RPCs and applications to the Particle Physics

5th Particle Physics Workshop Islamabad 20-25 Nov 2006 By R. Santonico

Layout

- Avalanche saturation
- Atlas RPC summary
- Applications to neutrino physics: Opera

The saturated avalanche

- There is experimental evidence evidence that the RPCs, in their operating point, work in a saturated avalanche mode:
 - The charge distribution, that is peaked at zero at low voltage, become more gaussianlike well inside the efficiency plateau
 - The prompt and the total charges show an exponential increase at low voltage and a linear increase well inside the efficiency plateau

The saturated avalanche (2)

The grow of the avalanche is normally described with the Townsend equation

 $dN/dx = \alpha N$

- The space charge produced by the avalanche shields the applied field and avoids the exponential divergence. For $\alpha x=20$ the applied field is completely shielded
- The saturation due to the space charge can be explaned by the Townsend equation assuming that the coefficient $\alpha = \alpha(E)$ is field dependent

The logistic equation

- Another possibility is to introduce in the equation a quadratic term $-\beta N^2$ which accounts for the correlation among the avalanche electrons

 $dN/dx = \alpha N - \beta N^2$

• The solution of this (logistic) equation is $N=K/\{1+(K/N_0-1)e^{-\alpha x}\}$ with $K=\alpha/\beta$ and $N_0=N(x=0)$

The logistic equation (2)

• When N approachs K the system saturates and K is the asymptotic number of electrons in the avalanche

 According to the logistic model the average charge can be fitted with the function:

$$Q_{tot} = K' \ln[1 + e^{a(V - V_0)}]$$

Measurement of total to prompt charge ratio

- Simultaneous acquisition for:
 - Prompt charge pulses on the readout strip
 - Total charge on the detector cathode.
- The pulse acquisition is triggered by the scintillator coincidence
- The results refer to different operating voltages

Qtot/Qprompt vs Qprompt scatter plot

Plot of Qtot and Qtot to Qprompt ratio vs. Qprompt

- The logistic equation was introduced to describe the development of a biological population in presence of a finite amount of food resources
- In our case the finite resource is the electrostatic field energy available to sustain the avalanche growth

CMS MUON CHAMBER

Insertion in the magnet

-

luon chamber system

- 3 detector stations
 - cylindrical in barrel
 - wheels in end caps
- High-precision tracking chambers
 - MDT at | η | < 2 , CSC at 2 <| η |< 2.7</p>
- Trigger chambers:
 - muon p_t trigger selection
 - bunch-crossing identification
 - second coordinate measurements
 - RPC at | η | < 1.05,</p>
 - TGC at 1.05 < | η | < 2.4</p>

→ A crucial component is the alignment measurement and monitoring system

Туре	MDT	CSC	RPC	TGC
N.cham	1172	32	1116	1578
N.chan.	360000	31000	385000	322000
Area	5.500	27	3650	2900

INFN groups (involved in Barrel chamb.)

- MDT (Cs,LNF,Pv,Rm1,Rm3)
 - DDO (De Le Me Dev)

Barrel Muon Chambers

Muon chambers organized in 16 sectors. Each sector has 3 stations.

- Inner chambers: BI
- Middle chambers: BM
- Outer chambers: BO
- Chambers in feet region: F (sect 12,14)
- BI are only for tracking
- BM are sandwiched between two RPC (trigger)
- BO chambers contain one RPC

A RPC/MDT muon station

MDT/RPC/LVL1 muon station integration

2004-2006 : in BB5 1116 RPCs units have been cabled . 972 integrated with 380 MDT. Integration with LVL1 electronics and test on a cosmic ray test-stand for all units

MDT/RPC	Total	RPC units	
stations	stations		
BMS/F	84	280	
BML	94	298	
BOS/F/G	106	202	
BOL	96	192	5-0
TOTAL	380	972	ŕ

Barrel Muon chamber installation

- Started in 2005 in parallel with service installation in the muon spectrometer.
- 594 barrel Muon Stations installed (~85%).
 - All tested in surface at Sx1.
 - 56% in final position
- 72 stations still to be installed in 2006
- 39 in the spring 2007
 - Side C completed, except for sectors 9,11,15, due to interference with movable services for the End-Cap calorimeters
 - to be completed in 2007
 - Side A should be completed before the end of the year

LAS-CMS Bologna 23/11/2006

MDT+RPC+LVL1 trigger commissioning

LVL1 muon trigger

→ Tested in August 2006 a full barrel LVL1 muon slice

- · Operated with full chain of trigger
 - RPC detectors
 - Splitter / Pad
 - Sector Logic (prototype)
 - MUCTPI (prototype)
 - CTP
 - LTP
 - TTC
 - Detectors
- Checked trigger latency (is within allowed envelope)
- Developing procedure for timing-in the system

Barrel Trigger Sector 13: Extrapolation of RPC cosmic-ray tracks to ground level

Trigger rate ~40 Hz consistent with simulation of cosmic rays

18-19 November: 24 h test of Toroid Barrel

- >12 h of cosmic ray data taking with the muon chambers (3BIL+ 3BML+ 3BOL) of sect 13 (MDT+RPC+LVL1)
- The first muon track with magnet on triggered by the RPCs!!
- A new provoked quench with FD→All OK again!!
- No other MAG on test.

RPC for neutrino physics: test of Opera

- Gas system (preliminary):
 - $-Ar/C_2H_2F_4/I-C_4H_{10}/SF_6 = 75.4/20/4/0.6$
 - Premixed bottles (<4 days autonomy at 5 refills/day)
 - No exhaust, as gas flow (~0.1 m³/h) << air flow inside Hall C (~10000 m³/h)

Preliminary tests (I)

Before starting underground let's fix the <u>working voltage</u> and <u>thresholds</u> with cosmic rays at <u>external GS lab</u>.....

Counting rates (I)

Counting rates:

- at 5.6 kV are about 17 Hz/m² (1.2 kHz/layer)
- Slightly lower for vertical strip planes
- Good uniformity among different layers

Selected events: single muon

Selected events: single muon

Selected events: dimuon

Selected events: muon bundle

Test set-up (additional)

Each layer is composed by 7*3 RPCs:

1 row = 3 RPCs 1 layer = 7 rows = 21 RPCs 4 layers = 28 rows = 84 RPCs