Fine-scale processes regulate the response of extreme events to global climate change

Noah S. Diffenbaugh

Purdue Climate Change Research Center and Department of Earth and Atmospheric Sciences Purdue University

Diffenbaugh et al., PNAS, 2005

- Jeremy Pal, Filippo Giorgi
 Abdus Salam International Center for Theoretical Physics
- Jeff Trapp *Purdue University*

Billion Dollar Weather Disasters 1980 - 2005

Questions

 What are the dynamics that control the response of extreme climate to enhanced greenhouse gas forcing?

=> What is the role of fine-scale climate processes?

The Experiment

- 2 cases
 Reference 1961 1985
 A2 Scenario 2071 2095
- Modern satellite-derived land cover
- NASA finite volume GCM provides large-scale conditions

High-Resolution Model Domain (25 km)

Change in Temperature (°C)

• Fine-scale physics alter the response to greenhouse forcing

Extremes Method

An *event* is the daily rainfall or daily maximum/minimum temperature.

• Top and bottom 5% of events in a year are considered extreme

Index Definition:

• Long term indices of extreme temperature and precipitation created based on the methods of Salinger & Giffiths (2001, *Intl. J. Climatol.*)

I95 =
$$\frac{(\sum_{i=1}^{Y} X_i [0.95 \times N])}{Y}$$

 $\begin{array}{l} Y &= \mbox{Total number of years} \\ X &= \mbox{A sorted list of N elements} \\ N &= \mbox{Total number of events per year} \\ I_{95} &= \mbox{Long term 95th percentile index} \end{array}$

Index values are defined in the control simulation

after Bell et al., 2004

Results: Extreme Temperature

Change in Extreme Hot Events

△Extreme Hot Event Frequency

△Extreme Heat-Wave Length

Increases of 100 to 560 % in frequency and 50 to 550 % in duration

△Jun-Jul-Aug Moisture Balance

• Change in surface moisture balance enhances warming

△Jun-Jul-Aug 500 hPa Heights and Winds

• Anticylonic flow = hotter, drier conditions

△Jun-Jul-Aug Moisture Balance

△Extreme Hot Frequency

Land Use

Response of extreme hot events muted in crop areas

Land Use

00

20 40 60 80 0

Growing Season Hot Days

Change in Extreme Cold Events

△Extreme Cold Frequency

△Extreme Cold Magnitude

• Decreases of 25 to 90 % in frequency

snow-albedo
 feedbacks enhance
 warming at lower
 elevations

Elevation

RF Snow

25

()

50

A2 Snow

\triangle SW flux

75

Changes in Large-Scale Dynamics

enhanced anticyclonic flow aloft limits penetration of arctic air

Results: Extreme Precipitation

△Mean Annual Precipitation

△Extreme Precipitation Frequency

\triangle Extreme Precipitation Contribution

• weakening of Pacific rain shadows

hPa Heights 500 ∆Nov-Dec-Jan

• enhanced cyclonic flow aloft = steering from the subtropics, greater atmospheric instability

10-4

kg/kg

18

14

△Ext. Event Frequency

△Ext. Event Contribution

△Mar-Apr-May 850 hPa Relative Humidity

△Mar-Apr-May 850 hPa Mixing Ratio

13

15

21 kg/kg

19

△Extreme Event Contribution

Mar-Apr-May 850 hPa Relative Humidity

Mar-Apr-May 850 hPa Mixing Ratio

fraction

%

Extreme Temperature Summary

- Hot events: substantial increases in frequency and duration
- Cold events: substantial decreases in frequency and severity
- Changes in large-scale circulation important
- Fine-scale snow albedo and surface moisture feedbacks regulate

Extreme Precipitation Summary

- Increases in frequency and contribution of extreme precipitation events
- Large-scale changes (enhanced cyclonic circulation, elevated atmospheric moisture content)
- Fine-scale regulation (topographic effects, land-sea contrast)

In response to elevated greenhouse forcing:

• Fine-scale processes regulate the *response* of extreme events

 Response of extreme events to could have substantial *impacts*

