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A short course on the EW Theory 

• Formalism of gauge theories
• The SU(2)xU(1) symmetric lagrangian
• The symmetry breaking sector
• Beyond tree level
• Precision tests
• Problems of the SM
• Beyond the SM

Content

We start from the basic principles and formalism
    (a fast recall). 
Then we go to present status and challenges
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Gauge theories broken by the Higgs mechanism are
renormalisable         ‘t Hooft, Veltman

Masses are given to W, Z and fermions while gauge Ward
identities and current conservation remain valid.

Essential for renormalisation!

e.g. massive V propagator (V=W,Z)

JµJν*
V

Bad UV
behaviour

But current conservation qµJµ=0 dumps it
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Current conservation crucial for renormalisation

But beware of chiral anomalies Adler,Bell, Jackiw

A remarkable cancellation occurs Bouchiat, Iliopoulos, Meyer

A: γµγ5

V: γµ
V: γµ

We need Tr[t3(t3-2Qs2
W)(t3-2Qs2

W)]=0

In fact it is true! For each family

e.g. Tr[t3Q2]=

u          d         e      ν
=0

Similarly for Tr[t3t3Q]= Tr[t3t3t3]=0 

Great!! But why?? Grand unification? SU(5):   5 -> [ddde+ν]

colour

A V V
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Anomaly In QFT when a symmetry of the classical theory 
is broken by quantisation, regularisation and 
renormalisation

Examples

• Scale A.  ->  Breaking of scale inv. due to reg./ren. that
introduces a mass scale
(cut-off, subtraction point or….)
massless QED, QCD

• Axial A.  ->   Breaking of chiral symmetry ψ’=exp(iγ5θ)ψ
due to a clash of reg./ren. with gauge inv. 

Important for π0 -> γγ, polarized DIS,….
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Beyond tree level: radiative corrections

From the tree level relations and

Combining with

one obtains:

With radiative corr’s: 

Large pure
QED effect

Depends on def. of
sin2θW beyond tree
level
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sin2θW is usually defined from the Z->µµ vertex:

{

sin2θeff differs from s2
0 defined as: 

Recall: by a rad. corr.:

sin2θeff = (1+Δk’) s2
0

ΔrW, Δρ,  Δk’ at one loop all contain terms of order:
GFm2

W[1, m2
t/m2

W, log(m2
H/m2

W)]

mt, mH do not decouple!
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In the standard EW theory heavy loops do not decouple

Decoupling: for M -> infinity we can drop diagrams with 
internal M lines
For example: running of α, αs not affected by heavy quarks

γ, g γ, gq

Conditions for decoupling:
• The theory with no M should still be renorm.
• Couplings should not blow up with M -> infinity �

Applequist, Carazzone

In QED, QCD one can decouple mt
In EW sector one cannot decouple mt, mH:

* breaking of gauge inv. (t-b doublet, GF(m2
t-m2

b))
* couplings of longitudinal W, Z grow

with masses (Higgs mechanism)

* …
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One-loop diagrams leading to GFm2
t terms:

W3,± W3,±t

ΔrW, Δρ,  Δk’

Z t b

W

b

Z
t

b

b

W

W
εb

At one-loop GFm2
H terms are absent. While mt>>mb 

directly breaks SU(2), Higgs couplings are invariant 
in lowest order. At two-loops (GFm2

H)2 terms are present 
Veltman, Van der Bij

Note: self-energies universal. All heavy particles enter.

This is unfortunate: small sensitivity of rad. corr.
to mH _-> GFm2

Wlog(m2
H/m2

W)

Enough sensitivity
to correctly estimate
mt from rad. corr.s
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EW DATA and New Physics

For an analysis of the data beyond the SM we use the
ε formalism GA, R.Barbieri, F.Caravaglios, S. Jadach

One introduces ε1,  ε2,  ε3,  εb such that:

• Focus on pure weak rad. correct’s, i.e. vanish in limit of
tree level SM + pure QED and/or QCD correct’s
[a good first approximation to the data]

• Are sensitive to vacuum pol. 
and Z->bb vertex corr.s
(but also include non oblique terms)

• Can be measured from the data with no reference 
to mt and mH (as opposed to S, T, U -> ε3, ε1, ε2)

ε1,  ε2,  ε3 
Z,W

εb
Z b

b
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One starts from a set of defining observables:

Oi = mW/mZ,   Γµ,    Aµ
FB,    Rb

ε2

ε1 ε3

εb

Oi[εk] = Oi
”Born”[1 + Aik εk + …]

Oi
”Born” includes pure QED and/or  QCD corr’s.

Aik  is independent of mt and mH

Assuming lepton universality: Γµ, Aµ
FB --> Γl, Al

FB 
To test lepton-hadron universality one can add
ΓZ, σh, Rl to Γl etc.
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Large GFm2
t terms in

ΔrW, Δρ and Δk’

ε1,ε2 and ε3 are related to ΔrW, Δρ and Δk’

Large GFm2
t terms are only in ε1

Main mH sensitivity in ε3
mW sensitivity through ΔrW in ε2

•
•
•

In addition εb
arises from the
Z->bb vertex

Relation with S, T, U: the shifts from new physics
are proportional ΔS ~ Δε3,  ΔT ~ Δε1,  ΔU ~ Δε2
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The EWWG gives (summer ‘03):

For comparison:
a mass degenerate fermion multiplet gives 

Non-degenerate
much larger shift of ε1

One chiral quark doublet (either L or R):

Δε3 = + 1.4 10-3

For each member
of the multiplet

(Note that ε3 if anything is low!)

ε1= 5.4±1.0 10-3

ε2= - 9.7±1.2 10-3

ε3= 5.25±0.95 10-3

εb= - 4.7±1.6 10-3
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Theoretical bounds on the SM Higgs mass

Λ: scale of new physics
beyond the SM

Upper limit: No Landau
pole up to Λ
Lower limit: Vacuum
(meta)stability

If the SM would be valid up to MGUT, MPl then mH
would be limited in a small range

Hambye,Riesselmann
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Higgs potential

Classic:

“Wrong” sign

µ2>0, λ>0

Quantum loops:
RG

(Ren. group improved pert. th)

Running coupling t=lnΛ/v ht=top Yukawa

Initial conditions (at Λ=v) and
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Running coupling t=lnΛ/v ht=top Yukawa

Initial conditions (at Λ=v) and

Too small mH? ht wins, λ(t) decreases.
But λ(t) must be >0 below Λ for the
vacuum to be stable

mH� ~135 GeV if Λ ~ MGUT
(or at least metastable with 
lifetime τ>τUniverse)

yes

no

V(φ)

vacuum

stability

metastability

Cabibbo et al, Sher,
Altarelli, Isidori

Isidori, Ridolfi, Strumia

Unbound
energy
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Altarelli,Isidori

λ(Λ)

Log10(Λ/1GeV)

mt=174 GeV αs(mZ)=0.118



G. Altarelli

Isidori, Ridolfi, Strumia

mtexp

Here mH=115 GeV
αs(mZ)=0.118

λ(Λ)

Λ GeV
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Too large mH? λ2 wins, λ(t) increases.

Running coupling t=lnΛ/v ht=top Yukawa

Initial conditions (at Λ=v) and
b

Landau pole

The upper limit on mH is obtained
by requiring that no Landau pole
occurs below Λ

mH � ~180 GeV if Λ~MGUT

              ~ 600-800 GeV if Λ~o(TeV)

Caution: near the pole pert. theory inadequate.
Simulations on the lattice appear to confirm the bound

Kuti et al, Hasenfratz et al, Heller et al

Rather than a bound
says where non pert
effects are important 
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Precision tests of the SM

Input parameters:
α, GF, mZ, mflight, αs(mZ), mt, mH

in practice replaced by α(mZ)

Some are well known
α, GF, mZ
Some are less precise
α(mZ), αs(mZ), mt
mH is unknown

Computed rad corr: • complete 1-loop diagrams

• ren group improvements (large logs)

• Dyson resumm’s of some large terms

• selected dominant 2-loop corr’s.
eg GFmt

2αs, GF
2mt

4, GF
2mH

2….

Precision data: ΓZ, Rh, σh, Rb, Al
FB, Aτ

pol, ALR, Ab
FB, mW, QAPV….

Output: check consistency of SM, constrain mH…
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Status of the SM Higgs fit
Summer’03

Rad Corr.s -> 
log10mH(GeV) = 1.96±0.21

This is a great triumph for the
SM: right in the narrow allowed
window log10mH ~2 - 3

Sensitive
to log mH

Direct search: mH> 114 GeV
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log10mH ~2 is a very important result

Drop H from SM -> renorm. lost -> divergences -> cut-off Λ

logmH -> logΛ + const

Any alternative mechanism amounts to change the 
prediction of finite terms.

The most sensitive quantities to logmH are ε1~Δρ and ε3:

-1.2 10-3

0.45 10-3

f1,3 are compatible with 
the SM prediction

log10mH ~2 means that

New physics can change the bound
on mH (different f1,2)
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The EW theory:    L = L symm + L Higgs

L symm: well tested (LEP, SLC, Tevatron…), L Higgs: ~ untested

Rad. corr's -> mH < 193 GeV 
but no Higgs seen: mH>114.4 GeV; (mH=115 GeV ?)

Only hint mW=mZcosθW           doublet Higgs

LEP: 2.1σ

-
with

A chiral theory:


