturbed physics ensemble —_

Assessment of the uncertainty due to the parametrization
Models built using different values of parameters whose ranges
are ill-constrained

256 member ensemble with multiple parameter perturbations —
atmosphere/slab ocean model, 2xCO,

Assessment of model quality and global mean climate
response (i.e. climate sensitivity)

Run a 17 member ensemble of coupled model transient
experiments using “high quality” models with range of climate
sensitivities — 1860-2100, A1B (flux-adjusted HadCM3)
Additional perturbed model are emulated (Sexton and Rougier,
INn preparation)

Transient response generated by pattern-scaling (Harris et al,
2005, EBM based)
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The slab ensemble picture: frequencies of

projected rainfall changg

Amazon basin
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Simple uncertainty estimates
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Use of obs constraints: Bayesian framework ===

o

*Perform a limited ensemble of GCM
experiments with perturbed input parameters

*|ntroduce an emulator which can estimate the
GCM output at untried parameter values

*|ntroduce a discrepancy term derived from the
output of other climate models to represent
structural uncertainties

*Produce prior predictive distributions of climate
variables

=Use observations to produce a likelihood
function and posterior predictive distributions
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The first example

“‘emulated” Unweighted (prior) .
prior
predictive
distribution

Weighted (posterior)
Likelihood

posterior

©
~
\

predictive
distribution

Probability
T

} likelihood
weighting via

No discrepancy

0.0

Climate Sensitivity (K)

Murphy et al., 2004, Nature, 430, 768-772



Climate Sensitivity
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Climate Prediction Index

The choice of the
models:

e a reasonable
spread in climate
sensitivity

» a reasonably
good CPI

e a spread in
model parameter
space
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Global mean temperature response from

HadCM3 ensemble

A1B Surface Temperature, 17 member GCM ensemble

aegzq, lambda=1.06
aemja, lambda=1.45
aemjb, lambda=1.20
aemjc, lambda=0.98
aemjd, lambda=0.82
aemjf, lambda=1.00
aemjh, lambda=0.77
aemji, lambda=1.62
aemjj, lambda=0.96
aemjk, lambda=1.17
aemjl, lambda=0.77
aemjm, lambda=1.17

aemjn
aemjo

, lambda=1.19
, lambda=1.29

aemjp, lambda=1.25

aemjq
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Multi-model (MM) and parameter perturbation

PP) ensemble ranges

DFJ precipitation change in mm/day

Results for 17
member HadCM3
PP ensemble and MME PPE MME PPE  MME PPE
21 member IPCC CAM -0.76 -054  -027  -0.15  0.23 0.26
AR4 MM ensemble

5% 5% Average Average 95% 95%

JJA precipitation change in mm/day

5% 5% Average Average 95% 95%
Precipitation and MME PPE MME PPE  MME PPE
temperature CAM -0.99 -1.59 -0.44 -0.59 0.11 0.37
change for Central
America (CAM) Annual temperature change deg C

5% 5% Average Average 95% 95%

MME PPE MME PPE MME PPE

CAM 1.8 2.46 3.2 3.58 4.6 5.02 Page 20



Application of HadCM3 ensemble to climate

scenario generation

= For UKCIPOS8: run 17-member HadRM3 ensemble at 25km
driven by HadCM3 ensemble and pattern-scale results for
the 256 slab ensemble

= For ENSEMBLES (EU project for Europe): run HadRM3
and other RCMs driven by HadCM3.0 and high and low
sensitivity members of the full ensemble (i.e. 3
experiments) — ensemble augmented with other GCMs
and RCMs

= Application from other groups
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ENSEMBLES-EU perturbed physics GCMs =

o

MSLP bias DJF (hPa) T bias DJF (K)

“unperturbed” HadCM3

high sensitivity

low sensitivity
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QUMP predictions at RCM scale

» 17 RCM 150-years transient simulations at 25km horizontal
resolution

» RCMs driven from QUMP GCMs (RCM parameters consistent
with GCM)

= Variables from other GCMs will be obtained by statistical
downscaling from GCM to RCM scale

» Transferability of methods
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Statistical Downscaling GCM -> RCM

K. Brown (unpublished)

Monthly mean Temperature anomaly plots for London

« SDSM (Wilby et al, 2002)

 Daily temperature distribution for UK

« HadAM3P/HadRM3P simulations |
(1960-1990 and 2070-2100 A2)

* 70% RCM variance explained by GCM

temperature
* Preliminary results on precipitation not
so good
Monthly Skewness London - Variance of Daily Temperatures for London ey
\ ‘E- ‘ —— RCM_a Pred
\_‘ :H; —
m — P, — -.f
”‘;}: — T Pred
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“Local scaling”approach

. Kennett (unpublished)

Temperature Precipitation

50™ percent

95™ percent

99" percent




“Local scaling” approach: effect of GCM resolution 2=

0N precipitation - E. Kennett

HadCM2 (~300km) HadAM3P (~150km)
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Summary

* Methods to estimate uncertainty in climate projection
are under development.

» Possible problems with the users, impact models not
ready for pdfs of climate variables.

* Ensembles of climate simulations require models with
low computational costs to maximise the number of
perturbed models involved. Sophisticated sampling
strategies are also needed.
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Thanks!
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