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Benefits of a Regional Climate Model

The editorial by C. Huntingford and J. Gash encouraging regional climate
modeling studies in developing countries (“Climate equity for all,” 16 Sept., p.
1789) perfectly captures the objectives of the Regional Climate Network
(RegCNET) (see www.ictp.trieste.it/RegCNET /). Based at the International
Centre for Theoretical Physics (ICTP) in Trieste, Italy, F. Giorgi, J. Pal, X. Bi, and
others have developed and supported the use of the regional climate model
RegCM via a listserv, workshops around the world, time on ICTP computers, and
personal correspondence with users. At last count, RegCM is used by scientists in over
40 mostly developing countries or countries with economies in transition, including
Egypt, Iran, Pakistan, India, Nigeria, Cameroon, Ghana, Bangladesh, China, Vietnam, the
Philippines, Estonia, Peru, and Brazil. The benefits of support to these climate scientists
cannot be overstated, as many of the smaller countries would not even show up in the
geography of a global climate model, yet they are at considerable risk from climate
change. Furthermore, the model itself benefits as developers strive to make it perform in
regions influenced by monsoons, tropical convection, dramatic topography, and large
lakes. Funding the efforts of climate scientists already working at the regional level and
encouraging them to collaborate with those assessing impacts would be an expedient way

to achieve more local capacity for climate prediction and adaptation.

LARA M. KUEPPERS
Department of Earth Sciences, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA.

Science Letters 25 November 2005



Why Climate Models? fvGCM Climate Model & Hurricane lvan

gﬂ%nimgffon courtesy NASA/Goddard Space Flight Center

. Scientific Visualization Studio
Climate models help us

understand the physical
processes that govern climate
and enable us to predict climate
changes.

They range from conceptual
models to models of
iIntermediate complexity to
comprehensive 3D models with
sophisticated representations of
the major components of the
Earth System.

The 3D models typically
guantify the interactions of the
atmosphere, oceans, land
surface, and ice.

Can be used to simulate a
variety of processes and
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Schematic of the Modeling System
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e Coupled Atmosphere-Ocean

General Circulation Models (GCMs)

General Circulation Models
(AOGCMSs) are the most
advanced tools today available
for climate simulation.

« However, their resolution (100 ‘

— 300 km) is still too coarseto |}
provide fine scale regional
climate information useful for
Impact studies.
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How do we go from the GCM
scale to the impacts scale?
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Regional Climate Modeling is an Option

« Regional Climate Models
(RCMs) can be “nested” within
a AOGCM in order to increase
the resolution (10s km) of a
climate simulation.

* I|nitial conditions (ICs) and
lateral boundary conditions
(LBCs) for the RCM are
obtained from the AOGCM.

e RCMs are intended to enhance
the AOGCM simulation.




RCM Nesting
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Regional Climate Modeling:
Advantages and Added Value



Regional Climate Modeling:
Limitations



Winter Precipitation over Britain

(a) 300km GCM: 1979-83 (b) 50km RCM: 1979-83
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Impact of Horizontal Grid Spacing
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Impact of Horizontal Grid Spacing
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Winter Daily Precipitation over the Alps
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RCMs typically simulate extreme preciptiation better than GCMs.
They also tend to better simulate interseasonal variability.



Simulation of a Tropical Cyclone

Global climate model Regional climate model

998 1002 1006 1010 1014 1018 1022
Pressure (hPa)

RCMs can simulate circulation features not resolved by GCMs




1988 Drought (MJ)

1993 Flood (JJ)
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Bay of Bengal Cyclone
and Resulting Storm Surge

-0.25 0 0.25 0.5 0.75 1.0 1.75 1.5
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RCM data is useful for simulating climate impacts models



High resolution double-nested simulations

 Model configuration
— 20-km grid point spacing
— Full Mediterranean domain

« EXxperiment design

— Forcing fields from
PRUDENCE RegCM
simulations

— Reference simulation (1961-
1990)

— A2, B2 scenarios (2071-
2100)

Gao et al 2006b



SCENARIOS

CO, Emissions
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Maximum Dry Spell Length (1961-1990)

DJF Frei & Schir, 1998 Obs  DJF RegCM3 50-km DJF RegCM3 20-km
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Maximum 5 Day Precipitation (1961-1990)

DJF Frei & Schir, 1998 Obs
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Spatial Correlation Coefficient:
Simulated precipitation and Frei & Schar (1998)
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Precipitation Change: A2-REF

(a) Mean precipitation chcnge A2-Reference, DJF

(b) Mean precipitation change, A2— Reference MAM
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Snow Change: A2-REF

Snow depth (mm H20), A2, DJF Snow depth (mm H20), A2, MAM
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A tropical cyclone in an A2 simulation with PROMES RCM |

29 August 2100
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(m)
SLP and thickness (850-200 hPa) - Exp. 1

Lifetime: 10 days

Min. SLP: 979 hPa

Max. wind: 27 m/s

Accum. precip.
(10 day): 200 mm
(southern Italy),
max. 900 mm

Courtesy PRUDENCE Project




Premium Grape Production:
Suitable Years (out of 24)

Heat Tolerant & Cold Tolerant Grapes

Reference Future (A2)

xS

suitable years

| t -

1T 2 3 4 5 6 7 8 9 10 11 1213 14 15 16 17 18 19 20 21 22 23 24

White et al 2006, PNAS



Premium Wine Production:
Single Factor Reductions
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Climate Change & Agriculture

Wheat Yield Nitrate Leaching

Courtesy PRUDENCE Project



Climate Change &
Hydrology

Bothnian Sea

0
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Total Baltic Sea
Drainage Basin
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Strategy for Regionalize Climate
Change Projections



ICTP Regional Climate Model, RegCM3

Dynamics:

e Tracers/Aerosols:

MMS5 Hydrostatic (Grell et al 1994) Solmon et al 2005

Radiation:
CCM3 (Kiehl 1996)

Large-Scale Clouds &

Precipitaion:

SUBEX (Pal et al 2000)
Cumulus convection:

Grell (1993)
Anthes-Kuo (1977)
MIT (Emanuel 1991)

Boundary Layer:
Holtslag (1990)

Zakey et al 2006

e Land Surface:
BATS (Dickinson et al 1993)
SUB-BATS (Giorgi et al 2003)
CLM3 (Bonan; In progress)

e Ocean Fluxes

BATS (Dickinson et al 1993)
Zeng et al (1998)

« Computations
Parallel Code
Multiple Platforms
More User-Friendlier Code

Pal et al 2006



South Asia Domain

e Topography (m)

Glacier
lee Cap

B Deciduous
Shrub
Evergreen
Shru
Disturbed
Forest
Mixed
Forest
Evergreen
Broadleaf

Deciduous
Broadleaf

Deciduous
Needleleaf
Evergreen
Needleleafl

Domain: 120 x 111 x 18 at 50-km
Simulation: 1987-2000 ERA40



Monsoon Precipitation & Winds
1987-2000 Climatology (JJAS)

« CRU/CMAP/ERAA40 e RegCM3

Precipitation: Land=CRU; Ocean=CMAP Precipitation: RegCM3
Winds: Sigma 0.910 ERA40 Winds: Sigma 0.910 RegCM3



Monsoon Temperature

1987-2000 Climatology (JJAS)
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The ICTP REGIonal Climate research NETwok

North
America

Mediterranean
Middle East

Sub-Saharan
Africa

Workshops South-North
at ICTP and Interactions Scientific
off-site xchange
Central Eastern
America Europe
South-South
Use of ICTP Interactions
model tools

and datasets

South

America

Collaborative

research
projects

Activity
Coordinatio

Southeast

Asia Islands

RegCNET
email group

Visitor
program

Interactions
with other
international
programs

OVERALL GOAL: Foster "north-south" and "south-
south" scientific interactions on the topic of regional

climate and impacts research.




The ICTP REGIonal Climate research NETwok

Regional Modeling

Weathe easonal” ~Climate
Prediction Pred|ct|on Change
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Flood « Drought « Water Resources ¢ Energy ¢ Agriculture « Land Cover Change ¢ Biomass Burning ¢ Pollution « Human Health ¢ Fisheries » Ecosystems
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