Islamabad, March '04

Electroweak Interactions in the SM and Beyond

G. Altarelli

CERN

A short course on the EW Theory

We start from the basic principles and formalism (a fast recall).
Then we go to present status and challenges

Content

- Formalism of gauge theories
- The $\operatorname{SU}(2) x U(1)$ symmetric lagrangian
- The symmetry breaking sector
- Beyond tree level
- Precision tests
- Problems of the SM
- Beyond the SM
G. Altarelli

Spontaneous Symmetry Breaking

Borrowed from the theory of phase transitions:
Ferromagnet (Landau-Ginzburg, classical)
At zero magnetic field B

Free
$F=F(M, T)=F_{0}(T)+\frac{1}{2} \mu^{2}(T) M^{2}+\frac{1}{4} \lambda(T)\left(M^{2}\right)^{2}+\ldots$
energy Magnetisation
(analogue of renorm.ty) $\lambda(\mathrm{T}) 0$: stability
F is rotation invariant.
Minimum condition: $\quad \frac{\partial F}{\partial M}=0 \rightarrow\left[\mu^{2}(T)+\lambda(T) \vec{M}^{2}\right] \vec{M}=0$
Two cases:
(A) $\mu^{2}(T)>0$
(B) $\quad \mu^{2}(T)<0$

Solution: $\mathrm{M}_{0}=0$
G. Altarelli

Solution: $M_{0}{ }^{2}=-\mu^{2} / \lambda$

Critical temperature $T_{C}: \mu^{2}\left(T_{C}\right)=0$
(A) $\mu^{2}(T)>0$

Solution: $\mathrm{M}_{0}=0$
(B) $\mu^{2}(T)<0$

Solution: $\mathrm{M}_{0}{ }^{2}=-\mu^{2} / \lambda$

Unique minimum: no SSB
G. Altarelli

The symmetry is broken when the system chooses one particular minimum point

Goldstone Theorem: When SSB of a continous symmetry occurs there is a zero mass mode in the spectrum with the quantum numbers of the broken generator.

$$
\begin{aligned}
& \Phi_{\mathrm{i}}(\mathrm{x}) \longrightarrow \Phi_{\mathrm{i}}^{\prime}(\mathrm{x})=\mathrm{U}_{\mathrm{ij}} \Phi_{\mathrm{j}}(\mathrm{x}) \quad \delta \phi_{\mathrm{a}} \sim \mathrm{i} \sum_{\varepsilon^{A} \mathrm{t}^{A_{i j}} \phi_{\mathrm{j}} \sim \mathrm{i} \varepsilon \mathrm{t}_{\mathrm{ij}} \phi_{\mathrm{j}}} \\
& U=\exp \left[i \sum_{A^{A}} \varepsilon^{A}\right] \sim 1+i \Sigma_{A^{A}} t^{A}+o\left(\varepsilon^{2}\right) \quad \begin{array}{l}
t^{A} \text { : generators } \\
\varepsilon^{A} \text { : parameters }
\end{array}
\end{aligned}
$$

$\begin{aligned} & \text { Hamiltonian } \\ & \text { density }\end{aligned} \longrightarrow H=\left|\partial_{\mu} \phi\right|^{2}+V(\phi), ~\left({ }^{2}\right)$
ϕ^{0} : minimum of H (note constant: no gradients)

$$
\begin{aligned}
\bullet \text { minimum } & \left.\longrightarrow \quad \frac{\partial V}{\partial \phi_{i}}\right|_{\phi=\phi^{0}}=0 \\
\text { symmetry } \longrightarrow \delta V & \longrightarrow \frac{\partial V}{\partial \phi_{i}} \cdot \delta \phi_{i}=\frac{\partial V}{\partial \phi_{i}} t_{i j} \phi_{j}=0
\end{aligned}
$$

- another derivative at the minimum

$$
\longrightarrow\left|\frac{\partial^{2} V}{\partial \phi_{k} \delta \phi_{i}}\right|_{\phi=\phi^{\circ}} t_{i \phi \phi_{j}^{0}}^{0}+\left.\frac{\partial V}{\partial \phi_{i}}\right|_{\phi=\phi^{0}} t_{i k}=0
$$

$$
\left.\frac{\partial^{2} V}{\partial \phi_{k} \delta \phi_{i}}\right|_{\phi=\phi^{0}} t_{i j} \phi_{j}^{0}=M_{k i}^{2} t_{i j} \phi_{j}^{0}=M^{2} \stackrel{\left(t \phi_{0}\right)}{ }=0
$$

This is an eigenvalue equation for the (mass) ${ }^{2}$ matrix M^{2} :

Either $\overline{\left(t \phi_{0}\right)}=0 \quad$ for all $t^{A} \longrightarrow$ All generators leave ϕ^{0} ("the vacuum") inv. symmetry Non vanishing eigenvector of M^{2} with zero eigenvalue Goldstone boson

For each broken generator t^{A}, there is a $G B$ with the quantum numbers of t^{A}
G. Altarelli

SSB: quantum versus classical

For finite \ddagger d.o.f. quantum effects remove degeneracy e.g. Schroedinger eqn.: $V(x)=-\mu^{2} x^{2}+\lambda x^{4}$

$$
\begin{gathered}
<+|\mathrm{V}|+>=<-|\mathrm{V}|->=\mathrm{a} \\
<+|\mathrm{V}|->=<-|\mathrm{V}|+>=\mathrm{b} \\
\mathrm{~b} \sim \exp [-\mathrm{dh}] \text { (tunnel) }
\end{gathered}
$$

Eigenvectors:

$$
v=\left[\begin{array}{ll}
a & b \\
b & a
\end{array}\right] \rightarrow
$$

$\sim|+> \pm|->$ Eigenvalues:
$=a \pm b$
Vacuum is unique!
While, for d.o.f. and volume $<\mathrm{v}|\mathrm{H}| \mathrm{v}^{\prime}>=\delta_{\mathrm{w} \mathrm{v}^{\prime}}$
and vacuum is degenerate

- Also, classical potential corrected by quantum effects

$$
\mathrm{V}_{\mathrm{eff}} \sim-\mu^{2} \Phi^{2}+\lambda \Phi^{4}+\gamma \Phi^{4}\left(\log \Phi^{2} / \mu^{2}+\mathrm{c}\right)+\ldots
$$

G. Altarelli

Classical
tree level

Quantum corr's loop expansion

SSB in gauge theories: Higgs mechanism
In general SSB \Longrightarrow Goldstone bosons with quantum numbers of broken generators t^{A}
$M_{k i}^{2}=\left.\frac{\partial^{2} V}{\partial \phi_{k} \delta \phi_{i}}\right|_{\phi=\phi^{0}} \quad \mathrm{M}^{2} \mathrm{t}^{\mathrm{A}} \Phi^{0}=0$
In gauge theory with Higgs mechanism
Symmetry broken by vacuum expectation values (vev) of Higgs field (scalar fields otherwise Lorentz also broken)
\Longrightarrow No physical Goldstone bosons. Become 3rd helicity state of gauge bosons with t^{A} quantum numb's that take mass
The Higgs potential has an orbit of minima, and the Higgs fields, like magnetisation, take a particular direction
G. Altarelli Symmetry restauration possible at high T (early Universe)

Simplest abelian $U(1)$ model (Higgs)

$$
L=-\frac{1}{4} F_{\mu \nu}^{2}+\left|\left(\partial_{\mu}-i e A_{\mu}\right) \phi\right|^{2}+\frac{1}{2} \mu^{2}|\phi|^{2}-\frac{1}{4} \lambda|\phi|^{4}
$$

Invariant under $(\mathrm{U}=\exp [\mathrm{iQe} \varepsilon(\mathrm{x})]): \quad\left\{A_{\mu} \Rightarrow A_{\mu}{ }^{\prime}=A_{\mu}+\partial_{\mu} \varepsilon(x)\right.$
If $\phi^{0}=\frac{v}{\sqrt{2}}=\sqrt{\frac{\mu^{2}}{\lambda}} \quad \begin{array}{ll}(\mathrm{Q} \phi=\phi)\end{array} \quad\left(\begin{array}{ll}\text { real } & 0) \quad\left(\phi^{0}=\text { constant }=\langle 0| \phi|0\rangle\right)\end{array}\right.$
one must shift (small oscill.s about field=0):

$$
\begin{aligned}
& \phi(x) \Rightarrow \frac{\rho(x)+v}{\sqrt{2}} \exp [i e \chi(x) / \sqrt{2}] \quad A_{\mu} \Rightarrow A_{\mu}+\frac{1}{v} \partial_{\mu} \chi(x) \\
& \quad(<0|\rho| 0>=<0|\chi| 0>=0) \\
& L=-\frac{1}{4} F_{\mu \nu}^{2}+\frac{1}{2} e^{2} v^{2} A_{\mu}^{2}+\frac{1}{2} e^{2} \rho^{2} A_{\mu}^{2}+e^{2} \rho v A_{\mu}^{2}+L_{v}(\rho) \\
& \text { G. Altarelli } \quad \text { mass term } \quad \text { No } \chi(x), \mathrm{A}_{\mu} \text { massive }
\end{aligned}
$$

(same number of d.o.f.!)

$$
\begin{gathered}
L=-\frac{1}{4} F_{\mu \nu}^{2}+\left|\left(\partial_{\mu}-i e A_{\mu}\right) \phi\right|^{2}+\frac{1}{2} \mu^{2}|\phi|^{2}-\frac{1}{4} \lambda|\phi|^{4} \\
\phi^{0}=\frac{v}{\sqrt{2}}=\sqrt{\frac{\mu^{2}}{\lambda}} \\
\phi(x) \Rightarrow \frac{\rho(x)+v}{\sqrt{2}} \exp [i e \chi(x) / \sqrt{2}] \\
L=-\frac{1}{4} F_{\mu v}^{2}+\frac{1}{2} e^{2} v^{2} A_{\mu}^{2}+\frac{1}{2} e^{2} \rho^{2} A_{\mu}^{2}+e^{2} \rho v A_{\mu}^{2}+L_{v}(\rho) \\
L_{v}(\rho)=\frac{1}{2} \mu^{2} \cdot \frac{(\rho(x)+v)^{2}}{2}-\frac{1}{4} \lambda \cdot \frac{(\rho(x)+v)^{4}}{4}
\end{gathered}
$$

Expanding:

$$
L_{v}(\rho)=\frac{1}{2} \rho^{2}\left(\frac{1}{2} \mu^{2}-\frac{3}{4} \lambda v^{2}\right)+\ldots=\frac{1}{2} \rho^{2}\left(\frac{1}{2} \mu^{2}-\frac{3}{2} \mu^{2}\right)+\ldots=-\frac{1}{2} \rho^{2} \mu^{2}+\ldots
$$

G. Altarelli

The ρ mass has the right sign!

The Higgs mechanism was discovered in condensed matter physics. e.g.: Superconductor in Landau-Ginzburg approx'n

$$
\text { Free energy } \underset{F}{\underset{\leftrightarrows}{ }}=F_{0}+\frac{1}{2} \vec{B}^{2}+\frac{1}{4 m}|(\vec{\nabla}-2 i e \vec{A}) \phi|^{2}-\alpha|\phi|^{2}+\beta|\phi|^{4}
$$

$|\phi|^{2}$: Cooper pair density (e-e-: charge -2 e and mass 2 m)
"Wrong" sign of α leads to ϕ not 0 at minimum

- No propagation of massless phonons ($\omega=\mathrm{k} v$)
- Mass term for $A->$ exponential decrease of B Inside the superconductor (Meissner effect)
G. Altarelli
$\mathrm{L}=\mathrm{L}_{\text {symm }}+\mathrm{L}_{\text {Higgs }} \quad$ In general $\phi=\phi^{\text {i }}$ (several multiplets)

$$
L_{\text {Higgs }}=\left(D_{\mu} \phi\right)^{\dagger}\left(D^{\mu} \phi\right)-V\left(\phi^{\dagger} \phi\right)-\left[\bar{\psi}_{L} \Gamma \psi_{R} \phi+\text { h.c. }\right]
$$

Only weak-isospin doublet Higgs ϕ contribute to fermion masses (ψ_{L} doublets, ψ_{R} singlets)

All non trivial repres.s break $\mathrm{SU}(2) \mathrm{xU}(1)$ and give masses to $\mathrm{W}^{ \pm}$and Z

Minimal model: only one Higgs ϕ doublet
G. Altarelli
singlet
Fermion masses: $\quad\left[\bar{\psi}_{L} \Gamma \psi_{R} \phi+\right.$ h.c. $]$

With one Higgs doublet: $\quad g_{f} \bar{\psi}_{f L}{ }^{\psi} f R{ }^{\phi} \longrightarrow m_{f}=g_{f} V$

Ugly: each mass one new coupling

Large mass ratios $\left(m_{t} / m_{e}, m_{t} / m_{u} \ldots\right)$ imply large coupling ratios

Fermion masses demand a more fundamental theory (at M_{Pl} ?)
G. Altarelli

Gauge Boson Masses $\quad L_{\text {Figs }}=\left(D_{\mu} \phi\right)^{\dagger}\left(D^{\mu} \phi\right)+\ldots$.

$$
D^{\mu} \phi=\left[\partial_{\mu}+i g \sum_{A} t^{A} W_{\mu}^{A}+i g^{\prime} \frac{Y}{2} B^{\mu}\right] \phi
$$

$$
\begin{array}{|l|}
\hline \text { Recall: } \\
W_{3}=c_{w} Z+s_{w} A \\
B=-s_{w} Z+c_{w} A \\
\operatorname{tg} \theta_{w}=s_{w} / c_{w}=g^{\prime} / g
\end{array}
$$

Zero photon mass -> Q unbroken $\mathrm{Qv}=\left(\mathrm{t}^{3}+\mathrm{Y} / 2\right) \mathrm{v}=0$: only neutral $\longrightarrow \mathrm{e} . \mathrm{g}$ for a doublet: components of ϕ have vevo

- $m_{W}^{2} W_{\mu}^{\dagger} W^{\mu}=g^{2}\left|\frac{t^{+}}{\sqrt{2}}\right|^{2} W_{\mu}^{\dagger} W^{\mu}$

$$
\begin{array}{r}
\phi=\left[\begin{array}{l}
\phi^{+} \\
\phi^{0}
\end{array}\right]=\left[\begin{array}{l}
0 \\
v
\end{array}\right] \equiv \\
\forall\left|t^{+} v\right|^{2}=v^{2}
\end{array}
$$

- $\frac{1}{2} m_{Z}^{2} Z_{\mu} Z^{\mu}=\left|\left(g c_{W} t^{3}-g^{\prime} s_{W} \frac{Y}{2}\right) v\right|^{2} Z_{\mu} Z^{\mu}=$

$$
\left|t^{3} v\right|^{2}=v^{2} / 4
$$

$\mathrm{Qv}=0 \longrightarrow\left(\mathrm{gc}_{W}+g^{\prime} s_{W}\right)^{2}\left|t^{3} \mathrm{v}\right|^{2} Z_{\mu} Z^{\mu}=\left(\frac{g}{c_{W}}\right)^{2}\left|t^{3} \mathrm{v}\right|^{2} Z_{\mu} Z^{\mu}$
G. Altarelli Thus, for one doublet $\phi: m_{W}^{2}=\frac{1}{2} g^{2} v^{2}=m_{Z}^{2} \cos ^{2} \theta_{W}$

For doublet ϕ :

$$
\rho_{0}=\frac{m_{W}^{2}}{m_{Z}^{2} \cos ^{2} \theta_{W}}=1 \quad \text { (Tree level) }
$$

$$
\text { In general: } \rho_{0}=\frac{\sum_{\phi}^{1} \frac{1}{2}\left\langle t^{+} t^{-}+t^{-} t^{+}>\mathrm{v}_{\phi}^{2}\right.}{\sum_{\phi} 2<t^{3} t^{3}>\mathrm{v}_{\phi}^{2}}=\frac{\sum_{\phi}\left\langle t(t+1)-t^{3} t^{3}>\mathrm{v}_{\phi}^{2}\right.}{\sum_{\phi} 2\left\langle t^{3} t^{3}>\mathrm{v}_{\phi}^{2}\right.}
$$

In general, at tree level, $\rho_{0}=1+\Delta \rho_{0}$. In the $S M$ with radiative corrections: $\rho_{S M}=\left(1+\Delta \rho_{S M}\right) \rho_{0}$

Exp. puts a strong bound on $\Delta \rho_{0}$:

$$
\Delta \rho_{S M}=\frac{3 G_{F} m_{t}^{2}}{8 \pi^{2} \sqrt{2}}+.
$$

$$
\begin{aligned}
& \left(\rho_{0}\right)_{\text {Exp }}=1.0004 \pm 0.0006 \\
& \left(\mathrm{~m}_{\mathrm{H}} \sim 115 \mathrm{GeV}\right) \text { PDG'03 }
\end{aligned}
$$

G. Altarelli

Note: $v=2^{-3 / 4} \mathrm{G}_{\mathrm{F}}{ }^{-1 / 2} \sim 174 \mathrm{GeV}$

$$
\Leftrightarrow m_{W}^{2}=\frac{1}{2} g^{2} v^{2} \quad \text { and } \quad \frac{G_{F}}{\sqrt{2}}=\frac{g^{2}}{8 m_{W}^{2}}
$$

Higgs couplings

$$
\begin{aligned}
& \phi(x)=\left[\begin{array}{c}
\phi^{+}(x) \\
\phi^{0}(x)
\end{array}\right]=\left[\begin{array}{c}
0 \\
\mathrm{v}+\frac{H(x)}{\sqrt{2}}
\end{array}\right] \\
& D^{\mu} \phi=\left[\partial_{\mu}+i g \sum_{A} t^{A} W_{\mu}^{A}+i g^{\prime} \frac{Y}{2} B^{\mu}\right] \phi \\
& L_{\text {figs }}=\left(D_{\mu} \phi\right)^{\dagger}\left(D^{\mu} \phi\right)+\ldots \ldots \ldots=\frac{1}{2} \partial_{\mu} H \partial^{\mu} H+L(H, W, Z) \\
& g^{2} \frac{\mathrm{v}}{\sqrt{2}} W_{\mu}^{\dagger} W^{\mu} H=g m_{W} W_{\mu}^{\dagger} W^{\mu} H \\
& \text { G. Altarelli } \\
& \frac{m^{m}}{\mathrm{v}} \bar{\psi}_{f L} \psi_{f R} \frac{H}{\sqrt{2}} \sim 2^{1 / 4} G_{F}^{1 / 2} m_{f} \bar{\psi}_{f L} \psi_{f R} H
\end{aligned}
$$

Higgs width and branching ratios

Γ_{H} : ~few MeV near the LEP limit,
\sim few GeV for intermediate mass, $\sim 1 / 2\left(\mathrm{~m}_{\mathrm{H}}\right)^{3}$
($\Gamma_{H}, \mathrm{~m}_{\mathrm{H}}$ in TeV) for heavy mass.

Note

- In spite of $m_{D} \sim m_{\tau}$ and colour, $B(H->\tau \tau) \sim 3 B(H->c c)$ Due to QCD running masses $m_{c}->m_{c}\left(m_{H}\right) \sim 0.6 \mathrm{GeV}$
- In spite of $m_{t}>m_{w}, B(H->W W) \sim 3-4 B(H->t t)$ for heavy H Due to behaviour of W polarization sums

$$
\left(k+k^{\prime}\right)^{2}=m_{H}^{2}
$$

$\sum_{A, B} e_{\mu}^{A *} e_{v}^{A} e^{B \mu *} e^{B v}=\left(-g_{\mu v}+\frac{k_{\mu} k_{v}}{m_{W}^{2}}\right)\left(-g^{\mu v}+\frac{k^{\mu} k^{\prime v}}{m_{W}^{2}}\right)=\frac{1}{4}\left(\frac{m_{H}}{m_{W}}\right)^{4}-\left(\frac{m_{H}}{m_{W}}\right)^{2}+3$
and $\Gamma(\mathrm{H}->\mathrm{tt}) \sim \beta_{\mathrm{t}}{ }^{3}$ (P-wave), $\Gamma(\mathrm{H}->\mathrm{WW}) \sim \beta_{\mathrm{w}}$
$\beta_{\mathrm{i}}{ }^{2}=1-4 \mathrm{~m}_{\mathrm{i}}{ }^{2} / \mathrm{m}_{\mathrm{H}}{ }^{2}$
G. Altarelli

$$
\begin{gathered}
\Gamma_{t}=N_{C} \frac{g^{2}}{32 \pi}\left(\frac{m_{t}}{m_{H}}\right)^{2} \beta_{t}^{3} m_{H} \\
\Gamma_{W}=\frac{g^{2}}{64 \pi}\left(\frac{m_{H}}{m_{W}}\right)^{2} \beta_{W} m_{H}\left[1-\frac{4 m_{W}^{2}}{m_{H}^{2}}+12\left(\frac{m_{W}}{m_{H}}\right)^{4}\right]
\end{gathered}
$$

Quarks and leptons exist in different flavours
within one family and across families

$$
\left[\begin{array}{llll}
u & u & u & v_{e} \\
d & d & d & e
\end{array}\right] \quad\left[\begin{array}{llll}
c & c & c & v_{\mu} \\
s & s & s & \mu
\end{array}\right] \quad\left[\begin{array}{llll}
t & t & t & v_{\mathbf{\tau}} \\
b & b & b & \tau
\end{array}\right]
$$

At tree level only charged-current weak int's change flavour

$$
L_{H i g g s}=\ldots-\left[\bar{\psi}_{L} \Gamma \psi_{R} \phi+\text { h.c. }\right]
$$

Only Higgs doublets ϕ can contribute
Yukawa matrix
Masses arise when ϕ is replaced by its vev v
If more doublets

$$
M_{\psi}=\bar{\psi}_{L} M \psi_{R}+\bar{\psi}_{R} M^{\dagger} \psi_{L}
$$

$$
\mathrm{M}=\Gamma \mathrm{v}\left(=\Sigma_{\mathrm{i}} \stackrel{\swarrow}{\Gamma^{\mathrm{i}} \mathrm{v}}\right)
$$

By separate rotations of the L and R fields one can make M_{ψ} real and diagonal: $\quad \mathrm{U}^{+}{ }_{\mathrm{L}, \mathrm{R}} \mathrm{U}_{\mathrm{L}, \mathrm{R}}=\mathrm{U}_{\mathrm{L}, \mathrm{R}} \mathrm{U}{ }^{+}{ }_{\mathrm{L}, \mathrm{R}}=1$

$$
\begin{aligned}
& \psi_{\mathrm{L}}{ }^{\text {diag }}=\mathrm{U}_{\mathrm{L}} \psi_{\mathrm{L}} \quad \Longrightarrow \mathrm{M}_{\text {diag }}=\mathrm{U}^{+} \mathrm{M} \mathrm{U}_{\mathrm{R}}=\mathrm{U}^{+}{ }_{\mathrm{R}} \mathrm{M}^{+} \mathrm{U}_{\mathrm{L}} \\
& \psi_{\mathrm{R}}{ }^{\text {diag }}=\mathrm{U}_{\mathrm{R}} \psi_{\mathrm{R}}
\end{aligned}
$$

M commutes with Q \square Separate rotations for up, down, ch. leptons, v's
e.g $U_{L, R}{ }_{L} U_{L, R}^{d}$ etc

CKM Matrix

> W-eigenstates

$\mathrm{V}_{\text {CKM }}$ unitary (change of basis): $\mathrm{V}^{+} \mathrm{V}^{2}=\mathrm{VV}^{+}=1$
Neutral current diagonal in both bases:

$$
\begin{aligned}
& \left(\overline{d^{\prime}}, \bar{s}^{\prime}, \overline{b^{\prime}}\right) \\
& \text { or } \\
& \left.\bar{d}^{\prime} d^{\prime}+\bar{s}^{\prime} s^{\prime}+\bar{b}^{\prime} b^{\prime}=\overline{s^{\prime}}=\bar{d} \overline{b^{\prime}}+\overline{\mathrm{s}}, \bar{s}, \bar{b}\right) \underbrace{v^{+} v}_{1}\left[\begin{array}{l}
d \\
s \\
b
\end{array}\right]
\end{aligned}
$$

Glashow-Iliopoulos-Maiani '70
G. Altarelli

The neutral current couplings are:

$$
\frac{g}{\cos \theta_{W}} \bar{\psi} \gamma_{\mu}\left[t_{L}^{3} \cdot \frac{1-\gamma_{5}}{2}+t_{R}^{3} \cdot \frac{1+\gamma_{5}}{2}-Q \sin ^{2} \theta_{W}\right] \psi Z^{\mu}
$$

For GIM to work all states with equal Q must have the same $t^{3}{ }_{L}$ and $t^{3}{ }_{R}$
was not true in old Cabibbo theory: $\quad d_{C}=\cos \theta_{C} d+\sin \theta_{C} s$ ($\left.\mathrm{u}, \mathrm{d}_{\mathrm{C}}\right)_{\mathrm{L}}$ doublet, s_{CL} singlet

$$
s_{C}=-\sin \theta_{C} d+\cos \theta_{C} s
$$

In the t^{3} part there is $\bar{d}_{C} d_{C}$ but not $\bar{s}_{C} s_{C}$ and the FC terms $\cos \theta_{C} \sin \theta_{C}(\bar{d} s+\bar{s} d)$ are present
The charged current couplings are:
G. Altarelli

$$
\frac{g}{2 \sqrt{2}} \bar{u} \gamma^{\mu}\left(1-\gamma_{5}\right) d \cdot W_{\mu} \Longleftrightarrow V_{C K M}=U_{L}^{u \dagger} U_{L}^{d}
$$

Note: kinetic terms diagonal in both bases $\bar{u}_{L} i^{\mu} \partial_{\mu} u_{L}+\ldots$

More Higgs doublets?

Beware of FCNC, e. g.

To avoid FCNC (and CP viol) in the Higgs sector you need to have at most 1 Higgs for u-type quarks, 1 Higgs for d-type quarks, 1 Higgs for e-type leptons, (1 Higgs for v-type leptons)

In fact diagonalisation of masses $\mathrm{M}=\Gamma^{1} \mathbf{v}^{1}+\Gamma^{2} \mathbf{v}^{2}+\ldots$ guarantees diagonalisation of couplings $\Gamma^{1} \phi^{1}+\Gamma^{2} \phi^{2}+\ldots$ only for a single term (then masses and couplings are proportional)

For example, in SUSY models there are H^{u} and H^{d} that give mass to $t^{3}=+1 / 2$ and $t^{3}=-1 / 2$ states, respectively.
G. Altarelli

Counting Parameters in $\mathrm{V}_{\text {скм }}$

Assume there are N down quarks: $\mathrm{D}^{\prime}=\mathrm{V}$ D, $\mathrm{V} \sim \mathrm{NxN}$ unitary matrix
$\mathrm{V} \sim \mathrm{NxN}$
unitary matrix N^{2} complex numbers $\longleftrightarrow \mathrm{N}^{2}$ unitary conditions $\longleftrightarrow \mathrm{N}^{2}$ real parameters

Freedom of phase def.:
2 N quarks -> $2 \mathrm{~N}-1$ relative phases (currents $\bar{\Psi} \Psi$ insensitive to overall phase)

TOTAL:
$\mathrm{N}^{2}-(2 \mathrm{~N}-1)=(\mathrm{N}-1)^{2}$ physical parameters
cfr: a NxN orthogonal matrix has $\mathrm{N}(\mathrm{N}-1) / 2$ parameters $\mathrm{OO}^{\top}=\mathrm{O}^{\top} \mathrm{O}=1->\mathrm{N}^{2}-\mathrm{N}(\mathrm{N}+1) / 2=\mathrm{N}(\mathrm{N}-1) / 2$

N	$(\mathrm{~N}-1)^{2}$	$\mathrm{~N}(\mathrm{~N}-1) / 2$	angles	phases
2	1	1	$1\left(\theta_{\mathrm{C}}\right)$	0
3	4	3	3	1
G. Altarelli	4	9	6	6

A phase in $\mathrm{V}_{\text {СКМ }} \longrightarrow C P$ Violation
$\bar{U}_{L} \gamma_{\mu} V_{\text {СКм }} D_{L} W^{\mu}+\overline{\mathrm{D}}_{\mathrm{L}} \gamma_{\mu} \mathrm{V}^{+}{ }_{\text {СКм }} \mathrm{U}_{\mathrm{L}} \mathrm{W}^{+\mu} \longleftarrow$ h.c.
$\begin{array}{lll}\text { Parity: } & \mathrm{P} \psi_{\mathrm{L}} \mathrm{P}^{-1}=P \psi_{R} & \bar{*} \text { : creates } \mathrm{f}, \text { ann. } \bar{f} \\ \text { Charge conj.: } & C \psi_{\mathrm{L}} \mathrm{C}^{-1}=C{\overline{\psi_{R}}}^{\top} & \psi \text { : ann. } \mathrm{f} \text {, creates } \mathrm{f}\end{array}$ Time Rev.: $\mathrm{T} \psi_{\mathrm{L}} \mathrm{T}^{-1}=T K \psi_{\mathrm{L}}$

Complex conj. of c-numbers: T antiunitary $\mathrm{Tc} \psi \mathrm{T}^{-1}=\mathrm{c}^{*} \mathrm{~T} \psi^{T^{-1}} \quad[\mathrm{x}, \mathrm{p}]=\mathrm{i} \hbar$
(CP) $\overline{\mathrm{U}}_{\mathrm{L}} \gamma_{\mu} \mathrm{V}_{\text {CKM }} \mathrm{D}_{\mathrm{L}} \mathrm{W}^{\mu}(\mathrm{CP})^{-1}=\overline{\mathrm{D}}_{\mathrm{L}} \gamma_{\mu} \mathrm{V}^{\top}{ }_{\text {CKM }} \mathrm{U}_{\mathrm{L}} \mathrm{W}^{+\mu}$
If V is real then $\mathrm{V}^{\top}=\mathrm{V}^{+}$and CP invariance holds, otherwise is violated. Note CPT always holds:
G. Altarelli

$$
(\mathrm{CPT}) \overline{\mathrm{U}}_{L} \gamma_{\mu} \mathrm{V}_{\text {cKm }} \mathrm{D}_{L} \mathrm{~W}^{\mu}(\mathrm{CPT})^{-1}=\overline{\mathrm{D}}_{L} \gamma_{\mu} \mathrm{V}^{+}{ }_{\text {ckM }} \mathrm{U}_{L} \mathrm{~W}^{+\mu}
$$

Any Lorentz inv, hermitian, local L is CPT inv.

A simple example

Three charged scalar fields A, B, C for the decay $A->B+C$

$$
\mathrm{L}=\lambda \mathrm{AB}^{+} \mathrm{C}^{+}+\mathrm{h} . \mathrm{C} .=\lambda \mathrm{AB}^{+} \mathrm{C}^{+}+\lambda^{*} \mathrm{~A}^{+} \mathrm{BC}
$$

All products are normal-ordered
$(C P) L(C P)^{-1}=\lambda A^{+} B C+\lambda^{*} A B^{+} C^{+} \quad$ (Under CP $A<->A^{+}$etc)
(TCP)L $(\mathrm{TCP})^{-1}=\lambda^{*} \mathrm{~A}^{+} \mathrm{BC}+\lambda \mathrm{AB}^{+} \mathrm{C}^{+}$
TCP is always true while CP invariance holds for λ real
G. Altarelli

$$
\mathrm{V}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \mathrm{c}_{23} & \mathrm{~s}_{23} \\
0 & -\mathrm{s}_{23} \mathrm{c}_{23}
\end{array}\right]\left[\begin{array}{lll}
\mathrm{c}_{13} & 0 & \mathrm{~s}_{13} \mathrm{e}^{-\mathrm{i} \delta} \\
0 & 1 & 0 \\
-\mathrm{s}_{13} \mathrm{e}^{\mathrm{i} \delta} & 0 & \mathrm{c}_{13}
\end{array}\right]\left[\begin{array}{ccc}
\mathrm{c}_{12} & \mathrm{~s}_{12} & 0 \\
-\mathrm{s}_{12} & \mathrm{c}_{12} & 0 \\
0 & 0 & 1
\end{array}\right] \sim
$$

$$
\begin{gathered}
\mathrm{s}_{12}=\sin \theta_{\mathrm{c}} \\
\sim \quad\left[\begin{array}{ccc}
\mathrm{c}_{13} \mathrm{c}_{12} & \mathrm{c}_{13} \mathrm{~s}_{12} & \mathrm{~s}_{13} \mathrm{e}^{-\mathrm{i} \delta} \\
\ldots & \ldots & \mathrm{c}_{13} \mathrm{~s}_{23} \\
\ldots & \ldots & \mathrm{c}_{13} \mathrm{c}_{23}
\end{array}\right]
\end{gathered} \begin{aligned}
& \mathrm{sDG}_{12} \sim 0.2196 \pm 0.0026 \\
& \ldots \\
& \mathrm{~s}_{23} \sim(41.2 \pm 2.0) 10^{-3} \\
& \mathrm{~s}_{13} \sim(3.6 \pm 0.7) 10^{-3}
\end{aligned}
$$

Wolfenstein parametrisation:

$$
\begin{aligned}
& \mathrm{s}_{12}=\lambda \\
& \mathrm{s}_{23}=\mathrm{A} \lambda^{2} \\
& \mathrm{~s}_{13} \mathrm{e}^{-\mathrm{i} \delta}=\mathrm{A} \lambda^{3}(\rho-\mathrm{i} \eta)
\end{aligned}
$$

$$
V \sim\left(\begin{array}{ccc}
1-\lambda^{2} / 2 & \lambda & A \lambda^{3}(\rho-i \eta) \\
-\lambda & 1-\lambda^{2} / 2 & A \lambda^{2} \\
A \lambda^{3}(1-\rho-i \eta) & -A \lambda^{2} & 1
\end{array}\right]+o\left(\lambda^{4}\right)
$$

G. Altarelli

$$
\begin{aligned}
& A=0.85 \pm 0.05 \\
& \left(\rho^{2}+\eta^{2}\right)^{1 / 2}=0.40 \pm 0.08
\end{aligned}
$$

More precisely

$$
\begin{aligned}
& s_{12}=\lambda \\
& s_{23}=A \lambda^{2} \\
& s_{13} e^{-i \delta}=A \lambda^{3}(\rho-i \eta)
\end{aligned}
$$

$$
\begin{aligned}
& V_{u d}=1-\frac{1}{2} \lambda^{2}-\frac{1}{8} \lambda^{4}, \quad V_{c s}=1-\frac{1}{2} \lambda^{2}-\frac{1}{8} \lambda^{4}\left(1+4 A^{2}\right), \\
& V_{t b}=1-\frac{1}{2} A^{2} \lambda^{4}, \quad V_{c d}=-\lambda+\frac{1}{2} A^{2} \lambda^{5}[1-2(\varrho+i \eta)], \\
& V_{u s}=\lambda+\mathcal{O}\left(\lambda^{7}\right), \quad V_{u b}=A \lambda^{3}(\varrho-i \eta), \quad V_{c b}=A \lambda^{2}+\mathcal{O}\left(\lambda^{8}\right), \\
& V_{t s}=-A \lambda^{2}+\frac{1}{2} A \lambda^{4}[1-2(\varrho+i \eta)], \quad V_{t d}=A \lambda^{3}(1-\bar{\varrho}-i \bar{\eta})
\end{aligned}
$$

$$
\begin{aligned}
& \bar{\rho}=\rho\left(1-\lambda^{2} / 2\right) \\
& \bar{\eta}=\eta\left(1-\lambda^{2} / 2\right)
\end{aligned}
$$

G. Altarelli

Unitarity Triangles

$$
\mathrm{VV}^{+}=1->\mathrm{V}_{\mathrm{hk}} \mathrm{~V}_{\mathrm{hl}}^{*}=\delta_{\mathrm{kl}}
$$

For example: $\mathrm{V}_{\mathrm{ta}} \mathrm{V}^{*}$ ua $=0$ \square
S
b

$$
A \lambda^{3}(1-\rho-i \eta)-A \lambda^{3}+A \lambda^{3}(\rho+i \eta)=0
$$

Can be drawn as a triangle (other 5 triangles are either

$2 \cdot$ Area $=J=\eta A^{2} \lambda^{6} \sim \eta(0.85)^{2}(0.224)^{6} \sim \eta$ 9. 10^{-5}

$$
\mathrm{J} \sim \mathrm{~S}_{12} \mathrm{~S}_{13} \mathrm{~S}_{23} \sin \delta \quad \text { Jarlskog }
$$

G. Altarelli

$$
\text { Note: } \mathrm{V}_{\mathrm{td}}=\left|\mathrm{V}_{\mathrm{td}}\right| \mathrm{e}^{-\mathrm{i} \beta}, \mathrm{~V}_{\mathrm{ub}}=\left|\mathrm{V}_{\mathrm{ub}}\right| \mathrm{e}^{-\mathrm{i} \gamma}
$$

Lubicz, Durham ‘03, hep-ph/0307195

G. Altarelli

$$
\begin{aligned}
& \bar{\rho}=\rho\left(1-\lambda^{2} / 2\right)=0.178 \pm 0.046 \\
& \bar{\eta}=\eta\left(1-\lambda^{2} / 2\right)=0.341 \pm 0.028
\end{aligned}
$$

