

- Part 1: Electroweak Physics
 - Neutrino, W, Z, Higgs ...
 - Electromagnetic-Weak Unification

Part 2: Quantum Chromodynamics

- Quarks, Gluons and Colour
- Running coupling constant α_s

Change of Topic: QCD

- Quantum Chromodynamics (QCD) is the gauge theory of the strong interaction (formulated ~ 1973)
- It is quite *similar* to the gauge theory of the *EW interaction* but there are some important *differences*
 - the coupling strength is ~ 15 x larger $\alpha_s / \alpha \sim 0.12 \times 137$
 - *higher order* process are much more important!
 - a new type of charge called colour is carried by the particles involved in this force - the quarks and the gluons (the exchanged particles of the strong interaction) - but not W,Z,γ and leptons
 - there are 8 gluons (c.f. only 4 force carriers in the EW theory)
 - QCD exhibits confinement the strong force increases as the distance between quarks increases - the EW theory does not
 - -consequently, free quarks or gluons are never observed
 - -they always undergo *hadronisation* i.e. combine with other quarks and gluons to form *bound states* namely, *hadrons*

Oliver Buchmueller CERN/PH

- Discovery of the Neutron (1932)
- Pion Exchange Theory (1935)
- Discovery of the Pion (1947)
- Discovery of the Antiproton (1955)
- Proton Form Factor (1959)
- The Quark Model (1964)
- Discovery of Quarks (1968)
- Discovery of Charm (1976)
- Discovery of τ-Lepton/3rd Family (1976)
 Perl 1995
- Asymptotic Freedom (1973)
 - no Prize for top quark discovery (too many physicists involved!)

Chadwick 1935 Yukawa Powell Segr Hofstadter Gell-Mann 1969

- Friedman/Kendall/Taylor 1990
- Richter and Ting 1976
 - Gross/Politzer/Wilczek

- in QCD, screening of a quark's colour charge also occurs as a result of the creation of *virtual* quark-antiquark pairs due to fluctuations in the *gluonic* fields of the vacuum
- ... however, the fluctuations in the gluonic fields of the vacuum also produce additional gluons (because of gluon self-coupling) and these have the opposite effect they produce *antiscreening* of the bare quark's colour charge and this is the dominant effect
- consequently, at short distances the force becomes *weaker* while at long distances it becomes *stronger* !
- This variation of the strong force with distance is absorbed into the QCD *running* coupling constant which varies (or "runs") with Q²
 - $\alpha s = \frac{12\pi}{(33 2Nf) \log(Q^2/\Lambda^2)}$
 - Nf is # of quark flavours and $\Lambda = 0.21 \pm 0.02 \text{ GeV}$ (expt.)
 - αs has now been extracted from a wide range of measurements over a large enough range of Q² to demonstrate running ...

Oliver Buchmueller CERN/PH

⁵th Particle Physics Workshop

Hadronisation

- Due to *confinement*, when the quarks produced in $e+e- \rightarrow q\underline{q}$ move apart the force F between them grows with separation ...
 - Energy = J F.dx and so, as the quarks move apart, the potential energy stored in the *colour field* between them also grows ...
 - ... until the potential energy > rest mass energy of a qq pair ...
 - ... and a new qq pair is created between the original pair
- This process is repeated numerous times until there is insufficient energy to make any more qq pairs ...
 - ... the quarks and antiquarks combine with neighbours into colour singlet bound states - hadrons
- The original qg (or secondary qg) can radiate gluons which can split into further qg or gg pairs (via the ggg vertex) ... this phase is called a *parton shower* and precedes the *hadronisation* phase
- There is no unambiguous theory of hadronisation but several successful models exist - the large value of αs precludes a perturbation theory approach to calculations

Hadronisation

- Gluon bremsstrahlung from either quark in an e+e- → qq annihilation event results in 3 partons in the final state
- The partons then *hadronise* into jets of hadrons resulting in a distinctive 3jet final state topology

- probability for *gluon* bremsstrahlung is larger than *photon* bremsstrahlung by a factor $\alpha_s / \alpha = 0.12 / (1/137) \approx 15$
- in some cases a large amount of the initial quark energy can be transferred to the gluon resulting in 3 widely separated jets

$e+e- \rightarrow q\underline{q} \rightarrow 2$ jets

Oliver Buchmueller CERN/PH

 $e+e- \rightarrow q\underline{q}\underline{g} \rightarrow 3 \text{ jets}$

- Gluon jets were first observed in 1979 at the PETRA e+e- collider (Hamburg) operating at Ecm ~ 35 GeV
 - at much lower energy e+e- colliders the energy was too low to produce spatially separated jets
 - angular distribution of jets confirmed that gluon is Spin-1
- With large data samples of e+e- → qq events the probability for double gluon bremstrahlug cannot be neglected - this results in a 4 -jet final state topology
 - naïve estimate suggests: 4-jet rate/3-jet rate ~ α_s^2/α_s ~ 0.12
 - the triple gluon vertex (a prediction of QCD) contributes to the rate for 4-jet events and its effect has been verifed at LEP
 - —in this case single gluon radiation from a quark is followed by the splitting of the gluon into a pair of gluons $\rightarrow 2$ jets
- Jets of hadrons from quarks and gluons are very similar and quite hard to distinguish

 $e+e- \rightarrow q q g g \rightarrow 4 j ets$

Oliver Buchmueller CERN/PH

- QCD is not nearly as precisely tested as QED or the Electroweak Theory: e.g. error on $\alpha_s(Mz^2) \sim \pm 2\%$
 - this is because of the largeness of α_s and hence the *non-perturbative* nature of the theory
 - -which means that higher order diagrams cannot be ignored
 - and because uncertainties in the *hadronisation* process mask the underlying *parton shower* phase of an interaction
- Nevertheless, substantial progress has been made at LEP and hadron colliders in testing a wide range of detailed predictions of QCD
- Several important predictions remain to be confirmed
 - the existence of the *quark-gluon plasma* phase of matter
 - the existence of *glueballs* (quark-free hadrons, i.e. gluonic bound states) with *exotic* quantum numbers (not permitted for baryons or mesons)

Out of the "Handbook for Particle Physics Theory ..."

- How to construct a Gauge Theory?
 - Choose the gauge group G with NG generators
 - Add NG vector fields (gauge bosons) in a specific representation of the gauge group
 - Choose the representation for the matter particles (elementary particles)
 - Add scalar fields to give mass to (some) vector bosons
 - Define the covariant derivative and write the most general Lagrangian, invariant und G, which couples all fields
 - Shift the scalar fields in such a way that the minimum of the potential is zero
 - Apply the usual techniques of quantum field theory to verify the renormalizability and to make predictions
 - Check with nature if the model has anything to do with reality
 - If not, try again and restart from the beginning ...

Oliver Buchmueller CERN/PH

Precision SM Tests ...

A clear domain of experiment

LEP and SLD

LEP and its four Detectors

"LEP in a Nutshell"

- LEP I (1989 1995) $\sqrt{s} \approx m_Z$
 - Z boson physics
- LEP II (1995 2000) 130 GeV $\leq \sqrt{s} \leq 208$ GeV
 - W boson physics
 - searches
- High luminosity
 - \approx 1 fb⁻¹/experiment collected
 - \Rightarrow > 4.10⁶ Z decays & \approx 10 k WW events
- Precise beam energy calibration:

 $< \pm 1$ MeV (LEP I) $\approx \pm 15$ MeV (LEP II)

■ To date ≈ 1300 publications by the four experiments

Oliver Buchmueller CERN/PH

Again some History

1967: Electroweak unification, with W, Z and H (Glashow, Weinberg, Salam);

1973: Discovery of neutral currents in $v_{\mu}e$ scattering (Gargamelle, CERN)

1974: Complete formulation of the standard model (Illiopoulos)

1981: The CERN SpS becomes a pp collider; LEP and SLC approved before W/Z discovery;

CERN

First Z detected in the world:

1989: First collisions in LEP and SLC; Precision tests of the SM (m_{top});

1995: Discovery of the top (FNAL); Precision tests of the SM (m_H) ;

Oliver Buchmueller CERN/PH

Precision Electroweak Observables (I)

Experiment	Observable	Main technology	Precision	Physics output
Z Lineshape	mz	Absolute beam energy (+ ISR QED calculations)	2.10 ⁻⁵	Input!
30 N _e = 2 30 N _e = 3 25 N _e = 4	Γ_{z}	Relative beam energy	10 ⁻³	$\Delta \rho, \alpha_s, N_v$
α (up) 8	σ_{peak}	Absolute luminosity	10 ⁻³	N _v
LEP1	$\mathbf{R}_{\ell} = \frac{\Gamma_{\text{hadron}}}{\Gamma_{\text{lepton}}}$	Final state identification	1.2.10 ⁻³	α_s , m_{top}
WW Production Preliminary	mw	-Absolute *Beam energy *Luminosity -Final state Identification	5 .10 ⁻⁴	m _H vs m _{top}
Heavy Flavour Rates	$\mathbf{R}_{\mathbf{b}} = \frac{\Gamma_{\mathbf{b}\overline{\mathbf{b}}}}{\Gamma_{\mathbf{h}\mathbf{a}\mathbf{d}\mathbf{r}\mathbf{o}\mathbf{n}}}$	b-tagging (Vertex detector)	3.10 ⁻³	m top
n	$\mathbf{R}_{\ell} = \frac{\mathbf{L}_{c\overline{c}}}{\mathbf{\Gamma}_{hadron}}$	c-tagging (mostly SLD)	2% 5th Partie	le Physics Workshop

 Higher order Feynman diagrams involving the *top quark* produce small (~1%) shifts in V/A couplings which depend on m_{top} and (less strongly) on M_{Higgs}

- Measuring many different decay widths and FB asymmetries at LEP, a significant constraint was placed on the *top quark mass* mt by mid-1990's : 150 < mt < 200 GeV
 - The top quark is *too heavy* to be directly observed at LEP but *precise* measurements at Z energies are senstive to it!
- This pointed the way to the discovery of the top quark at Fermilab's Tevatron collider (where the top is not too heavy to produce): $mt = 174 \pm 5 \text{ GeV} \dots$ consistent with LEP !
- Knowing mt and Mw accurately leaves the Higgs boson mass MH as the only *unknown parameter* of the electroweak theory ...
- ... and precise LEP and Tevatron measurements are now producing meaningful constraints on MH ...

Dependence on m_{top}, m_H of m_W and R_b

• $Z \rightarrow q\bar{q}$: Two jets, large particle multiplicity.

• $Z \rightarrow e^+e^-$, $\mu^+\mu^-$: Two charged particles (e or μ .)

• $Z \rightarrow v\bar{v}$: Not detectable.

• $Z \rightarrow \tau^+ \tau^-$: Two low multiplicity jets + missing energy carried by the decay neutrinos

Channel	Partial Width	Branching Ratio
Hadrons	1.739 GeV	70%
Neutrinos	0.497 GeV	20%
Leptons	0.250 GeV	10%

Z Boson Decay \rightarrow e+e-

Z Boson Decay $\rightarrow \mu + \mu$ -

Oliver Buchmueller CERN/PH

Z Boson Decay \rightarrow Hadrons (qg jets)

Run=15768 Evt=5906

Oliver Buchmueller CERN/PH

OTH PARTICLE PHYSICS WORKSHOP

1.7

• The peak cross-section for $e+e- \rightarrow X$ (at $E = M_z$) is

- $\sigma_{\text{peak}} \sim 12\pi\Gamma_{\text{e}} \Gamma_{\text{X}} / M_{z}^{2} \Gamma_{z}^{2}$

- The total decay width of the Z is
 - $-\Gamma_{z} = \Gamma_{had} + \Gamma_{lep} + \Gamma_{inv}$ (hadrons + leptons + invisible)
- and the invisible width of the Z is

 $-\Gamma_{\text{inv}} = \mathbf{N}_{v} \, \Gamma_{v} \, \text{SM}$

- where the Standard Model decay width of the $Z \rightarrow v\underline{v}$ for a single neutrino type ($\Gamma_v SM$) is precisely calculable
- Thus both Γz and σ_{pk} depend on N_v the number of neutrino types and hence a careful scan of the Z resonance shape and size can determine N_v (and M_z)
 - —With 3 known families of quarks and leptons $N_v \ge 3$
 - $-N_v = 4 \Rightarrow$ a new heavy family with m_q and $m_L > M_Z/2$
 - —but *not* sensitive to new families if $m_v > M_z/2$!

ь

