Top Quark Mass Reconstruction using High Pt Top in the Lepton + Jets Channel

Ijaz Ahmed

National Centre for Physics, Islamabad

OUTLINE

- □ Introduction
- Topology of Lepton + Jets
- □ High Pt top basic idea
- □ 3 methods for jets selection
- Top quark mass reconstruction from jets
- □ Jets clustering in detector
- □ Clusters invariant masses M^{top}_{clus}
- \Box Underlying Event (UE_{clus}) estimation and subtraction
- □ Calibration from high Pt W_{clus}
- □ Summary

Topology of Lepton + Jets channel at LHC

Top production and decay at the LHC Top production at the LHC happens mainly via gluon fusion: $\frac{1}{2} \mathcal{L}_{\mathcal{L}_{p,n}}^{x_1}$

The top in the SM decays into W+b, leading to different signatures

High P_t top basic idea

- Highly boosted top quark decay back-back, making two hemispheres
- ✓ When the top has a higher boost, one expect the opening angle between W and b (from top decay) to be smaller.
- ✓ High pt tops have decay angles close to the top flight direction and therefore the mass of the objects in a large cone around the top direction is correlated with real top mass.
- ✓ The idea why we take high pt tops is to get the three jets from the top decay close to each other and that they can be collected in one cone with a large opening angle.
- ✓ One could calculate the mass of the objets which are in larger cone around the top quark direction of flight. For this the top quark needs to have a larger pt > 200GeV.

Generator level cuts

$$t\bar{t} \rightarrow bW^{+}bW^{-} \rightarrow bq\,\overline{q}\,bl\,v(l=\mu)$$

> P_{t}^{top} > 200 GeV, $|\eta| < 3.0$ > $P_{t}^{anti-top}$ > 200 GeV, $|\eta| < 3.0$ > P_{t}^{μ} > 20 GeV, $|\eta| < 2.0$ > P_{t}^{q} > 20 GeV, $|\eta| < 2.5$ FAMOS_1_4_0 samples 165 Top mass point = 20K events 175 Top mass point = 50K events 185 Top mass point = 20K events

X-section more than 1% of the total tT cross-section

	no of events	Int luminosity	X-section
	With pile-up	fb ⁻¹	pb
$t\bar{t} \rightarrow bW^{\dagger}bW \rightarrow bq\bar{q}blv(l=\mu)$	49535	7.23	6.85

Partonic Level Distributions

Jet Multiplicity distribution

Global muon multiplicity dist.

• METMC \rightarrow MET from particles

·MET > 30 GeV

•At least 1 iso good muon, P_t >20 GeV, $|\eta|$ <2.0

combined b-tag disc. > 1.0

(60% b-tag efficiency)

Leading jets and muons P_t distributions

Jet-Parton Matching (JPM)

> 2 light jets + 2 quarks from W

>4 possible jet combinations \rightarrow take best combination

Correctly matched if $\Delta R < 0.4$

Maximum of two minimas

Introducing 3 approaches

•Three approaches to select events
 + jet combination (for top direction)

Leading jets ≥ 2 b-tagged jets, ≥ 2 non b-tagged jets
Exactly 4 leading jets, =2 b-tagged jets, = 2 non b-tagged jets
>2 leading b-jets, 2 light jets with m_{jj} closest to W mass

Top quark selection from leading jets

Kinematical cuts	Selection efficiency %	No of events
Before selection	100	49535
no of iso muons	93.6	46370
≥ 1 iso muon P _t > 30 GeV	92.7	45920
\geq 1 reco light jets P _t > 20 GeV	91.1	45117
≥ 2 reco light jets $ \eta < 2.5$	73.6	36484
≥ 1 b-jet P _t > 20 GeV	55.6	27543
≥ 2 b-jets η < 2.5	18.6	9214
m _{jj} – m _W ^{nom} < 20 GeV	8.5	4235

m_w^{nom} = 65.24 (gaussian fitted correctly matched)

Nominal mass—fitted mass ~ 65 GeV

Same mw^{nominal} used in all selections

ljaz Ahmed,5th_PPW,Islamabad

Top quark mass measurment from leading jets

Reco W-boson purity with 2 quarks matched = 18.17%

Reco W-boson purity with 1 quark matched = 42.7%

b-jet with furthest (max ΔR) wr.t muon

Top quark selection from four jets topology

Kinematical cuts	Selection efficiency %	no of events
Before selection	100	49535
no of iso muons	93.6	46370
\geq 1 iso muon P _t > 30 GeV	92.7	45916
\geq 1 reco light jets P _t > 20 GeV	92.7	45915
Exectly 4 jets $ \eta < 2.5$	21.3	10551
Exectly 2 light jets	8.0	3941
Exectly 2 b-jets	8.0	3941
m _{jj} – m _w < 20 GeV	3.9	1937

Reco W-boson purity with 2 quarks matched = 20.98% Reco W-boson purity with 1 quark matched = 43.26%

Di-jet invariant mass dist from four jets selection

Di-jet with associated b-jet invariant mass dist. from four jets selection

Top quark selection from $jj \rightarrow W$

Kinematical cuts	Selection efficiency %	no of events
Before selection	100	49535
no of iso muons, P_{t} > 30 GeV, $ \eta $ < 2.0	92.7	45920
2 jj →W, P _t > 20 GeV, η < 2.5	73.6	36484
≥ 2 b-jets P _t > 20 GeV, η < 2.5	18.6	9214
m _{jj} - m _w < 20 GeV	11.9	5917

W mass reconstruction jj---W

Reco W-boson purity with 2 quarks matched = 20.76 % Reco W-boson purity with 1 quark matched = 40.6 %

Top quark mass reconstruction from $jj \rightarrow W$

ljaz Ahmed,5th_PPW,Islamabad

M_{jjb} plots for all selections after calibration

ljaz Ahmed,5th_PPW,Islamabad

Comments on m_{jjb}

Study based on shape of distributions for top direction determination

Explored three types of selection criteria for hadronic top mass reconstruction

Four jets selection results low efficiency with higher W purity

Jets with inv mass close to W have higher efficiency with intermediate purity of W

Cluster Method (special Algorithem)

Once top direction determined, and P_t(jjb)= 200 GeV
 Invariant mass of all calorimeters clusters

 $\Delta\eta\textbf{x}\Delta\phi$ around top direction

$$m^{2}_{clusters}(\Delta R) = (E^{2} - P^{2}) = (\sum_{i=0.7}^{n\Delta R} E_{i})^{2} - (\sum_{i=0.7}^{n\Delta R} \overline{P}_{i})^{2}$$

 \checkmark E_i represents total energy of the ith cluster

 \checkmark nDR runs over all clusters within selected cone size

 $\checkmark P_i$ its 3-momenta vector

We know only E, η , ϕ about clusters Assumptions: considering particles masseless $m \approx 0 \Longrightarrow E^2 \equiv P^2$ $P_x = E \sin \vartheta \cos \varphi$ $P_y = E \sin \vartheta \sin \varphi$ $P_z = E \cos \vartheta$

number of events

ljaz Ahmed,5th_PPW,Islamabad

Opening angle b/w reco top and calo clusters

Top mass recontruction from calorimeter clusters

ljaz Ahmed,5th_PPW,Islamabad

Calorimeter(ECAL+HCAL) clusters distribution

ljaz Ahmed,5th_PPW,Islamabad

Variable for underlying event measurement

min ∆R (all jets, clust)

UE Estimation Method

From average cells energy outside jets

LAYER # 01 (ECAL)

Jet Isolation	<e<sub>t> / cluster (MeV) < no of clusters > / high P. event</e<sub>					
cut						
	η < 0.7	η < 1.4	η < 2.1	η < 3.0	$ \eta > 3.0$	η < 5.0
$\Delta \mathbf{R} = 0.7$	47.6	41.2	43.8	43.8	36.5	41.6
	779	1686	2673	2673	479	3757
$\Delta \mathbf{R} = 0.8$	47.3	40.9	43.7	43.7	36.5	41.3
	690	690	690	690	469	3317
$\Delta \mathbf{R} = 0.9$	47.2	40.6	43.6	43.6	36.5	41.3
	603	1365	2268	2268	469	3317
$\Delta \mathbf{R} = 1.1$	47.3	39.9	43.5	43.5	36.5	41.0
	436	1053	1858	1858	454	2860
$\Delta \mathbf{R} = 1.5$	46.6	38.4	43.5	40.4	36.8	40.4
	175	523	1106	1975	410	1975

UE Estimation Method

LAYER # 02 (HCAL)

Jet Isolation cut	<e<sub>t> / cluster (MeV) < no of clusters > / high P_t event</e<sub>					
	η < 0.7	η < 1.4	η < 2.1	η < 3.0	η > 3.0	$ \eta < 5.0$
$\Delta \mathbf{R} = 0.7$	632.5	512.6	449.5	364.9	225.4	324.2
	38	88	135	227	178	347
$\Delta \mathbf{R} = 0.8$	630.0	507.3	443.7	358.4	225.3	318.6
	34	81	125	217	177	34
$\Delta \mathbf{R} = 0.9$	626.7	501.0	437.2	351.3	225.2	312.6
	30	73	116	206	176	325
$\Delta \mathbf{R} = 1.1$	623.7	487.8	424.0	336.7	225.2	300.6
	22	22	22	22	176	22
$\Delta \mathbf{R} = 1.5$	606.1	456.2	394.1	307.4	225.7	278.0
	9	29	56	134	165	247

Top mass with UE subtraction

Ijaz Ahmed,5th_PPW,Islamabad

Clusters invariant masses

	<m<sub>clust^{top}(fitted)> (GeV) no UE subtraction</m<sub>	<m<sub>clust^{top}(fitted)> (GeV) UE subtraction</m<sub>
∆R=1.1	130	112
∆R=1.2	148	121
∆R=1.3	158	127
∆R=1.4	163	135
∆R=1.5	180	141
∆ R=1.6	195	150

Top Mass Scale Calibration using Hight P_T W sample

Calibration Coefficient Formula

$$C_{Top} = \frac{1}{N_{\Delta R}} \sum_{\Delta R=1}^{N \Delta R} \frac{M^{W}}{m \operatorname{clus}^{W}(\Delta R)}$$

Top Mass determination

$$m_{top} = \frac{1}{N\Delta R} \sum_{\Delta R=1}^{N\Delta R} m_{clus} top (\Delta R) \times C_{top}$$

ljaz Ahmed,5th_PPW,Islamabad

Summary

- Study based on Fast simulation
- Compared different jets selections (CMS Internal Note)
- Finalize UE subtraction
- Top mass from clusters (fit ?) (CMS Internal Note?)
- Look at leanrity vs true top mass
- Systematics specific to this method
- Calibration is tuned.
- Full Simulations results are expected soon