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Pakistan Energy
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Pakistan Energy

Bagasse (the woody residue left over from crushed
sugarcane), dung, and firewood furnished about 32
percent of all energy in FY 1988

Some localities had been denuded of firewood, forcing
the local population to use commercial energy sources,
such as kerosene or charcoal.

Domestic sources of commercial energy accounted for
77 percent of all commercial energy in FY 1990.

The major domestic energy resources are natural gas,
oil, and hydroelectric power. The remainder of energy
requirements are met by imports of oil and oil products.
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Energy Consumption by Source
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PAKISTAN'S PRIMARY ENERGY
SUPPLIES 2005-06

Oil & Gas 79.2% 0il 28.4%

— LPG0.4%

—Muclear 1.0%
Gas 50.4% 4

Hydro 12.7%




Oil Production

Qil - production Rank Percent Change  Date of Information

Year

2003 62,870 53 2001 est.
2004 62,870 53 0.00 % 2001 est.
2005 61,000 54 -2.97 % 2004 est.
2006 63,000 58 3.28 % 2005 est.

bbl/day




OIL

* Oil - production: 63,000 bbl/day (2005)
* Oil - consumption: 324,000 bbl/day (2005)




* Oil Bill 6.7 Billion Dollars (2005)
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* Oil Bill 6.7 Billion Dollars
» Total Expenditure 13.8 Billion Dollars
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* Oil Bill 6.7 Billion Dollars
» Total Expenditure 13.8 Billion Dollars

* Some encouraging numbers:

» Allocation to education including HEC has
been increased to $0.4 billion (up by

52.7 percent).

* Allocation to the Science & Technology HE
up $1.6 Billion (up by 95.3 percent) (D&



http://www.enchantedlearning.com/math/money/bills/one/printablefronts.shtml

iIssue !!

In addition, there is a direct environment cost
that is associated with the fossil fuel consumption.

* Number of automobiles rose from 680,000 in 1980 to 5

million in 2003

» Average Pakistani vehicle emits 25 times as much carbon

dioxide, 20 times HC, 3.5 times more NOx than an average

U.S. vehicle

* 0.5 B dollars/year medical tab due to emissions related

ilinesses.

* Some incentives given for conversion to lesser polluting

LPG/CNG and seems to be having some positive effect. ™

e This is just the tip of the iceberg. P
EIAW
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Global Picture




daily production Mbdd (mill. barrel per day)

World conventional crude oil production and forecast
for an ultimate of 2.1 Th (no demand constraint)

randfather Economic Report -
bito: fmvvhodges home att.nets

arl data - Jean Laherrére 2004, 1920-2003 USDOEBA,
I
f‘{ —orld 930 Gh
70 -
- —_————
5 > model
50 - om0 OPEC SE0 G
L

a0 r . — —= T non-opec - 2004

& i end =500 Gh

= K m——OPEC G370 Gh
40 £ g

ﬁ"L ------ opec - 2004-end
v =700 Gh

a0 S -

& -

£ T
Y L Y
20 L] = R
= Yy S "-..\
, "
10 n N
- 3
1_\_- = .
0 . kel .
1220 1240  1%e0 1980 2000 2020 2040 2080 2020 2100

NIVERSITY o
EIAWARE

1743



The Global Picture
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Richard E. Smalley

“To give all 10 billion people on
the planet the level of energy
prosperity we in the developed
world are used to, a couple of
kilowatt-hours per person, we
would need to generate 60
terawatts around the planet—
the equivalent of 900 million
barrels of oil per day.”




Future Global Energy
Prosperity: The
Terawatt Challenge

Richard E. Smalley

“To give all 10 billion people on
the planet the level of energy
prosperity we in the developed
world are used to, a couple of
kilowatt-hours per person, we
would need to generate 60
terawatts around the planet—
the equivalent of 900 million
barrels of oil per day.”

And we produce 90 million barrels of oil per day right now.......




Radiant Facts

Diameter: About 100 times that of earth

Mass: 99.8% of the Solar System (Jupiter has most of the rest)
Core Temperature: 15.6 x 106 K Surface Temperature: 5800K
Energy Production: 386 billion billion megawatts

Insolation: 1000 - 250 Watts per square meter

Age: 4.5 billion Years (5 billion years more to go) PR



http://www.google.com/imgres?imgurl=http://antwrp.gsfc.nasa.gov/apod/image/0102/eitprom_soho_big.jpg&imgrefurl=http://antwrp.gsfc.nasa.gov/apod/ap010301.html&h=1024&w=1024&sz=456&hl=en&start=172&tbnid=Z46cIqRGiW_VhM:&tbnh=150&tbnw=150&prev=/images%3Fq%3Dsun%26start%3D160%26ndsp%3D20%26svnum%3D10%26hl%3Den%26lr%3D%26rls%3DSNYC,SNYC:2004-17,SNYC:en%26sa%3DN

PV Land Area Requirements

 1.2x10° TW of solar energy potential globally

* Generating 2x10' TW with 10% efficient solar farms requires
2x10%/1.2x10°= 0.16% of Globe = 8x10'! m? (i.e., 8.8 % of
U.S.A)

* Generating 1.2x10' TW (1998 Global Primary Power) requires
1.2x10%/1.2x10°= 0.10% of Globe = 5x10'! m? (i.e., 5.5% of
US.A))

Nate Lewis, CIT




PV Land Area Requirements
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PV Land Area Requirements
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Means of
Harvesting
Solar Energy

Phoetevoltaic

Phoetethermal

Phoetechemica

Passive

Plioto- Fpleiie)s
thermoelectric] ElEctiolysis



http://www.google.com/imgres?imgurl=http://antwrp.gsfc.nasa.gov/apod/image/0102/eitprom_soho_big.jpg&imgrefurl=http://antwrp.gsfc.nasa.gov/apod/ap010301.html&h=1024&w=1024&sz=456&hl=en&start=172&tbnid=Z46cIqRGiW_VhM:&tbnh=150&tbnw=150&prev=/images%3Fq%3Dsun%26start%3D160%26ndsp%3D20%26svnum%3D10%26hl%3Den%26lr%3D%26rls%3DSNYC,SNYC:2004-17,SNYC:en%26sa%3DN

Alternate Energy Paths
The Magic Wand of Nanotechnology

S. Ismat Shah
Physics and Astronomy
Materials Science and Engineering
University of Delaware

NNCP March 2007



Applications
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The vehicle was launched in 2005.
JPL/NASA IMAGE
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Figure 2. Flexible solar cell technology Incorporated into a military tent




Unique uses of Solar Cells




World PV Shipment
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Solar cell materials

Mostly as single junction devices

Single crystal silicon
Polycrystal silicon

Single crystal lll-V semiconductors
Amorphous silicon

« CdTe
 CulnGaSe,
Cell Type Area Vo (V) Jsc (MA | FF Efficiency (%)
(cm?) /cm?)
c-Si UNSW 40 0.696 420 83.6 24.9
PERL
c-GaAs Kopin 3.91 1.022 28.2 87.1 25.1
poly-Si UNSW/Eu | 1.0 0.628 36.2 78.5 19.8
rosolare
a-Si Sanyo 1.0 0.887 19.4 74.1 12.7
CuInGaSe; | NREL 1.04 0.669 35.7 77.0 18.4
Cd Te NREL 1.131 0.848 25.9 74.5 16.4




Shockley—Queisser (S—Q) limit
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Detailed Balance Limit of Efficiency of p-n Junction Solar Cells*

WiLLiAM SHOCKLEY AND HaNS J. QUEISSER
Shockley Transistor, Unit of Clevite Transistor, Palo Alte, California
(Received May 3, 1960; in final form October 31, 1960)




Solar Cell Efficiencies:
Shockley-Queisser Limit

Efficiency depends on optical concentration, details of input spectrum (i.e. if
spectrum is black body, measured spectrum, etc)

Trade-off between voltage and current: high band gap gives large voltage,
but absorbs small fraction of solar spectrum and so gives a small current.

Maximum efficiency for band gap ~1.3 eV for space radiation, 1.1 eV and
1.34 eV for terrestrial radiation.

Maximum single junction efficiency = 30.8% under one sun and 40.8% under
max concentration (called Shockley-Queisser limit).

»

W &
o o
I I

Efficiency (%)
S
I

energy

-
o
1

o

0 7 2 3 4 5
Band Gap (eV)




Efficiency Enhancement

* First-generation cells:

Based on expensive
silicon wafers.

» Second-generation cells:
Based on thin films of
less expensive
materials.

* Third-generation cells:
Research goals: may ol N S
use carrier multiplication, SRR RROIAREER SO O
hot electron extraction,

BOTOMWN S0.20/Wp, 50.50/Wp

80 -

60 =

S1.00/W,,

40 =

PERCENT EFFICIENCY

i $3.50/W,

George W. Crabtree and Nathan S. Lewis

mU|tiD|e junctions, ‘ Physics Today, March 2007, page 37 x
sunlight concentration, T

1743
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Exceeding Shockley—Queisser limit

1. Tandem cells (University of Delaware
DARPA $57M ($147M) Project).

2. Hot carrier solar cells
4. Multiband and impurity solar cells

5. Thermophotovoltaic/thermophotonic
cells

3. Solar cells producing multiple electron-
hole pairs per photon through impact
ionization

6. Nanocomposite solar cells e

ITYor
Py

1743




Approaches to High Efficiency

Assumption in
Shockley-Queisser

Input is solar
spectrum

One photon = one
electron-hole pair

One quasi-Fermi level
separation

Constant temperature
= cell temperature =
carrier temperature

Steady state
(=~ equilibrium)

Approach which circumvents assumption

Multiple spectrum solar cells: transform the
input spectrum to one with same energy but
narrower wavelength range

Multiple absorption path solar cells: any
absorption path in which one photon = one-
electron hole pair

Multiple energy level solar cells: Existence of
multiple meta-stable light-generated carrier

populations within a single device

Multiple temperature solar cells. Any device in
which energy is extracted from a difference in

carrier or lattice temperatures

AC solar cells: Rectification of electromagnetic
wave.

Examples

Up/down conversion
Thermophotonics

Impact ionization
Two-photon absorption

Intermediate band
Quantum well solar
cells

Hot carrier solar cells

Rectenna solar cells




Multiple Junction (Tandem)
Solar Cells




Spectral Irradiance (W/m2 pm)

Tandem Solar Cells
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Tandem Solar Cells

1600 - AM1.5 spectrum
_—— B GainP (1.70eV)
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Multiple Junction (Tandem) Solar Cells
e Multiple junction (tandems)

are first class of # junctionsin | 1sun | Max
approaches to exceed solar cell m_|con.n
single junction efficiency. 1junction  [30.8% | 40.8%

2 junction 42.9% | 55.7%
3 junction 49.3% | 63.8%
o junction 68.2% | 86.8%

* To reach >50% efficiency,
need ideal E, 6-stack
tandem or equivalent,

. n Values of Band Gap (eV) n%
assuming can reach ~75% 4 0.60,1.11, 1.69, 2.48 62.0
Of deta"ed ba|ance |Imlt 5 0.53, 0.95, 1.40, 1.93, 2.68 65.0

6 0.47,0.84,1.24,1.66, 2.18, 2.93 67.3
o Key iIssue in tandem is to 7 0.47,0.82,1.19, 1.56, 2.0, 2.5, 3.21 68.9
8 0.44,0.78,1.09, 1.4, 1.74, 2.14, 2.65, 3.35  70.2

identify materials which can
be used to implement ideal
tandem stack.




Multiple Spectrum Solar Cells




Multiple Spectrum Solar Cells

Multiple spectrum devices: take the input solar spectrum, and change it to a new
spectrum with the same power density

Does not need to be incorporated into solar cell — can use existing solar cells,
and add additional optical coatings

Does not require electrical A

transport of generated

_ Solar
carriers — no contacts, Spectrum
collection, resistivity,
mobility issues.

Wavelength

Efficient optical processes
desired for applications
other than solar —
development effort is

shared. New Modified Spectrum

Requires efficient optical \
conversion over broad Wavelength
spectrum.




Multiple Spectrum Solar Cells

Approaches for multiple spectrum solar cells.

Thermophotonics: Use thermally-excited LED to generate a narrow solar
spectrum.

Assuming efficient spectrum conversion and max concentration, efficiency
can be >80%

Requires demonstration of efficient thermally-excited LED and cooling
from light emission

Using known materials and biases, efficiency is 50%.

Biased Solar
LED Cell
VNV~ md"AYAVAVAVas
ad"AVAVAVAVSS md"AVAVAVAVSS
VW
s AVAVAVAVas
e ATAVAVAVas NN\~




Multiple Absorption Path
(Impact lonization) Solar Cells




Multiple Absorption Path Solar Cells

Change absorption mechanisms such

that one photon # one electron-hole o V o
pair =

o I
Mechanisms include: W: |

—_ | I
Two-photon absorption U 10 ~ o Q:
Impact ionization/Auger U i FEL """ |
generation /I%‘

. - m s s o N ) [ - »—
Absorption process have been BE ;
observed in bulk materials, but J Of o ©:
absorption coefficient is very small — Two-photon  Auger

e.g., quantum efficiency > 80% in absorption generation
silicon solar cells.

Materials with quantum confinement
allow increases in alternate
absorption processes.




Multiple Exciton Generation

Hot electron cooling
generates multiple
excitations via
Reverse Auger
Process.

% \ One photon yields
J two e=—f+ pairs

| — Impact ionization
(now called
multiple exciton
generation, MEG)

Quantum Dot

MRS RIIHNIFTIN ¢ \VOI L IME 22 ¢e MARCH 2007

Higher voltage:
Extracting hot-
electrons before
they cool down.

Higher Current:
Reverse Auger
process is faster
than the hot
electron cooling.




Multiple Absorption Path Solar Cells

Impact ionization or multiple exciton generation demonstrated efficient
absorption processes in PbS and PbSe colloidal quantum dots.

Efficiency depends on number of excitons generated (measured by guantum

efficiency) and threshold energy (Eth). For a photon with energy mxEg,
should generate m electron-hole pairs.

Efficiency for demonstrated processes is similar to three junction tandem.

300 N b I I * I -
(b) E, (Homo - Lumo)
] &

Second QD ® 0726V
- v 0.72eV = .
A energy level < 250 0 072eV - .

- ® 0.82eV

° ® 091eV
Conduction = 200k O 091ev B

A £ A 0.91eV

First QD 2 4 091eV v e
Band / - 7l = & PbS (0.85 eV)
') energy level S o ®
L ®) L 4\ C 150} o . f =
[ ]
g
Quantum Dot O agag LB oot
* @
100lg_BFg P 8D | ! =
2 3 4 5
E,/E
Valence Band R.J. Ellingson, M.C. Beard, J.C. Johnson, P.Yu, O.l. Micic, A.J. Nozik, A. Shabaev,
o 0 and A.L. Efros “Highly Efficient Multiple Exciton Generation in Colloidal PbSe and

PbS Quantum Dots” Nano Letters Vol. 5, No. 5 p. 865-871 (2005)




Multiple Energy Level /
Quantum Dot Solar Cells




Quantum Dot Solar Cells

An ordered array of QD allows a multiple energy level
solar cell via formation of mini-bands (also called
Intermediate band or hot carrier solar cells).

Bands formed by overlap of energy levels in QD array.

Band structure of an intermediate band solar cell
requires: (1) Three-level band structure; (2) Fermi-
level at intermediate band.

Need to determine material system to implement QD
MEL solar cell. . . . _ ‘

intrinsic with ‘ Conduction Band
& guantum dots

e / -~ ~Intermediate Band > > > {

)

000
©60
@0

o [ siens g
alence Ban
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Multiple Energy Level Solar Cells

Introduce more than a single quasi-Fermi level separation by introducing
additional energy levels or bands, such that extracted energy of photon =
energy of band gap and

The energy levels must all simultaneously be radiatively coupled.

Energy levels can be spatially localized (energy levels) or interacting to form
mini-bands.

Lower V..
Can use guantum dots, quantum wires, quantum wells.

Conduction Band Conduction Band
Ec — o Ec © N
AW (e PN
RUStes c - o e A OO ---- e iy
1 e e — A s e —
Quantum . )
AV Dots AN\~ Minkband
photon photon
E
Ve—o Y ©
to contacts Valence Band

Valence Band




Ultra-High Efficiency Approaches

Similarities in new high efficiency approaches:

Most of the approaches require control over band structure, and use of
band structure which promotes interaction among different energy levels.

Implemented by either new materials to photovoltaics (ie phosphors,
materials with multiple energy levels) or, more generally by
nanostructures.

Types of nanostructures — key issues are how they are fabricated, materials,
periodicity, and spacing of nanostructures.

Most approaches use QDs, because of zero density of states.

QD fabrication can be colloidal (low cost but difficult to achieve periodicity)
or epitaxially grown (high cost, periodic, widely spaced).

Localized MEL solar cells can use well or wires, as long as transport is
NOT in plane with nanostructure.

Since carriers cross interface, susceptible to recombination at
interface.




Nanocomposite Solar Cells




Nature's way

* Photosynthesis: Light harvesting complex
embedded in folded membrane (Chloroplast)

» Multiple interfaces = high optical depth 18
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Blended Molecular Materials

Blend hole accepting with
electron accepting
material

Length scale of blend ~
exciton diffusion length

Charge separation at D-A
interface

Continuous paths for ) Buwo
electron and hole 2
percolation S e

anode cathode




Dye Sensitized Solar Cell

WL+ ghss secirode ElECETOlytes:

Bt mirror Room Temperature lonic
liguids (RTILs) (Redox Couple

in a solvent.

electrolyte with
redox

mediator Ionic Liquids Viscosity Jse Ve FF (%)
{12 (mPas) (mAcm®) (mV)

( 3) EMImTESI 39 9.4 550 045 2.4

EMImBF, 43 9.9 602 055 3.3

TiO2 with BMImPF 352 4.3 576 0.62 1.6

BPTFSI 72 6.3 577 056 2.0

e EMImDCA 21 7.8 703 066 3.8

. conducting DyeS .
; glass electrode = ]
hw 1704 N3: cis-(NCS)2bis(4,4'-

dicarboxy-2,2’'bipyridine)-ruthenium(ll).
Black Dye:




Quantum Confinement
Effect

e Efros and Efros (1982 Sov. Phys. Semicond.)
first proposed the quantum confinement
effect based on the experimental findings by
Ekimov and Onushchenko (1981 JETP Lett.)
of the size effect on the blue shift in the main
exciton absorption of CuCl (30 A)
nanocrystallite.

* The confinement effect on the band gap, Eg,
of a nanosolid of radius R was expressed as:

g '.l
. o hrme
EqiR)= Eg(o0) + ——

2 R-




Band Gap Variation with Particle Size
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Size Dependence of Band Gap (TiO,)

Bohr Radius of TiO2 =5.0 nm
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Composite Cell Schematics
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Energy Band Diagram of

Schematic of Desired Solar cell TiO,-Ge Nanocomposite

Bohr radius of Ge = 24 nm at 300K, Band Gap of bulk Ge = 0.66 eV




A very simple fabrication process can be used.

An initial amorphous composite of TiIO,-Ge can
be deposited as a thin films.

The electronegativity of Ti (1.54 Pauling) is lower
than that of Ge (2.01 Pauling)

The enthalpies of formation (AH%) for TiO, and
GeO, are -944.0 and -580 kJ/mol, respectively.

The thermodynamics and relative stabilities of

the GeO, and TiO, can be exploited by a
controlled deposition and annealing procedures

to obtain the right size and size distribution of

the Ge nanodots. 38
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All layers (including active and non-active) can be
fabricated in a single multi-target sputtering system.

Without any multi-junction configuration, and only by
the introduction of different sizes Ge nanodots in
TiO, matrix, it is possible to absorb a wide range of
solar radiation with energies in UV to VIS to IR.

All this is accomplished in a single active layer.

Bohr radius of Ge is relatively large, 24 nm,
therefore, it is easy to make size gradient of Ge
nanodots in the TiO, matrix.

TiO,-Ge is cost effective and environmentally stable
and the processes involved have very small, if any.
environmental footprints. m
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HRTEM (Planar)
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Photoconductivity
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QUO VADIMOS...

Tremendous amount of activity in recent years
on all approaches to enhance efficiency.

The current technology will benefit from more Si
production units that are coming on line to offset
demand related price increase.

More public awareness and pressure on policy
makers that alternative energy sources have to
immediately become a part of the solution.
Photovoltaics is just one of the approaches.

Invert the Paradigm.
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Inverted Paradigm
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