

Assembly and Testing of RPCs in Pakistan

Hafeez Hoorani National Centre for Physics

- Introduction
- RPCs in CMS
- RPC: From Lab to Detector
- Assembly
- Testing
- QA & QC
- Installation and Commissioning

Resistive Plate Chambers

PAST

- Used in several HEP experiments: L3, BaBar, Belle
- No wires
- High efficiency
- Fast response
- Position measurement
- Low production cost
- Large surfaces

PRESENT

- LHC experiments: ATLAS, CMS, ALICE, LHCb
- Cosmic rays experiments: (ARGO)
- High rate capability
- Low gas gain operation
- Long term performance

Resistive Plate Chambers

Developed by R. Santonico (Roma) in the early 80'

The Avalanche Regime

Xe

6

The Avalanche Regime

High rate environment require low gas gain (avalanche operation)

$$< q_e > = \frac{k}{\eta d} < Q_e(d) > = q_{el} n_0 \frac{k}{\eta d} \frac{\lambda}{\eta + \lambda} e^{\eta d}$$

- k= ($\varepsilon_r d/s$)/($\varepsilon_r d/s + 2$)
- $-q_{el}$ is the electron charge
- \mathbf{n}_{o} is the average size of the primary cluster
- $\boldsymbol{\lambda}$ is the cluster density in the gas mixture
- ε_r is the relative dielectric constant
- d is the gap width
- s is the electrode thickness

 λ should be large to achieve high efficiency----> C₂H₂F₄ gas mixtures

The Streamer Regime

Avalanche: (a) 5 mV/di Horizontal scale 20ns/square Vertical scale 10mV/square The electric field is such ΤE (b) that the electron energy is larger than the ionising 20 mV/div potential Horizontal scale 20ns/square Vertical scale 20mV/square (c) Streamer 20 mV/div Horizontal scale 20ns/square Ε Vertical scale 20mV/square <u>Spark</u> (d) 50 mV/div Е Horizontal scale 20ns/square Vertical scale 50mV/square Volts ! The separation avalanche-streamer decreases with increasing HV

8

RPC in Avalanche

A Compact Solenoidal Detector for LHC

CMS Muon Trigger

Background

	RE											
	1/1	1/2	1/3	2/1	2/2	2/3	3/1	3/2	3/3	4/1	4/2	4/3
No. of chambers	36*2	36*2	36*2	18*2	36*2	36*2	18*2	36*2	36*2	18*2	36*2	36*2
	•			•			1		•			•

Endcap Overview

Endcap Organization

Organizational Structure

- Project Managers
- Technical Coordination Zi
- Mechanics
- Design & Fabrication
- Assembly
- Installation
- Cosmic Testing
- DAQ Software
- Analysis
- QA & QC

Tariq Solaija/Hafeez Hoorani Zia Aftab M. Shariq Khan Javed A. Jan M. Iftikhar/M. Saleh M. Shariq Khan Waqar Ahmed Sajjad Asghar/Hassan Shahzad M. Irfan/M. Saleh Imran M. Awan/Hafeez Hoorani

Gap Production

Oiling procedure successfully transferred to Korea 2003

K O D E L

Schedule for Gap Delivery

	+	Activit Norma			2003								2004											2005										2006									
			J	F	M	A	M	J	J	A	S	C	N	D	J	F	Μ	A	Μ	J	J	A	s	0	N	D	J	F	M /	4 1	4.	JJ	A	s	0	N	D .	l I	=	1 F	A N	ΛJ	J
1		Preproduction of oiled gaps		^	Λ		~														Ι																				T		
2		Bakelite ready (cut and cleaned) \sim		U	U		3	d	ļ	ງະ	5	T	4	1						4	K		4		4	W	юг	th	80	ch	p	er	ba	tcł	ı			-		Ť	+	T	
3		Gaps for RE 1/2 (80*3)										T								40	İ					n V	5	•				•••	J		7	1) /	2	•	•			
4		Delivery to CERN																			Ń					4		C					1	/		1	41		V		1		
5		Gaps for RE 1/3 (80*3)										T									1	ເດ					7					/			۲	7		T				T	
6		Delivery to CERN										T									Ī	Ă				/	1														T		
7		Gaps for RE 2/2 (80*3)										T									E		40					4	1	۷	' 1	V											
8		Delivery to Pakistan										T									İ		4						Δ									+		T	T	-	
9		Gaps for RE 2/3 (80*3)																			Ì			4)				4	7	' 1	V											
10		Delivery to Pakistan																						V	Δ				4	4													
11		Gaps for RE 3/2 (80*3)	V								Г	ea	dy f	ог	ins	sta	llat	tio	пп	nile	est	on	e	z								80									V		
12	Delivery to Pakistan		V	ready for installation milestone -z																																							
13		Gaps for RE 3/3 (80*3)		A delivery of accompts - it -																													7										
14		Delivery to Pakistan				I	1			1				114	513		as	55		UIS	5	16					_		1						Δ								
15																					ĺ					Γ		ot	y	e	t	d	el	Ì	ve	r	ec	L					

- Research & Development
- Prototyping
- Pre-Production
 - Mockups, Retrofitting
- Production
 - -Quality Assurance
- On-site Installation
- Commissioning
- Maintenance

Prototyping

• **PK-01/99** 400*400 mm² double gap RPC, Italian bakelite 1999. (non-oiled)

• PK-02/00 Full-size RE 2/2 chamber, tested at GIF in 2000, phenolic bakelite gaps fabricated in Italy ($\rho \cong 10^9 \Omega$ cm). (non-oiled)

• **PK-03/01** Full-size RE 2/2 chamber, tested at GIF in 2001, melaminic bakelite gaps ($\rho \cong 10^{-10} \Omega$ cm). (non-oiled)

• **PK-04/02** Full-size RE 2/2, tested at GIF in 2002, gaps supplied from Korea ($\rho \cong 10 \ 10 \ \Omega \ cm$) (non-oiled)

• **PK-05/03** Full-size RE 2/2, tested at GIF in 2003, gaps supplied from Korea ($\rho \cong 10 \ 10 \ \Omega \ cm$) (Oiled)

Good results were achieved in all beam tests.

First Prototype RPC

RPC Prototype in 2002

Front End Board for RPC

CMS Criteria for good RPC

- Good Rate Capability > 1 KHz/cm²
- Efficiency > 95%
- Good Time Resolution < 3 ns
- Small Cluster Size < 3
- Operational Plateau > 300 V
- Streamer Probability <10%

Beam Test Results -I

27

Beam Test results-II

Beam Test Results-III

Beam Test Results-IV

RPC Layout

40 ° Sector with Services

RE */2 dimensions

Assembly Procedure

Assembly Procedure

Assembly Procedure

Storage

Chamber Production in Pakistan

Quality Assurance & Control

- Dark current test
- Cosmic ray test

Cosmic Test Facility

- Testing of chamber done using Cosmic Rays
- VME based Data Acquisition System used:
 - 64 Channels TDC
 - NI Crate Controller
- Trigger is generated using scintillators
 - Top & Bottom Layer consist of 8 scintillator each
 - Scintillators are ORed in a layer
 - Trigger is the AND of two ORed top & bottom layers
- Events are read automatically, stored and analyzed for chamber performance

Cosmic Test Facility

Each chamber consist of 96 readout channels 10 Chambers are tested in parallel

- Gas System is working (10 Chambers can be connected)
 Gas Mixture (96% Freon, 3.5% Iso-butane, 0.5% SF6)
- HV Available for Chamber (5 modules CAEN, 1526N)
- LV is available for 30 FEBs
- 15 TDCs are available, each can read 64 channels
- Two Layers of scintillators, each layer consist of 8 scint.
- Most Scintillators have efficiency great than 90% Scint. trigger is working properly

Scintillators

- Dimension 195x20x1 cm
- Can work up to 180 cm
- 18 scintillators
- For the trigger we need 18 scintillators + some spare
- 2 layers 8 scint. each + 2 additional scint.

• Two movable scintillators to match the chamber's dimension

Timing

	Trigger
--	---------

	Cable	52 ns
--	-------	-------

- Amplifier 26 ns
- Discriminator 12 ns
- Coincidence
- PMT 40 ns
- Total Delay Trigger 146 ns

• RPC

- RPC + FEE 16 ns
- Cable 25 ns

Total Delay RPC 41 ns
 Scintillator trigger is late by 100 ns compare to signal from RPC

16 ns

Quality Assurance

- Each component has a unique identifier
- All information is stored in a central database "Construction Database"
- For each step of movement a traveler's sheet is filled and signed by the person responsible for QA
- All test results are stored in the database

Quality Assurance (Gaps)

- Visual Test
 - Random check of dimensions
 - HV connectors and gas inlet/outlet
- Leakage Test
 - Checked with 20 mbar over pressure
- Spacer Test
 - Template sheet is used, 5 N pressure is applied
- Dark Current (V vs I)
 - Gaps with current more than 5 μA are rejected

RE-2/2 Gaps QC (Total 120 Gaps)

RE-2/3 Gaps QC (Total 120 Gaps)

Quality Assurance (Chambers)

- All chambers are **inspected visually** after assembly
- Chambers are conditioned using the gas mixture, **8 volume changes**
- HV of **8.6 kV** is applied for 6 hours and the behavior of dark current is observed. More than 0.5 µA variation chamber is rejected

Quality Assurance (Chambers)

- HV is varied:
 - 8.6, 8.8, 9.0, 9.2, 9.3, 9.4, 9.5 & 9.6 kV
- For each HV point 20,000 events are taken
- Using the data following parameters are obtained:
 - Strip Occupancy
 - Efficiency
 - Cluster Size

Quality Assurance (Chambers)

- Strip Occupancy
 - Noisy and/or dead channels are identified
 - More than 2 noisy or dead channels, chamber is rejected
- Efficiency
 - Chamber is rejected if $\varepsilon < 95\%$
- Cluster Size
 - Chamber is rejected if cluster size is greater than 3.0

Summary

- We started in 1999 with the notion, RPCs are cheap and easy to make. *None is correct*.
- Chambers are now produced at a constant rate.
- For assembly we have gone over the learning curve.
- For the testing (QA/QC), still some problems but situation is under control and improving.
- Testing of 70 chambers in 6 weeks.