Generalized Parton Distributions Recent Progress

(Mostly a summary of various talks at SIR2005@Jlab in May 2005

Pervez Hoodbhoy
Quaid-e-Azam University
Islamabad

Factorisation:
Q^{2} large, $-t<1 \mathrm{GeV}^{2}$

What is a GPD?

- It is a proton matrix element which is a hybrid of elastic form factors and Feynman distributions
- GPDs depend upon:
x : fraction of the longitudinal momentum carried by struck parton
t: t-channel momentum transfer squared
§: skewness parameter (a new variable coming from selection of a light-cone direction)
Q^{2} : probing scale

DVCS

DVMP

a)

DVCS cannot separate u/d quark contributions.
$M=\rho / \omega$ select H, E, for u / d flavors
$M=\pi, \eta, K$ select H, E

Formal definition of GPDs:

$$
\int \frac{\mathrm{d} \lambda}{2 \pi} e^{i \lambda x}\left\langle p^{\prime}\right| \bar{q}\left(-\frac{1}{2} \lambda n\right) \gamma^{+} q\left(\frac{1}{2} \lambda n\right)|p\rangle=H(x, \xi, t) \bar{u} \gamma^{+} u+E(x, \xi, t) \bar{u} \frac{i \sigma^{+v} q_{v}}{2 M} u
$$

- x_{i} and x_{f} are the momentum fractions of the struck quark, and $x=\frac{1}{2}\left(x_{i}+x_{f}\right)$.
- $\xi=\left(x_{f}-x_{i}\right) / 2$ is skewness. Depends on lightcone direction.
- $\int d x H(x, \xi, t)=\mathrm{F}_{1}(\mathrm{t})$
- $\int d x E(x, \xi, t)=F_{2}(\mathrm{t})$

Relation of GPDs to Angular Momentum

Generalized form factor and quark angular momentum:

$$
\left\langle P^{\prime}\right| T_{q, g}^{\mu \nu}|P\rangle=\bar{U}\left(P^{\prime}\right)\left[A_{20}^{q, g}(t) \gamma^{(\mu} P^{\nu)}+B_{20}^{q, g}(t) \frac{P^{\left(\mu_{\left.i \sigma^{\nu}\right) \alpha} \Delta_{\alpha}\right.}}{2 M}\right] U(P)
$$

Total quark angular momentum:

$$
J^{u+d}=\frac{1}{2}\left[A_{20}^{u+d}(0)+B_{20}^{u+d}(0)\right]=\frac{1}{2}\left[\langle x\rangle^{u+d}+B_{20}^{u+d}(0)\right]
$$

$$
\begin{aligned}
& \text { Quark angular momentum (Ji's sum rule) } \\
& J^{q}=\frac{1}{2}-J^{G}=\frac{1}{2} \int_{-1}^{1} x d x\left[H^{q}(x, \xi, 0)+E^{q}(x, \xi, 0)\right]
\end{aligned}
$$

GPDs And Orbital Angular Momentum Distribution:

$O^{\beta \mu_{1} \mu_{2} \cdots \mu_{n}}=\bar{\psi} \gamma^{(\beta} i D^{\mu_{i}} i D^{\mu_{2}} \cdots i D^{\left.\mu_{n}\right)} \psi$
Define generalized angular momentum tensor:
$M^{\alpha \beta \mu_{1} \mu_{2} \cdots \mu_{n}}=\xi^{\alpha} O^{\beta \mu_{1} \mu_{2} \cdots \mu_{n}}-\xi^{\beta} O^{\alpha \mu_{1} \mu_{2} \cdots \mu_{n}}$ (minus traces)
$\int d^{4} \xi\langle p| M^{\alpha \beta \mu_{1} \mu_{2} \cdots \mu_{n}}(\xi)|p\rangle=J_{n} \times$ tensor structures $\times(2 \pi)^{4} \delta^{4}(0)$ reduced matrix element
$\int d^{3} \xi\langle p| M^{12 \cdots+++}(\xi)|p\rangle=S^{+\cdots+}+P^{\not r^{++}}+\Delta \mathscr{L}^{\not r^{+}+}$

$$
L(x)=\frac{1}{2}[x q(x)+x E(x)-\Delta q(x)]
$$

TMD Parton Distributions

- These appear in the processes in which hadron transverse-momentum is measured, often together with TMD fragmentation functions.
- The leading-twist ones are classified by Boer, Mulders, and Tangerman $(1996,1998)$
- There are 8 of them

$$
\begin{aligned}
& \mathrm{q}\left(\mathrm{x}, \mathrm{k}_{\perp}\right), \mathrm{q}_{\mathrm{T}}\left(\mathrm{x}, \mathrm{k}_{\perp}\right), \\
& \Delta \mathrm{q}_{\mathrm{L}}\left(\mathrm{x}, \mathrm{k}_{\perp}\right), \Delta \mathrm{q}_{\mathrm{T}}\left(\mathrm{x}, \mathrm{k}_{\perp}\right), \\
& \delta \mathrm{q}\left(\mathrm{x}, \mathrm{k}_{\perp}\right), \delta_{\mathrm{L}} \mathrm{q}\left(\mathrm{x}, \mathrm{k}_{\perp}\right), \\
& \delta_{\mathrm{T}} \mathrm{q}\left(\mathrm{x}, \mathrm{k}_{\perp}\right), \delta_{\mathrm{T}} \mathrm{q}\left(\mathrm{x}, \mathrm{k}_{\perp}\right)
\end{aligned}
$$

Wigner parton distributions (WPD)

$$
\begin{gathered}
W(x, p)=\int \psi^{*}(x-\eta / 2) \psi(x+\eta / 2) e^{i p \eta} d \eta \\
\langle O(x, p)\rangle=\int d x d p O(x, p) W(x, p)
\end{gathered}
$$

- When integrated over p, one gets the coordinate space density $\rho(x)=|\psi(x)|^{2}$
- When integrated over x, one gets the coordinate space density $n(p)=|\psi(p)|^{2}$

Wigner parton distributions \& offsprings (Ji)

Wigner distributions for quarks in proton

- Wigner operator (X. Ji,PRL91:062001,2003)

$$
\hat{\mathcal{W}}_{\Gamma}(\vec{r}, k)=\int \bar{\Psi}(\vec{r}-\eta / 2) \Gamma \Psi(\vec{r}+\eta / 2) e^{i k \cdot \eta} d^{4} \eta,
$$

- Wigner distribution: "density" for quarks having position r and 4-momentum $k^{\prime \prime}$ (off-shell)

$$
\begin{aligned}
W_{\Gamma}(\vec{r}, k) & =\frac{1}{2 M} \int \frac{d^{3} \vec{q}}{(2 \pi)^{3}}\langle\vec{q} / 2| \hat{\mathcal{W}}(\vec{r}, k)|-\vec{q} / 2\rangle \\
& =\frac{1}{2 M} \int \frac{d^{3} \vec{q}}{(2 \pi)^{3}} e^{-i \vec{q} \cdot \vec{r}}\langle\vec{q} / 2| \hat{\mathcal{W}}(0, k)|-\vec{q} / 2\rangle
\end{aligned}
$$

Reduced Wigner Distributions and GPDs

- The 4D reduced Wigner distribution $f(r, x)$ is related to Generalized parton distributions (GPD) H and E through simple FT,

$$
\begin{aligned}
& f_{\Gamma}(\vec{r}, x)=\frac{1}{2 M} \int \frac{d^{3} \vec{q}}{(2 \pi)^{3}} e^{-i \vec{q} \cdot \vec{r}} F_{\Gamma}(x, \xi, t) . \\
& \frac{1}{2 M} F_{\gamma^{+}}(x, \xi, t)=[H(x, \xi, t)-\tau E(x, \xi, t)] \mathrm{t}=-\mathrm{q}^{2} \\
& \quad+i(\vec{s} \times \vec{q})^{z} \frac{1}{2 M}[H(x, \xi, t)+E(x, \xi, t)] \xi \sim \mathrm{q}_{z}
\end{aligned}
$$

H,E depend only on 3 variables. There is a rotational symmetry in the transverse plane..

Holography is "lensless photography" in which an image is captured not as an image focused on film, but as an interference pattern at the film. Typically, coherent light from a is reflected from an object and combined at the film with light from a reference beam. This recorded interference pattern actually contains much more information that a focused image, and enables the viewer to view a true three-dimensional image which exhibits parallax.

Computed Tomography

Computed Tomography (CT) is a powerful nondestructive evaluation (NDE) technique for producing 2-D and 3-D cross-sectional images of an object from flat X-ray images. Characteristics of the internal structure of an object such as dimensions, shape, internal defects, and density are readily available from CT images.

From Holography to Tomography

A Proton

A. Belitsky, B. Mueller, NPA711 (2002) 118

An Apple

By varying the energy and momentum transfer to the proton we probe its interior and generate tomographic images of the proton ("femto tomography").

Burkert

Impact parameter dependent PDFs

- define state that is localized in \perp position:

$$
\left|p^{+}, \mathbf{R}_{\perp}=\mathbf{0}_{\perp}, \lambda\right\rangle \equiv \mathcal{N} \int d^{2} \mathbf{P}_{\perp}\left|p^{+}, \mathbf{p}_{\perp}, \lambda\right\rangle
$$

Note: \perp boosts in IMF form Galilean subgroup \Rightarrow this state has
$\mathbf{R}_{\perp} \equiv \frac{1}{P^{+}} \int d x^{-} d^{2} \mathbf{x}_{\perp} \mathbf{x}_{\perp} T^{++}(x)=\sum_{i} x_{i} \mathbf{r}_{i, \perp}=\mathbf{0}_{\perp}$
(cf.: working in CM frame in nonrel. physics)

- define impact parameter dependent PDF
$q\left(x, \mathbf{b}_{\perp}\right) \equiv \int \frac{d x^{-}}{4 \pi}\left\langle p^{+}, \mathbf{R}_{\perp}=\mathbf{0}_{\perp}\right| \bar{q}\left(-\frac{x^{-}}{2}, \mathbf{b}_{\perp}\right) \gamma^{+} q\left(\frac{x^{-}}{2}, \mathbf{b}_{\perp}\right)\left|p^{+}, \mathbf{R}_{\perp}=\mathbf{0}_{\perp}\right\rangle e^{i x p^{+} x^{-}}$

GPDs

\hookrightarrow nucleon-helicity nonflip GPDs can be related to distribution of partons in \perp plane

$$
\begin{aligned}
q\left(x, \mathbf{b}_{\perp}\right) & =\int \frac{d^{2} \Delta_{\perp}}{(2 \pi)^{2}} e^{i \Delta_{\perp} \cdot \mathbf{b}_{\perp}} H\left(x, 0,-\Delta_{\perp}^{2}\right), \\
\Delta q\left(x, \mathbf{b}_{\perp}\right) & =\int \frac{d^{2} \Delta_{\perp}}{(2 \pi)^{2}} e^{i \Delta_{\perp} \cdot \mathbf{b}_{\perp}} \tilde{H}\left(x, 0,-\boldsymbol{\Delta}_{\perp}^{2}\right),
\end{aligned}
$$

- no rel. corrections to this result! (Galilean subgroup of \perp boosts)
- $q\left(x, \mathbf{b}_{\perp}\right)$ has probabilistic interpretation, e.g.

$$
\begin{aligned}
& q\left(x, \mathbf{b}_{\perp}\right) \geq\left|\Delta q\left(x, \mathbf{b}_{\perp}\right)\right| \geq 0 \quad \text { for } \quad x>0 \\
& q\left(x, \mathbf{b}_{\perp}\right) \leq\left|\Delta q\left(x, \mathbf{b}_{\perp}\right)\right| \leq 0 \quad \text { for } \quad x<0
\end{aligned}
$$

Burkardt

$$
\begin{aligned}
\int \frac{d x^{-}}{4 \pi} e^{i p^{+} x^{-} x}\langle P+\Delta, \uparrow| \bar{q}(0) \gamma^{+} q\left(x^{-}\right)|P, \uparrow\rangle & =H\left(x, 0,-\Delta_{\perp}^{2}\right) \\
\int \frac{d x^{-}}{4 \pi} e^{i p^{+} x^{-} x}\langle P+\Delta, \uparrow| \bar{q}(0) \gamma^{+} q\left(x^{-}\right)|P, \downarrow\rangle & =-\frac{\Delta_{x}-i \Delta_{y}}{2 M} E\left(x, 0,-\Delta_{\perp}^{2}\right)
\end{aligned}
$$

- Consider nucleon polarized in x direction (in IMF) $|X\rangle \equiv\left|p^{+}, \mathbf{R}_{\perp}=0_{\perp}, \uparrow\right\rangle+\left|p^{+}, \mathbf{R}_{\perp}=0_{\perp}, \downarrow\right\rangle$.
\hookrightarrow unpolarized quark distribution for this state:

$$
q\left(x, \mathbf{b}_{\perp}\right)=\mathcal{H}\left(x, \mathbf{b}_{\perp}\right)-\frac{1}{2 M} \frac{\partial}{\partial b_{y}} \int \frac{d^{2} \boldsymbol{\Delta}_{\perp}}{(2 \pi)^{2}} E\left(x, 0,-\Delta_{\perp}^{2}\right) e^{-i \mathbf{b}_{\perp} \cdot \mathbf{\Delta}_{\perp}}
$$

- simple model: for simplicity, make ansatz where $E_{q} \propto H_{q}$

$$
\begin{aligned}
E_{u}\left(x, 0,-\Delta_{\perp}^{2}\right) & =\frac{\kappa_{u}^{p}}{2} H_{u}\left(x, 0,-\Delta_{\perp}^{2}\right) \\
E_{d}\left(x, 0,-\Delta_{\perp}^{2}\right) & =\kappa_{d}^{p} H_{d}\left(x, 0,-\Delta_{\perp}^{2}\right)
\end{aligned}
$$

with $\kappa_{u}^{p}=2 \kappa_{p}+\kappa_{n}=1.673 \quad \kappa_{d}^{p}=2 \kappa_{n}+\kappa_{p}=-2.033$.
Burkardt

Burkardt

$$
\lim _{x \rightarrow 1} q\left(x, \vec{b}_{\perp}\right) \propto \delta^{2}\left(\vec{b}_{\perp}\right)
$$

Imaging quarks at fixed Feynman-x

- For every choice of x, one can use the Wigner distributions to picture the nucleon in 3-space: quantum phase-space tomography!

GPDs ON A LATTICE

$$
\mathcal{O}_{q}^{\left\{\mu_{1} \cdots \mu_{n}\right\}}=\bar{q} \gamma^{\left\{\mu_{1} \overleftrightarrow{D} \mu_{2} \ldots \overleftrightarrow{D}^{\left.\mu_{n}\right\}}\right.} q
$$

\rightarrow Generalised Form Factors

$$
\begin{aligned}
& \left\langle p^{\prime}, s^{\prime}\right| \mathcal{O}^{\left\{\mu_{1} \cdots \mu_{n}\right\}}(\Delta)|p, s\rangle= \\
& \quad \bar{u}\left(p^{\prime}, s^{\prime}\right) \gamma^{\left\{\mu_{1}\right.} u(p, s) \sum_{i=0}^{\frac{n-1}{2}} A_{q n, 2 i}(t) \Delta^{\mu_{2}} \cdots \Delta^{\mu_{2 i+1}} \bar{p}^{\mu_{2 i+2}} \cdots \bar{p}^{\left.\mu_{n}\right\}} \\
& +\bar{u}\left(p^{\prime}, s^{\prime}\right) \frac{i \sigma^{\left\{\mu_{1} \nu\right.} \Delta_{\nu}}{2 m} u(p, s) \sum_{i=0}^{\frac{n-1}{2}} B_{q n, 2 i}(t) \Delta^{\mu_{2}} \cdots \Delta^{\mu_{2 i+1}} \bar{p}^{\mu_{2 i+2}} \cdots \bar{p}^{\left.\mu_{n}\right\}} \\
& +\left.C_{q n}(t) \frac{1}{m} \bar{u}\left(p^{\prime}, s^{\prime}\right) u(p, s) \Delta^{\mu_{1}} \ldots \Delta^{\mu_{n}}\right|_{\mathrm{n} \text { even }}
\end{aligned}
$$

$$
\begin{aligned}
& A_{10}^{q}\left(Q^{2}\right)=F_{1}^{q}\left(Q^{2}\right) \\
& B_{10}^{q}\left(Q^{2}\right)=F_{2}^{q}\left(Q^{2}\right) \\
& A_{10}^{(/}\left(Q^{2}\right)=G_{A}^{q}\left(Q^{2}\right) \\
& B_{10}^{6}\left(Q^{2}\right)=G_{P}^{q}\left(Q^{2}\right) \\
& J^{q}=\frac{1}{2}\left(A_{20}^{q}(0)+B_{20}^{q}(0)\right) \\
& \frac{1}{2} \Sigma^{q}=A_{10}^{6}(0)
\end{aligned}
$$

Motivation	Moments and Form Factors	Results	Conclusions and Outlook
000	00000	00000000	0

Angular Momentum $J^{q}=L^{q}+S^{q}=\frac{1}{2}\left(A_{2}^{q}+B_{2}^{q}\right),\left(\overline{\mathrm{MS}} 4 \mathrm{GeV}^{2}\right)$

Zanotti

Motivation	Moments and Form Factors	Results	Conclusions and Outlook
000	00000	00000000	0

Generalised Form Factors, ($m_{\pi} \approx 950 \mathrm{MeV}$)

30

Zanotti

Summary of LHPC hadron structure program

- Long term program to compute all $n \leq 4$ GFF's in dynamical lattice QCD.
- Current pion masses $m_{\pi} \approx 350-750 \mathrm{MeV}$ and lattice spacing $a \approx \frac{1}{8} \mathrm{fm}$.
- Status of the calculation

	Matrix Operator	Gpera		
Operators	elements	renorm.	extraction	Analysis
$\bar{q} \Gamma_{\mu} q$	Done!	Done!	Almost done	Starting
$\bar{q} \Gamma_{(\mu} D_{\nu)} q$	Done!	Done!	Almost done	Starting
$\bar{q} \Gamma_{(\mu} D_{\nu} D_{\rho)} q$	Done!	Done!	Almost done	Starting
$\bar{q} \Gamma_{(\mu} D_{\nu} D_{\rho} D_{\sigma)} q$	Not yet	Done!	Not yet	Not yet

- Only isovector flavor combinations for GFF's in this round.
- Finite perturbative renormalization needed to quote results in $\overline{M S}$ scheme.

$$
\left\langle P^{\prime} S^{\prime}\right| \mathcal{O}_{\Gamma}^{\mu_{1} \cdots \mu_{n}}|P S\rangle_{\overline{\mathrm{MS}}}=Z\left\langle P^{\prime} S^{\prime}\right| \mathcal{O}_{\Gamma}^{\mu_{1} \cdots \mu_{n}}|P S\rangle_{\text {latt }}
$$

- Lighter pion masses $m_{\pi} \approx 250-350 \mathrm{MeV}$ finished by next year.

Fleming

Nucleon F_{2} / F_{1} on the Lattice (I)

PRELIMINARY

- Only $I=1$ form factors computed so far to avoid disconnected diagrams. $\quad F_{1}^{I=1}=$ $F_{1 p}-F_{1 n}$ but $F_{1 n}, F_{2 n}$ not known accurately for $Q^{2} \gtrsim 1 \mathrm{GeV}^{2}$.
- Our normalization is $F_{2}\left(Q^{2}\right) \rightarrow \kappa$ as $Q^{2} \rightarrow 0$.

Fleming

Nucleon F_{2} / F_{1} on the Lattice (II)

PRELIMINARY

- $F_{2}^{I=1} / F_{1}^{I=1} \rightarrow \kappa_{p}-\kappa_{n}$ as $Q^{2} \rightarrow 0$.
- PDG: $\kappa_{p}=1.792847351(28)$
- PDG: $\kappa_{n}=-0.91304273(45)$
- So, comparison of $I=1$ with $p-$ n could be OK with proper chiral extrapolation.

Fleming

$$
\begin{array}{ll}
\text { Transverse quark distributions } \\
\text { 隹 } & \left\langle b_{\perp}^{2}\right\rangle_{(n)}^{q}=-4 \frac{A_{n 0}^{q}(0)}{A_{n 0}^{q}(0)} \\
\lim _{x \rightarrow 1}^{q} q\left(x, \mathbf{b}_{\perp}\right) \propto \delta\left(b_{\perp}^{2}\right)
\end{array}
$$

M. Burkardt hep-ph/0207047

- Higher moments $A_{n 0}$ weight $x \sim 1$.
- Slope of $A_{n 0}^{q}$ decreases as n increases.
- Slope of $A_{10}^{u-d}(0)=-0.93(4)(\mathrm{GeV})^{2}$.
- Slope of $A_{30}^{u-d}(0)=-0.13(3)(\mathrm{GeV})^{2}$.
- Will this continue at light pion masses?

D. Renner (LHPC/SESAM)

Fleming

(1)

(2)

(3)

$$
H_{q}(x, \xi, t)=\int[d x][d y] \Phi_{3}^{*}\left(y_{1}, y_{2}, y_{3}\right) \Phi_{3}\left(x_{1}, x_{2}, x_{3}\right) T_{H q}\left(x_{i}, y_{i}, x, \xi, t\right)
$$

GPDs - Experimental Aspects

- DVCS measured at HERA (at H1 and Zeus)
- DVCS measured at JLab (fixed target,CLAS)
- DVCS planned at COMPASS, CERN
- DVMP measured at HERA
- DVMP measured at JLab
- DVMP measured (old data, 2002) at COMPASS
- DDVCS planned at JLab

Some Generalities

$$
\begin{aligned}
\frac{1}{x-\xi+i \varepsilon} & =P\left(\frac{1}{x-\xi}\right)-i \pi \delta(x-\xi) \\
\Rightarrow \operatorname{Im}\{F\} & =\pi \sum e_{q}^{2}\left\{F^{q}\left(\xi, \xi, t, Q^{2}\right) \mathrm{m} F^{q}\left(-\xi, \xi, t, Q^{2}\right)\right\} \\
\operatorname{Re}\{F\} & =-\sum e_{q}^{2} P \int_{-1}^{+1} d x F^{q}\left(x, \xi, t, Q^{2}\right)\left\{\frac{1}{x-\xi} \pm \frac{1}{x+\xi}\right\}
\end{aligned}
$$

$$
\begin{array}{ll}
A_{\mathrm{LU}}(\phi)=\frac{d \stackrel{\mathrm{~L}}{\sigma}(\phi)-d \stackrel{\mathrm{\rightharpoonup}}{\sigma}(\phi)}{d \stackrel{\mathrm{r}}{\sigma}(\phi)+d \stackrel{\mathrm{~s}}{\sigma}(\phi)} & \text { (Beam Spin Asymmetry, BSA) } \\
A_{\mathrm{C}}(\phi)=\frac{d \sigma^{+}(\phi)-d \sigma^{-}(\phi)}{d \sigma^{+}(\phi)+d \sigma^{-}(\phi)} & \text { (Beam Charge Asymmetry, BC }
\end{array}
$$

find that:
$A_{\mathrm{LU}}(\phi) \propto \operatorname{Im}\left(M^{0} 9\right) \sin \phi \quad$ and $\quad A_{\mathrm{C}}(\phi) \propto \operatorname{Re}\left(M_{1}^{0}\right) \cos \phi$
where: $\quad M^{0}=\frac{\sqrt{t_{0}-t}}{2 m}\left[F_{1} \mathrm{H}+\xi\left(F_{1}+F_{2}\right) \mathscr{H}^{\circ}-\frac{t}{4 m^{2}} \mathrm{E}\right]$

Kinematical domain

Collider:
H1 \& ZEUS $0.0001<x<0.01$

Fixed target :
JLAB $6-11 \mathrm{GeV}$ SSA,BCA?
HERMES 27 GeV SSA,BCA
COMPASS could provide data on :
Cross section (190 GeV)
BCA (100 GeV)
Wide Q^{2} and $x_{b j}$ ranges
Limitation due to luminosity

Burtin

(cf. W.-D. N., hep-ex/0210409)
Generalized Parton Distributions:

$$
\begin{array}{ll}
H^{q}, \tilde{H}^{q}, E^{q}, \tilde{E}^{q} & \text { CHIRALLY-EVEN QUARK GPDS } \\
H_{T}^{q}, \tilde{H}_{T}^{q}, E_{T}^{q}, \tilde{E}_{T}^{q} & \text { CHIRALLY-ODD QUARK GPDS }
\end{array}
$$

Forward Parton Distributions:

$$
\begin{array}{ll}
q\left(x, Q^{2}\right) & \text { QUARK NUMBER DENSITY DISTRIBUTION }\left(f_{1}^{q}\right) \\
\Delta q\left(x, Q^{2}\right) & \text { QUARK HELICITY DISTRIBUTION }\left(g_{1}^{q}\right) \\
\delta q\left(x, Q^{2}\right) & \text { QUARK TRANSVVERSITY DISTRIBUTION }\left(h_{1}^{q}\right)
\end{array}
$$

Nowak

Helicity-flip GPDs

P. Hoodbhoy and X. Ji, PR. 58 (1998) 054006

$$
\begin{aligned}
& \frac{1}{x} \int \frac{d \lambda}{2 \pi} e^{i \lambda x}\left\langle P^{\prime} S^{\prime}\right| F^{(\mu \alpha}\left(-\frac{\lambda}{2} n\right) F^{\nu \beta)}\left(\frac{\lambda}{2} n\right)|P S\rangle \\
& \quad=H_{T g}(x, \xi) \bar{U}\left(P^{\prime} S^{\prime}\right) \frac{\bar{P}^{([\mu} i \Delta^{\alpha]} \sigma^{\nu \beta)}}{M} U(P S) \\
& \quad \quad \quad+E_{T g}(x, \xi) \bar{U}\left(P^{\prime} S^{\prime}\right) \frac{P^{([\mu} \Delta^{\alpha]}}{M} \frac{\gamma^{[\nu} \Delta^{\beta])}}{M} U(P S)+\ldots
\end{aligned}
$$

Nowak

HERMES $\left(2 \mathrm{fb}^{-1}\right)$:
$\operatorname{Im} \mathcal{H}$ Measurement in 2006 ? *
Lepton helicity asymmetry: $A_{L U}^{\text {sin }} \approx \mathcal{C}_{\text {unp }}^{\mathcal{I}} / \mathcal{C}_{\text {unp }}^{D V C S}$ with

$$
\begin{aligned}
& c_{\mathrm{unP}}^{\mathrm{DVCS}}=\frac{1}{\left(2-x_{\mathrm{B}}\right)^{2}}\left\{4\left(1-x_{\mathrm{B}}\right)\left(\mathcal{H} \mathcal{H}^{*}+\tilde{\mathcal{H}} \tilde{\mathcal{H}}^{*}\right)-x_{\mathrm{B}}^{2}\left(\mathcal{H} \mathcal{E}^{*}+\tilde{\mathcal{E}} \mathcal{H}^{*}+\tilde{\mathcal{H}} \tilde{\mathcal{E}}^{*}+\tilde{\mathcal{H}} \tilde{\mathcal{H}}\right.\right. \\
&\left.-\left(x_{\mathrm{B}}^{2}+\left(2-x_{\mathrm{B}}\right)^{2} \frac{t}{4 \mathcal{M}^{2}}\right) \varepsilon \mathcal{E}^{*}-x_{\mathrm{B}}^{2} \frac{t}{4 \mathcal{M}^{2}} \widetilde{\mathcal{E}}^{*}\right\} . \\
& c_{\mathrm{Unp}}^{I}=F_{1} \mathcal{H}+\frac{x_{\mathrm{B}}}{2-x_{\mathrm{B}}}\left(F_{1}+F_{2}\right) \tilde{\mathcal{H}}-\frac{t}{4 M^{2}} F_{2} \mathcal{E}
\end{aligned}
$$

At $-t<0.15 \mathrm{GeV}^{2}:$
Relative contribution of GPD H dominates
\Rightarrow Asymmetry $A_{L U}^{s i n \phi}$ mainly depending on $\operatorname{Im} \mathcal{H}$
*) Projections: V. Korotkov, W.-D. N., NPA 711, 175c, (2002)

Beam-Charge Asymmetry (BCA)

${ }_{\mathrm{C}}(\phi)=\frac{N^{+}(\phi)-N^{-}(\phi)}{N^{+}(\phi)+N^{-}(\phi)} \propto I \propto \pm\left(c_{0}^{I}+\sum_{n=1}^{3} c_{n}^{I} \cos (n \phi)+\lambda \sum_{n=1}^{2} s_{n}^{I} \sin (n \phi)\right)$

A_{C} In exclusive bin: Expected $\cos (\phi)$ DEPENDENCE $\Rightarrow \operatorname{Re} M_{u n p}^{1,1}$
$\cos (\phi)$-Moments zero at higher MISSING MASS $\sin \phi$ DUE TO POLARIZED BEAM

The GPD H, Summary and Outlook

\triangle : HERMES PRELIM./PUBLISHED
\triangle : CLAS, PRL, $2001(\times-1)$

- Hydrogen data (1996-2000), Analysis almost completed
- BCA: $1 \mathrm{fb}^{-1} e^{+}$AND $1 \mathrm{fb}^{-1} e^{-}$
- BSA: $1 \mathrm{fb}^{-1} e^{+}$, Pol. $=40 \%$ (Exp. 2006/2007 Recoll data)
BCA: high sensitivity to t DEPENDENCE (FACT./REGGE) AND D-TERM
BSA: highest sensitivity to b_{s} PARAMETER IN PROFILE FUNCTION

Possibility to "map out" GPD H^{u} in the final two HERA years.

What about the GDP E ?

$A_{U T}$: UNPOLARIZED BEAM,
TRANSVERSELY POL. TARGET

Data taking with transverse Hydrogen target in progress ... ≈ 6 MILLION ON TAPE

$$
\begin{aligned}
& A_{U T}^{\sin \left(\phi-\phi_{s}\right) \cos \phi} \sim \frac{-t}{4 M_{p}}\left(F_{2} H_{1}-F_{1} E_{1}\right) \\
& A_{U T}^{\cos \left(\phi-\phi_{s}\right) \sin \phi} \rightarrow \frac{-t}{4 M_{p}}\left(F_{2} \widetilde{H}_{1}-\xi F_{1} \widetilde{E}_{1}\right)
\end{aligned}
$$

≈ 8 Mio expected in total (November 2005)

Ellinghaus

$H(\pm \xi, \xi, t)$	$\mathrm{ep} \rightarrow \mathrm{ep} \gamma(\mathrm{DVCS})$	BSA	CLAS CLAS CLAS	$\begin{aligned} & 4.2 \mathrm{GeV} \\ & 4.8 \mathrm{GeV} \\ & 5.75 \mathrm{GeV} \end{aligned}$	Published PRL Preliminary Preliminary	$\}^{\text {a }}$ ($\begin{aligned} & \text { From } \\ & e p \rightarrow e p X ~\end{aligned}$
		$(+\sigma)$	Hall A CLAS	$\begin{aligned} & 5.75 \mathrm{GeV} \\ & 5.75 \mathrm{GeV} \end{aligned}$	Fall 04 Spring 05	$\} \begin{aligned} & \text { Dedicated } \\ & \text { set-up } \end{aligned}$
$\widetilde{H}(\pm \xi, \xi, t)$	ep \rightarrow ep γ (DVCS)	TSA	CLAS	5.65 GeV	Preliminary	
$E(\pm \xi, \xi, t)$	$\mathrm{e}(\mathrm{n}) \rightarrow \mathrm{en} \gamma$ (DVCS)	BSA	Hall A	5.75 GeV	Fall 04	
$(u+d)$	$\mathrm{ed} \rightarrow \mathrm{ed} \gamma$ (DVCS)	BSA	CLAS	5.4 GeV	under analysis	
$H(\|x\|<\xi, \xi, t)$	ep \rightarrow epe $^{+} \mathrm{e}^{-}$(DDVCS)	BSA	CLAS	5.75 GeV	under analysis	
$\int_{x} H, E \quad(u+d)$	$\mathbf{e p} \rightarrow$ ep ρ	σ_{L}	CLAS	4.2 GeV	Published PLB	
			CLAS	5.75 GeV	under analysis	
$\int_{x} H, E(2 u-d)$	ep \rightarrow ep ω	$\left(\sigma_{L}\right)$	CLAS	5.75 GeV	Accepted EPJA	
	+ other meson production channels π, η, Φ under analyses in the three Halls.					

Exclusive Reactions \& GPDs

Quantum numbers of final meson state select different GPDs

- Pseudoscalar mesons ($\pi, \eta \ldots$): \tilde{H}, \tilde{E}
- Vector mesons ($\rho, \omega, \phi \ldots$): H, E (flavour singlet)

↔ f-meson family (f_{0}, f_{2}, \ldots): H, E (flavour non-singlet)

Exclusive ρ production on transverse target

K. Goeke, M.V. Polyakov,
M. Vanderhaeghen, 2001

Burkert

Exclusive ρ^{0} production on transverse target

$$
A_{U T}=-\frac{2 \Delta_{\perp}\left(\operatorname{Im}\left(A B^{*}\right)\right) / \pi}{|A|^{2}\left(1-\xi^{2}\right)-|B|^{2}\left(\xi^{2}+t / 4 m^{2}\right)-\operatorname{Re}\left(A B^{*}\right) 2 \xi^{2}}
$$

K. Goeke, M.V. Polyakov,
M. Vanderhaeghen, 2001

Burkert

Hard Exclusive ρ^{0} Production

Measurement of the cross-section σ_{L}

$$
R=\frac{\sigma_{L}}{\sigma_{T}}=\frac{1}{\epsilon} \frac{r_{00}^{04}}{1-r_{00}^{04}}
$$

\triangleleft GPD calculations in terms of $H \& E$

- Vanderhaeghen, Guichon \& Guidal -
$\stackrel{q \bar{q} \text {-exchange }}{\star \text { gluon-exchange }}\} \begin{aligned} & \text { mechanisms } \\ & \text { considered }\end{aligned}$

Hard Exclusive ρ^{o} Production

Transverse Target Spin Asymmetry $A_{U T}$

\triangleleft No σ_{L} separation yet!
\leftrightarrow Indication of t-depend. at low x
possibly doubled statistics at end 2005
\& σ_{L} / σ_{T} separation possible

SIR 2005

Exclusive ep \longrightarrow epp $_{\mathrm{L}}^{0}$ production

Burkert

Deeply virtual meson production

Meson and Pomeron (or two-gluon) exchange ...
(Photoproduction)

... or scattering at the quark level?
Flavor sensitivity of DVMP on the proton:

ρ^{0}	$2 u+d, 9 g / 4$
ω	$2 u-d, 3 g / 4$
Φ	s, g
ρ^{+}	$u-d$

$\frac{d \sigma_{L}}{d t} \propto \frac{1}{Q^{4}}\left[\frac{\alpha_{S}}{Q} \sum \iint \frac{\psi_{M}(z)}{z} \frac{1}{x \pm \xi \mu i \varepsilon}(a H+b E)(x, \xi, t) d x d z\right]^{2} \propto \frac{f(\xi, t)}{Q^{6}}$
M.Garcon

GPD formalism (beyond leading order) describes approximately data for $\mathrm{x}_{\mathrm{B}}<0.4, \mathrm{Q}^{2}>1.5 \mathrm{GeV}^{2}$

Two-pion invariant mass spectra

DDVCS

(Double Deeply Virtual Compton Scattering)

M. Guidal \& M. Vanderhaeghen, PRL 90
A. V. Belitsky \& D. Müller, PRL 90

$$
\operatorname{Im} T^{D D V C S} \sim H\left(\pm x\left(\xi, q^{\prime}\right), \xi, t\right)+\mathrm{K}
$$

DDVCS-BH interference generates a beam spin asymmetry sensitive to

DDVCS: first observation of ep \rightarrow epe $^{+} \boldsymbol{e}^{-}$

> | * Positrons identified among large background of positive pions |
| :--- |
| $* \underline{\mathbf{e p} \rightarrow \mathbf{e p e}^{+} \mathbf{e}^{-} \text {cleanly selected (mostly) through missing mass ep } \rightarrow \mathrm{epe}^{+} \mathrm{X}}$ |
| $* \Phi$ distribution of outgoing γ^{*} and beam spin asymmetry extracted |
| (integrated over γ^{*} virtuality) |

but...

GPD CHALLENGES

- Goal: map out the full dependence on x, ξ, t, Q^{2}
- Develop models consistent with known forward distributions, form factors, polynomiality constraints, positivity,...
- More lattice moments, smaller pion masses, towards unquenched QCD,...
- Launch a world-wide program for analyzing GPDs perhaps along the lines of CTEQ for PDFs.
- High energy, high luminosity is needed to map out GPDs in deeply virtual exclusive processes such as DDVCS (JLab with 12 GeV unique).

