First Measurement of

$$
\operatorname{BR}\left(\psi^{\prime \prime} \rightarrow \gamma \chi_{c J}\right)
$$

Jamila Bashir Butt

$c \bar{c}$ Spectrum

Ig(Jpc)	Name	Mass	Width
		MeV	MeV
$0-(1--)$	Psi" $^{\prime \prime}$	3773	25.3
$0-(1--)$	Psi' $^{\prime}$	3686	0.28
$0+(2++)$	$\mathrm{Xc2}$	3556	2.00
$0+(1++)$	Xc1	3510	0.88
$0+(0++)$	Xc0	3415	14.90
$0-(1--)$	$\mathrm{J} / \mathrm{psi}$	3096	0.09
$0+(0-+)$	EtaC	2979	17.30

Motivation

1. Previous measurements did not produce significant signals
2. Impact on interpretation of $X(3872)$
3. Validation of Potential Model calculations above the open flavor threshold

Lack of significant previous measurements

- Before this result, no significant measurement of $\mathrm{BR}\left(\psi^{\prime \prime} \rightarrow \gamma \chi_{c J}\right)$
(Unpublished results)
- ~3/pb by MARKII
- ~2/pb by Crystal-Ball
- ~9/pb by MARKIII
- 281/pb; ~30times larger sample from CLEO-c

What do we know about $X(3872)$

A.Observed in X(3872) $\rightarrow \pi^{+} \pi^{-} \mathrm{J} / \psi$ decay

B.Mass (3871.9 ± 0.5) MeV
-just below the DD* threshold
C. Width < 2.3 MeV
-Surprisingly small, since the mass is well above the $D \bar{D}$ threshold
D. No radiative transitions to $\chi_{c J}$ states have been observed
-just an upper limit for decay to $\gamma \chi_{c 1,2}$
$\frac{\Gamma\left(\mathrm{X}(3872) \rightarrow \gamma \chi_{\mathrm{cl}}\right)}{\Gamma\left(\mathrm{X}(3872) \rightarrow \pi^{+} \pi^{-} \mathrm{J} / \psi\right)}<0.9$ Belle

$$
\frac{\Gamma\left(\mathrm{X}(3872) \rightarrow \gamma \chi_{\mathrm{c} 2}\right)}{\Gamma\left(\mathrm{X}(3872) \rightarrow \pi^{+} \pi^{-} \mathrm{J} / \psi\right)}<1.1 \text { Belle }
$$

Possible interpretations of $X(3872)$

Existence of hybrids and bound states of mesons has not been experimentally proven so far

How our measurement helps?

- Conventional charmonium candidates for $X(3872)$
- $\psi_{2}\left(1^{3} D_{2}\right), h_{c}^{\prime}\left(2^{1} P_{1}\right), \psi_{3}\left(1^{3} D_{3}\right)$
($C=-1$)
- $\eta_{c 2}\left(1^{1} D_{2}\right), \chi_{c 1}{ }^{\prime}\left(2^{3} P_{1}\right), \eta_{c}{ }^{\prime \prime}\left(3^{1} S_{0}\right)$,
($C=+1$)
- Nonrelativistic-case:<1D|r|1P> is independent of J.
- $\Gamma_{J}=4 /{ }_{3} e^{2} \alpha E_{\gamma}{ }^{3} C_{J}\left|<1^{3} D\right| r\left|1^{3} P>\right|^{2}$
- $1^{3} D_{J} \rightarrow \gamma \chi_{c 1}$ can be measured for different J provided one is known
- Measuring $1^{3} D_{1}\left(\psi^{\prime \prime}\right) \rightarrow \gamma \chi_{c 1}$ can shed some light on $1^{3} D_{2,3}\left(\psi_{2}, \psi_{3}\right) \rightarrow \gamma \chi_{c 1}$

Validation of Potential Model for $\psi^{\prime \prime}$

- Is $\psi^{\prime \prime}$ a pure cc state?
- Strong indications that $X(3872)$ is not
- May be all states above the flavor thresholds have complex nature?
- Radiative transitions are a good probe
- Pure cc state: mostly $1^{3} D_{1}$ (small contribution from $2^{3} S_{1}$)
- J-dependence of $\Gamma\left(\psi^{\prime \prime} \rightarrow \gamma \chi_{c J}\right)$ is well predicted
- Are relativistic corrections important?
- Are coupled channel effects
$\bar{C} \rightarrow D \bar{D} \rightarrow c \bar{C}$ important?

CLEO-c

$N_{\psi^{\prime}}=1.5 \mathrm{M}$
$\mathrm{N}_{\psi^{\prime \prime}}=1.8 \mathrm{M}$

Analysis

- Method1
- $\psi(3770) \rightarrow \gamma \chi_{C J} \rightarrow \gamma J / \psi$ $\rightarrow \gamma \gamma \mathrm{l}^{+} \mathrm{l}^{-}$
- Select events with exactly 2 photons and 2 leptons with no net charge:
- No other photon with E> 60 MeV
- $\left|P_{\text {tot }}\right|<50 \mathrm{MeV}$
- $\left|E_{\text {tot }}-E_{\| \mid}-E_{J / \psi}\right|<40 \mathrm{MeV}$
- Electron
- $E / p>0.7$
- Muon
- $0.15<E<0.55 \mathrm{GeV}$
- Signal variable: Energy of lower energy photon
- Method2
- $\psi(3770) \rightarrow \gamma \chi_{c J} \rightarrow \gamma(2 K, 2 K 2 \pi$, $4 \pi, 6 \pi)$
- Select events with exactly 2,4,6 charged hadrons and a photon:
- Highest energy neutral cluster in the calorimeter is the photon candidate
$-\left|P_{\text {tot }} i-P_{c m} i\right|<30 \mathrm{MeV}$
$i=x, y, z-E_{c m} \mid<30 \mathrm{MeV}$
- Kaon
- Combined log-likelihood > 0
- $\left|\sigma_{\mathrm{K}}\right|<3$
- Pion
- Not a kaon
- $\left|\sigma_{\pi}\right|<3$
- Signal variable: Photon energy

Kinematic fitting

1. Constrain total energy and momentum to the expected values.
2. For $\left.\gamma \gamma l^{+}\right|^{-}$also constrain mass of $\left.I^{+}\right|^{-}$to the J / ψ mass.

Demonstration on ψ^{\prime} data

$\psi(2 S)$ background in $\psi(3770)$ data

- ISR production of $\psi(2 S)$ at $E_{c m}=3770 \mathrm{MeV}$
- $\mathrm{e}+\mathrm{e}-\rightarrow \gamma \psi(2 \mathrm{~S})$

$$
\begin{aligned}
& \text { • } \psi(2 S) \rightarrow \gamma \chi_{c J} \rightarrow \gamma J / \psi \rightarrow \gamma \gamma I^{+I-} \\
& \cdot \\
& \cdot \\
& \hline(2 S) \rightarrow \gamma \chi_{c J} \rightarrow \gamma(2 K, 2 K 2 \pi 2 K, 4 \pi, 6 \pi)
\end{aligned}
$$

- $E_{\gamma}^{\text {ISR }} \sim 84 \mathrm{MeV}$ for $\psi(2 S)$ produced with its nominal mass:
- Selection criteria and kinematic fitting gets rid of this background ($E_{\gamma}^{\text {ISR }}$ forced to be less than about 40 MeV)
- Radiative flux peaks for $E_{\gamma}^{\text {ISR }} \rightarrow 0$ making the remaining background indistinguishable from the signal:
- Estimate this background using $\psi(2 S)$ measurements and theoretical formulae extrapolating the rate to the ISR peak

$\left.\left.\psi^{\prime \prime} \rightarrow \gamma \gamma\right|^{+}\right|^{-}$

Separate $\mu \mu$ and ee data because of very different background level but fit them simultaneously

Number of events for $\psi^{\prime \prime}$ $A 0=22 \pm 9$
A1 $=53 \pm 10$
$A 2=0 \pm 2.9$
RR from ψ^{\prime}
AO $=11.7$
A1 $=20.0$
$A 2=0.6$

Cross check of $\left.\left.\psi^{\prime \prime} \rightarrow \gamma \gamma\right|^{+}\right|^{-}$ analysis by $\left.\left.\psi^{\prime} \rightarrow \gamma \gamma\right|^{+}\right|^{-}$

Fit to gaussian shapes with linear background
Number of events for ψ '
A1 $=1718 \pm 42$
A2 $=835 \pm 30$

	Our measurements of $\operatorname{BR}\left(\psi^{\prime} \rightarrow \gamma c_{c J}\right)(\%)$	previous CLEO-c measurement using a different technique
$\mathrm{J}=2$	1.84 ± 0.07	1.81 ± 0.06
$\mathrm{~J}=1$	3.53 ± 0.09	3.50 ± 0.08

Ey low (MeV)

Results for $\gamma \gamma l^{+\mid-}$Analysis

$$
\operatorname{BR}\left(\psi^{\prime \prime} \rightarrow \gamma x_{c J} \rightarrow \gamma l^{+} l^{-}\right)=\frac{N_{\text {events }}\left(\psi^{\prime \prime} \rightarrow m^{+}+\right)}{\varepsilon_{\psi^{\prime \prime} \rightarrow m^{+t}} \times N_{\varphi^{\prime \prime}}}
$$

	Results for $\psi^{\prime \prime} \rightarrow \gamma \chi_{c J}$		
	$J=2$	$J=1$	$J=0$
$\varepsilon(\%)$	18	23	20
Branching Ratio: BR (10-3)	<0.9	$2.8 \pm 0.5 \pm 0.4$	<44

- $\mathrm{B}\left(\psi^{\prime \prime} \rightarrow \gamma \chi_{c 0}\right)$ is predicted to be the largest, but the small $B\left(\chi_{c 0} \rightarrow \gamma J / \psi\right)$ limited our sensitivity
- In order to measure we $\mathrm{B}\left(\psi^{\prime \prime} \rightarrow \gamma \chi_{c 0}\right)$ turned to hadronic decays of $\chi_{c J}$.

Technique for $2^{\text {nd }}$ Method

$$
\begin{aligned}
& \mathrm{R}=\frac{\mathrm{BR}\left(\psi^{\prime \prime} \rightarrow \gamma \chi_{\mathrm{cJ}}, \chi_{\mathrm{cI}} \rightarrow \text { final state }\right)}{\operatorname{BR}\left(\psi^{\prime} \rightarrow \gamma \chi_{\mathrm{CI}}, \chi_{\mathrm{cI}} \rightarrow \text { final state }\right)} \\
& =\frac{N_{\text {events }}\left(\psi^{\prime \prime} \rightarrow \text { final state }\right)}{N_{\text {events }}^{\left(\psi^{\prime} \rightarrow \text { final state }\right)}} \times \frac{\varepsilon_{\left(\psi^{\prime} \rightarrow \text { final state }\right)}}{\varepsilon_{\left(\psi^{\prime \prime} \rightarrow \text { final state }\right)}} \times \frac{N^{\prime}}{N^{\prime \prime}} \\
& \operatorname{BR}\left(\psi^{\prime \prime} \rightarrow \gamma \chi_{C J}\right)=\mathrm{R} \times \operatorname{BR}\left(\psi^{\prime} \rightarrow \gamma \chi_{c J}\right) \\
& \text { PR D70, 112002(2004) }
\end{aligned}
$$

$\psi^{\prime \prime} \rightarrow \gamma 4 \pi($ left $), \gamma 2 \mathrm{~K} 2 \pi$ (right)

$\psi^{\prime \prime} \rightarrow \gamma 6 \pi$ (left), $\gamma 2 \mathrm{~K}$ (right)

Combined plots for four hadronic decay modes

Number of events for ψ^{\prime}
AO $=2816 \pm 58$
A1 $=886 \pm 32$
A2 $=1329 \pm 40$
Sum of fits (3 CBL with a linear background) to individual decay modes

Number of events for $\psi^{\prime \prime}$ AO $=274 \pm 27$ A1 $=54 \pm 17$
$A 2=20 \pm 18$
RR from ψ^{\prime}
$A 0=25.2$
A1 $=12.0$
A2=24.9
Sum of fits (6 CBL with quadratic background)

Results for $\psi^{\prime \prime} \rightarrow \gamma \chi_{c J}$

	Results for $\left(10^{-3}\right)$		
	$\mathrm{BR}\left(\psi^{\prime \prime} \rightarrow \gamma \chi_{C J}\right)$		
2nd method	<2.0	$3.9 \pm 1.4 \pm 0.6$	$7.3 \pm 0.7 \pm 0.6$
$\gamma^{\text {nd }}$	<0.9	$2.8 \pm 0.5 \pm 0.4$	<44
Combined	<0.9	$2.9 \pm 0.5 \pm 0.6$	$7.3 \pm 0.7 \pm 0.6$

Observe significant signal for $\psi^{\prime \prime} \rightarrow \gamma \chi_{c 0,1}$ and set a 90% C.L. upper limit for $\gamma \chi_{c 2}$.

Interpretation of $X(3872)$

$$
\begin{aligned}
& \frac{\Gamma\left(\psi^{\prime \prime} \rightarrow \gamma \chi_{\mathrm{cl}}\right)}{\Gamma\left(\psi^{\prime \prime} \rightarrow \pi^{+} \pi^{-} \mathrm{J} / \psi\right)}=1.56 \pm 0.37 \pm 0.37 \\
& \text { PRL } 96082004 \text { (2006) } \\
& \frac{\Gamma\left(\psi_{2} \rightarrow \gamma \chi_{\mathrm{cl}}\right)}{\Gamma\left(\psi_{2} \rightarrow \pi^{+} \pi^{-} \mathrm{J} / \psi\right)} \approx(2-3.5) \times \frac{\Gamma\left(\psi^{\prime \prime} \rightarrow \gamma \chi_{\mathrm{cl} 1}\right)}{\Gamma\left(\psi^{\prime \prime} \rightarrow \pi^{+} \pi^{-} \mathrm{J} / \psi\right)}>2 \times 1.8 \\
& \frac{\Gamma\left(\mathrm{X}(3872) \rightarrow \gamma \chi_{\mathrm{cl}}\right)}{\Gamma\left(\mathrm{X}(3872) \rightarrow \pi^{+} \pi^{-} \mathrm{J} / \psi\right)}<0.9 \text { Belle }
\end{aligned}
$$

$X(3872)$ is not $1^{3} D_{2}$!

Nature of $\psi(3770)$

- Theoretically
- $\Gamma_{J}=4 /\left.{ }_{3} e^{2} \alpha E_{\gamma}{ }^{3} C_{J}\left|<1^{3} D_{1}\right| r\left|1^{3} P_{J}\right\rangle\right|^{2}$
- Non-relativistically $<1^{3} D_{1}|r| 1^{3} P_{J}>$ is J independent
- we can cancel it by calculating the ratios of widths
- J-dependence:
- $C_{\mathrm{J}}=2 / 9,1 / 6$ and $1 / 90$ for $1^{3} \mathrm{D}_{1} \rightarrow 1^{3} \mathrm{P}_{\mathrm{J}} \mathrm{J}=0,1$ and 2
- Measured E_{γ}
- Thus in non-relativistic limit expect:
- $\Gamma_{0} / \Gamma_{1}=3.2 \quad$ and $\Gamma_{0} / \Gamma_{2} \sim 85$
- Measured:
- $\Gamma_{0} / \Gamma_{1}=2.5 \pm 0.6$ and $\Gamma_{0} / \Gamma_{2}>8$

Evidence that $\psi^{\prime \prime}$ is predominantly $1^{3} D_{1}$ state

Beyond the naïve theory

	$\Gamma\left(\psi^{\prime \prime} \rightarrow \gamma \chi_{\mathrm{cJ}}\right) \quad(\mathrm{keV})$		
	$\mathrm{J}=2$	$\mathrm{~J}=1$	$\mathrm{~J}=0$
CLEO-c data	<20	70 ± 17	172 ± 30
Rosner (non-relativistic)	24 ± 4	73 ± 9	523 ± 12
Ding-Qin-Chao			
Non-relativistic	3.6	95	312
Relativistic	3.0	72	199
Eichten-Lane-Quig9			
Non-relativistic	3.2	183	254
Coupled-channel corrections	3.9	59	225
Barnes-Godfrey-Swanson			
Non-relativistic	4.9	125	403
Relativistic	3.3	77	213

- Relativistic/coupled-channel corrections in potential model calculations are important for agreement with the data

Decay width for $\psi(2 S)$

	$\Gamma\left(\psi^{\prime} \rightarrow \gamma \chi_{c J}\right)(\mathrm{keV})$		
	$\mathrm{J}=2$	$\mathrm{~J}=1$	$\mathrm{~J}=0$
CLEO data	27 ± 4	27 ± 3	27 ± 3
Rosner (non-relativistic)	35 ± 1	75 ± 3	26 ± 6
Ding-Qin-Chao			
Non-relativistic	42	36	25
Relativistic	25	28	22
Eichten-Lane-Quig9			36
Non-relativistic	23	33	38
Coupled-channel corrections	23	32	63
Barnes-Godfrey-Swanson		54	26
Non-relativistic	38	29	
Relativistic	24		

- Corrections needed in potential model calculations for agreement with the data of $\psi(2 S)$ as well

Conclusions

- We have observed $\psi^{\prime \prime} \rightarrow \gamma \chi_{c 0,1}$ for the first time:
- \quad r $l l$ results published in PRL 96, 182002 (2006)
- results for hadronic in PR D, Rapid Communications (hep-ex/0605070)
- In view of our results the $1^{3} D_{2}$ interpretation of $X(3872)$ can be ruled out
- Spin dependence of the observed rates confirms that $\psi(3770)$ is predominantly $1^{3} D_{1}$ state
- Relativistic or couple channel effects are needed for quantitative agreement between potential model calculations and the data

BACK UP

Some detector plots

K-f Effect

- 0-ggll
- DATA: 128.855 .629
- w/k-fit: 128.935 .337
- w/o: 127.577 .082
- 1-4pi
- DATA: 127.575 .245 fixed to MC
- w/ k-fit w/ k-fit: 126.944 .9691 .224
- w/o: 127.116 .1860 .945
- 2-2k2pi
- DATA: 128.455 .422 fixed to MC
- w/k-fit w/ k-fit: 126.834 .8351 .265
- w/o: 126.956 .3391 .009
- 3-6pi
- DATA: 127.945 .172 fixed to MC
- w/k-fit w/ k-fit: 126.914 .9661 .201
- w/o: 127.136 .2630 .932
- 4-2k
- DATA: 127.544 .851 fixed to MC
- w/ k-fit w/ k-fit: 126.874 .5701 .220
- w/o: 126.936 .3050 .986

2S1-1D1 mixing

- The measured rate for
 $\mathrm{J}=0$ is much larger than for $J=1$ (which in turn is larger than $\mathrm{J}=2$).
- Confirming naïve prediction $B R_{0} \quad B R_{1} \quad B R_{2}$
- Confirming D state

Insensitive to mixing

- Mixing needed to explain large cross-section of $\psi(3770)$ in $e^{+} e^{-}$ experiment
- Effects of mixing on the rates are small
- Can be explored more with better measurement of $J=2$

General

- mDD*=3871.2 MeV (neutral), 3879.3 MeV (charged)
- mDD $=3729.0 \mathrm{MeV}$ (neutral), 3738.0 MeV (charged)
- Eqn's of k-fit
- $\mathrm{Pcm}=\mathrm{Pl}++\mathrm{Pl}-+\mathrm{Pg} 1+\mathrm{pg} 2$
$-\mathrm{Pcm}=\mathrm{Ph}++\mathrm{Ph}-+\mathrm{Pg}$
- ISR background

$$
\mathrm{N}_{\text {events }}\left(\psi^{\prime} \text { in } \psi^{\prime \prime} \text { from ISR }\right)=B_{\left(\psi^{\prime} \rightarrow \text { final state }\right)} \times \varepsilon_{\left(\psi^{\prime \prime} \rightarrow \text { final state }\right)} \times L_{\psi^{\prime \prime}} \times \Gamma_{e e}\left(\psi^{\prime}\right) \times I(s)
$$

$=\frac{N_{\text {events }}{ }^{\left(\psi^{\prime} \rightarrow \text { final state }\right)}}{\mathrm{N}_{\psi^{\prime}} \times \varepsilon_{\left(\psi^{\prime} \rightarrow \rightarrow \text { final state }\right)}} \times \varepsilon_{\left(\psi^{\prime \prime} \rightarrow \text { final state }\right)} \times L_{\psi^{\prime \prime}} \times \Gamma_{e e}\left(\psi^{\prime}\right) \times I(s)$
$I(s)=\int_{0}^{x} W(s, x), b\left(s^{\prime}(x)\right) F_{X}\left(s^{\prime}(x)\right) d x$
$F\left(s^{\prime}\right)=\left(E_{\gamma}^{I S R}\left(s^{\prime}\right) / E_{\gamma}^{I S R}\left(M_{R}{ }^{2}\right)\right)^{3}$

