

PARTICLE BEAMS, TOOLS FOR MODERN SCIENCE AND MEDICINE Hans-H. Braun, CERN

3rd Lecture Introduction to Linear e⁺/e⁻ Colliders and CLIC the Next Generation of Tools for Particle Physics

o Linear Colliders - Motivation and Concept o Technical Challenges for Linear Colliders o CLIC

Collider History

Since the 60s, most new revelations in particle physics have come from colliders

"Livingstone" plot (adapted from W. Panofsky)

 Energy (<u>exponentially</u>) increasing with time

 \Rightarrow a factor 10 increase every 8 years !

- Hadron Colliders at the energy frontier
- Lepton Colliders for precision physics, catching up in energy ~10y later
- LHC coming online from 2007
- Consensus to build a lepton linear collider with E_{cm} > 500 GeV to complement LHC physics

Simulation of HIGGS production $e^+ \: e^- \: \to \: Z \: H \\ Z \: \to \: e^+ \: e^-, \: H \: \to \: b \: b$

Hadron Colliders

 Protons are composite objects

- Only fraction (≈1/6) of total proton energy available for collision of constituents
- $\boldsymbol{\cdot}$ Can only use p_t conservation
- Huge QCD background

Lepton Colliders

 <u>Leptons are</u> <u>elementary particles</u>

- Well defined initial state
- Momentum conservation eases decay product analysis
- With beam polarization full knowledge of initial state

Linear vs circular e⁺/e⁻ collider

What is a Linear Collider

No big bending magnets

- But a lot of RF acceleration
- High Accelerating Gradient to minimize size and cost
- Exceptional beam quality needed (colliding nm-size beams)

Why a Linear Collider

Circular colliders re-use acceleration and beams

Charged particles emit synchrotron radiation in a magnetic field

$$P = \frac{2}{3} \frac{r_e}{(m_o c^2)^3} \frac{E^4}{\rho^2} \qquad \implies \qquad \Delta E_{turn} = \frac{4}{3} \pi \frac{r_e}{(m_o c^2)^3} \frac{E^4}{\rho}$$

Much less important for heavy particles, like protons

Cost of Lepton Colliders

Synchrotron radiation - $\Delta E \sim (E^4/m^4 R)$

Therefore

- Cost (circular) ~ a R + b ΔE ~ a R + b (E⁴/m⁴ R) Optimization R ~ E² \Rightarrow Cost ~ c E²
- Cost (linear) ~ a' L, where $L \sim E$

A linear collider uses the accelerating cavities only once:

- Lots of them !
- Need a high accelerating gradient to reach the wanted energy in a "reasonable" length (total cost, cultural limit)

SLC: The 1st Linear Collider

Built to study the Z₀ and demonstrate linear collider feasibility

Energy = 92 GeV Luminosity = 3e30 E=20 MV/m

Had all the features of a 2^{nd} gen. LC except both e⁺ and e⁻ shared the same linac

Challenges for Linear Collider

Center of mass Energy

 E_{CMS} = Length · Accelerating field

Rate of physics event

where:

 $u_{b} = bunches / train$ N = particles per bunch $f_{regs} = repetition frequency$ $\sigma_{\chi/\gamma} = beam horiz/vert. beam size at IP$ $H_{D} = beam-beam enhancement factor$

LCs are pulsed machines

- duty factors are small
- pulse peak powers can be very large

Traveling wave structure, the building block of normal conducting electron linacs

see Walter's talk

RF wall currents heat up cavity wall during pulse

Acceleration Field $E_{ACC} \sim \sqrt{P_{RF}}$ Temperature rise $\Delta T \sim P_{RF} \sqrt{t_{PULSE}}$ for given allowable $\Delta T \Rightarrow E_{ACC} \sim \frac{1}{\sqrt[4]{t_{PULSE}}}$

To get accelerating fields of ≈ 100 MV/m pulse length is limited to ≈ 100 ns

For high accelerating fields there is a mismatchbetween klystron requirement $t_{PULSE} > 1 \mu s$ and RF structure requirement $t_{PULSE} < 100 ns$

How to get High Luminosity ?

Parameters to play with

Reduce beam emittance $(\varepsilon_x \cdot \varepsilon_y)$ for smaller beam size $(\sigma_x \cdot \sigma_y)$ Increase bunch population (N_e) Increase beam power $(P_b \propto N_e \times n_b \times f_{rep})$ Increase beam to-plug power efficiency for cost

Damping Rings, reduction of emittance with radiation damping

 δp replaced by RF such that $\Delta p_z = \delta p$. since

$$y' = dy/ds = p_y/p_z,$$

we have a reduction in amplitude:

 $\delta y' = -\delta p y'$

But photon emission is a quantized, statistical fluctuation of photon number sets **lower limit for emittance**

Emittance preservation during acceleration in main linac Main problem: **Transverse Wakes Fields**

Bunch current generates transverse deflecting modes when bunches are not on cavity axis.

Later bunches are kicked transversely

Countermeasures

- Detuning of dipole frequencies from cell to cell
- Damping of dipole modes with HOM couplers
- Strong focusing
- Tight alignment and orbit control
- Feedbacks
- Increase of bunch spacing
- Limit bunch charge

Final focus system to minimize beam size at IP

Essential part of final focus is final telescope. It "demagnify" the incoming beam ellipse to a smaller size.

A minimal number of quadrupole magnets, to construct a telescope with arbitrary demagnification factors, is four.

However, energy spread of beam Leads to chromatic errors, which limit minimum beamsize at IP

Telescope optics to demagnify beam by factor $m = f_1/f_2 = f_1/L^*$

Final focus with local chromatic correction

- Chromaticity is cancelled <u>locally</u> by two sextupoles interleaved with final quadrupole doublet, a bend upstream generates dispersion across final quadrupoles
- Geometric aberrations of the FD sextupoles are cancelled by two more sextupoles placed in phase with them and upstream of the bend

Solutions to pulse mismatch

Use superconducting RF cavities at cryogenic temperatures

RF pulse compression

CLIC two beam scheme

NLC project discontinued

The International Linear Collider (ILC)

It is a project designed to smash together electrons and positrons at the center of mass energy of 0.5 TeV initially and 1 TeV later.

The ILC Global Design Effort team, established in 2005, has been making its accelerator design. Recently, it worked out the baseline configuration for the 30-km-long 500 GeV collider. (from Fumihiko Takasaki / KEK)

But theoretical limit: $E_{ACC} \le 50 \text{ MV/m}$ because magnetic surface fields exceed B_{CRIT} of superconductivity

 $\Rightarrow E_{\rm CMS} \le 1 \, {\rm TeV}$

CLIC aim:

develop technology for e^{-}/e^{+} collider with $E_{CMS} = 1 - 5 \text{ TeV}$

Physics motivation:

"Physics at the CLIC Multi-TeV Linear Collider : report of the CLIC Physics Working Group," CERN report 2004-5

Present mandate:

Demonstrate all key feasibility issues by 2010

BASIC FEATURES OF CLIC

High acceleration gradient (>100 MV/m)

- "Compact" collider overall length < 35 km
- Normal conducting accelerating structures
- High acceleration frequency (30 GHz)
- Two-Beam Acceleration Scheme

- Cost-effective & efficient
- Simple tunnel, no active elements
- Central injector complex
 - "Modular" design, can be built in stages

CLIC TWO-BEAM SCHEME

CTF II, a two beam accelerator to demonstrate CLIC linac technology

Goals of CTF II

- design and construct a fully engineered representative CLIC style test section
- develop and test drive beam generation and transport
- demonstrate two beam acceleration scheme at 30 GHz with a string of RF structures

30 GHz power extraction structure for CTF II drive beam (before brazing)

30 GHz accelerating structure of CTF II main beam

Phased construction of CLIC

CLIC parameters

Center of mass energy	GeV	3000
Main Linac RF Frequency	GHz	30
Unloaded / loaded gradient	MV/m	172 / 150
Linac repetition rate	Hz	150
No. of particles / bunch	10 ⁹	2.56
No. of bunches / pulse	1	220
Bunch separation	ns	0.267
γ ε×	nm	660
γ εν	nm	10
σx	nm	60
σγ	nm	0.7
Bunch train length	ns	58.4
Total length	km	33.6
AC to beam efficiency	%	12.5
Total site AC power	MW	418
Luminosity	10 ³⁴ cm ⁻² s ⁻¹	6.5
Luminosity (in 1% of energy)	10 ³⁴ cm ⁻² s ⁻¹	3.3
Beamstrahlung mom. spread	%	16
GeV per klystron	GeV	8.5

Recent structure test result \Rightarrow feasibility ? \downarrow will probably go down

The CLIC 30 GHz RF Power Source

WHAT DOES THE RF POWER SOURCE DO ?

The CLIC RF power source can be described as a "black box", combining *very long RF pulses*, and transforming them in *many short pulses*, with *higher power* and with *higher frequency*

<u>RF POWER SOURCE "BUILDING BLOCKS"</u>

Beam combination/separation by transverse RF deflectors

Very efficient acceleration of drive beam, i.e. a ratio of beam power to input RF power of >93%. This is achieved with the so called fully beam loaded operation.

Similar to the load of a power supply, which has to have a resistance matched to the internal resistance of the power supply for best efficiency.

Delay Loop Principle

• double repetition frequency and current

parts of bunch train delayed in loop

• RF deflector combines the bunches

Higher combination factors reachable in a ring

CLIC RF power source layout

Drive beam time structure - initial

Drive beam time structure - final

Motivation and Goals of CTF3 collaboration

- Build a small-scale version of the CLIC RF power source, in order to demonstrate:
 - full beam loading accelerator operation
 - electron beam pulse compression and frequency multiplication using RF deflectors
- Provide the 30 GHz RF power to test the CLIC accelerating structures and components at and beyond the nominal gradient and pulse length (150 MV/m for 70 ns). ⇒ Walter's talk

• Tool to demonstrate until 2010 CLIC feasibility issues identified by ILC-TRC in 2003

CTF3 build by a collaboration like a particle physics experiment

commissioned with beam

CTF3 complex

CLEX

CONCLUSIONS

- An electron/positron collider in LHC energy range has to be a linear collider
- Presently two schemes under consideration, ILC and CLIC
- CLIC is presently the only scheme to extend the Linear Collider energy into the Multi-TeV range
- CLIC technology is less mature than ILC technology, both still requires challenging R&D before construction can start
- Very promising results were already obtained in CTF II and in the first stages of CTF3
- Remaining key issues identified by ILC-TRC
- CLIC-related key issues addressed in CTF3 aiming for a feasibility proof by 2010

Linear Collider, some Links & Literature

R.B. Palmer, "Prospects for High Energy e⁺ e⁻ Linear Colliders," Annu. Rev. Nucl. Part. Sci. vol. 40, p. 529, 1990

G. Loew (editor), ILC-TRC committee reports 1995, 2003. Includes descriptions of the various projects. <u>http://www.slac.stanford.edu/xorg/ilc-trc/2002/index.html</u>

2006 Accelerator school on Linear Collider http://cocoa.kek.jp/ilcschool/lecture.html

2006 CERN academic training lectures on CLIC http://agenda.cern.ch/fullAgenda.php?ida=a057972

CLIC home page http://clic-study.web.cern.ch/CLIC-Study

ILC home page http://www.linearcollider.org