First Measurement of BR($\psi'' \rightarrow \gamma \chi_{cJ}$)

Jamila Bashir Butt

cc Spectrum

Ig(Jpc)	Name	Mass	Width
		MeV	MeV
0-(1)	Psi"	3773	25.3
0-(1)	Psi'	3686	0.28
0+(2++)	Xc2	3556	2.00
0+(1++)	Xc1	3510	0.88
0+(0++)	Xc0	3415	14.90
0-(1)	J/psi	3096	0.09
0+(0-+)	EtaC	2979	17.30

•General notation N $^{2s+1}L_{\rm J}$

Motivation

- 1. Previous measurements did not produce significant signals
- 2. Impact on interpretation of X(3872)

3. Validation of Potential Model calculations above the open flavor threshold

Lack of significant previous measurements

- Before this result, no significant measurement of $BR(\psi'' \rightarrow \gamma \chi_{cJ})$ (Unpublished results)
 - ~3/pb by MARKII
 - ~2/pb by Crystal-Ball
 - ~9/pb by MARKIII

281/pb; ~30times larger sample from CLEO-c

What do we know about X(3872)

A.Observed in X(3872) $\rightarrow \pi^{+}\pi^{-}$ J/ ψ decay

B.Mass (3871.9±0.5) MeV -just below the DD* threshold

C.Width < 2.3MeV

-Surprisingly small, since the mass is well above the DD threshold

D.No radiative transitions to χ_{cJ} states have been observed

-just an upper limit for decay to $\gamma \chi_{c1,2}$

 $\frac{\Gamma\left(X(3872) \rightarrow \gamma \chi_{c1}\right)}{\Gamma\left(X(3872) \rightarrow \pi^{+}\pi^{-} J/\psi\right)} < 0.9 \text{ Belle}$

$$\frac{\Gamma(X(3872) \to \gamma \chi_{c2})}{\Gamma(X(3872) \to \pi^{+} \pi^{-} J/\psi)} < 1.1 \text{ Belle}$$

12/6/2006

Jamila Butt

Possible interpretations of X(3872)

How our measurement helps?

- Conventional charmonium candidates for X(3872)
 - $\psi_2 (1^3 D_2), h_c' (2^1 P_1), \psi_3 (1^3 D_3) \qquad (C = -1)$
 - $\eta_{c2} (1^{1} D_{2}), \chi_{c1}' (2^{3} P_{1}), \eta_{c}'' (3^{1} S_{0}), \qquad (C = +1)$
- Nonrelativistic-case:<1D|r|1P> is independent of J.
- $\Gamma_{\rm J} = \frac{4}{3}e^2 \alpha E_{\gamma}^3 C_{\rm J} | <1^3 D | r | 1^3 P > |^2$
- $1^{3}D_{J} \rightarrow \gamma \chi_{c1}$ can be measured for different J provided one is known

•Measuring $1^{3}D_{1}(\psi'') \rightarrow \gamma \chi_{c1}$ can shed some light on $1^{3}D_{2,3}(\psi_{2}, \psi_{3}) \rightarrow \gamma \chi_{c1}$

Validation of Potential Model for $\psi^{\prime\prime}$

- Is ψ'' a pure cc state?
 - Strong indications that X(3872) is not
 - May be all states above the flavor thresholds have complex nature?
- Radiative transitions are a good probe
 - Pure cc state: mostly $1^{3}D_{1}$ (small contribution from $2^{3}S_{1}$)
 - J-dependence of $\Gamma(\psi'' \rightarrow \gamma \chi_{cJ})$ is well predicted
- Are relativistic corrections important ?
 - Are coupled channel effects $c\overline{c} \rightarrow D\overline{D} \rightarrow c\overline{c}$ important?

CLEO-c

Ν_{ψ "} =1.8M

Analysis

•

Method1

- $\begin{array}{c} \psi(3770) \rightarrow \gamma \chi_{cJ} \rightarrow \gamma J/\psi \\ \rightarrow \gamma \gamma ||^{+}|^{-} \end{array}$
- Select events with exactly • 2 photons and 2 leptons with no net charge: - No other photon with E >
 - 60 MeV

 - $|P_{tot}| < 50 \text{ MeV}$ $|E_{tot} E_{II} E_{J/\psi}| < 40 \text{ MeV}$ Electron
 - E/p > 0.7
 - Muon
 - 0.15 < E < 0.55 GeV
- Signal variable: Energy of ٠ lower energy photon

- Method2
 - ψ (3770) \rightarrow γ χ_{cJ} \rightarrow γ (2K, 2K2π, 4π, 6π)
- Select events with exactly 2,4,6 charged hadrons and a photon:
 - Highest energy neutral cluster in the calorimeter is the photon candidate
 - $|P_{tot}i P_{cm}i| < 30 \text{ MeV}$

$$- |\dot{E}_{tot} - E_{cm}| < 30 \text{ MeV}$$

- Kaon
 - Combined log-likelihood > 0
 - $|\sigma_{\rm K}|$ < 3
- Pion
 - Not a kaon
 - $|\sigma_{\pi}| < 3$
- Signal variable: Photon energy

Kinematic fitting

- 1. Constrain total energy and momentum to the expected values.
- 2. For $\gamma\gamma I^+I^-$ also constrain mass of I^+I^- to the J/ψ mass.

Demonstration on $\psi^{\,\prime}$ data

ψ (2S) background in ψ (3770) data

- ISR production of $\psi(\text{2S})$ at $E_{\text{cm}}\text{=}3770\text{MeV}$
 - e+e- $\rightarrow \gamma \psi$ (2S)
 - $\psi(2S) \rightarrow \gamma \chi_{cJ} \rightarrow \gamma J/\psi \rightarrow \gamma \gamma I^+I^-$
 - $\psi(2S) \rightarrow \gamma \chi_{cJ} \rightarrow \gamma (2K, 2K2 \pi 2K, 4\pi, 6 \pi)$
- E_{γ}^{ISR} ~84 MeV for $\psi(2S)$ produced with its nominal mass:
 - •Selection criteria and kinematic fitting gets rid of this background (E_{γ}^{ISR} forced to be less than about 40 MeV)
- Radiative flux peaks for $E_{\gamma}^{ISR} \rightarrow 0$ making the remaining background indistinguishable from the signal:
 - •Estimate this background using $\psi(2S)$ measurements and theoretical formulae extrapolating the rate to the ISR peak

" $\rightarrow \gamma \gamma |+|^-$ V

Separate µµ and ee data because of very different background level but fit them simultaneously

```
Number of events for \psi''
A0=22±9
A1=53±10
A2=0±2.9
RR from \psi'
A0=11.7
A1=20.0
A2=0.6
```


Cross check of $\psi'' \rightarrow \gamma \gamma l^+ l^$ analysis by $\psi' \rightarrow \gamma \gamma l^+ l^-$

Results for $\gamma\gamma l^+l^-$ Analysis $BR(\psi'' \rightarrow \gamma\chi_{cJ} \rightarrow \gamma\gamma l^+l^-) = \frac{N_{events}}{\varepsilon_{\psi'' \rightarrow \gamma\gamma l^+l^-}} \times N_{\psi''}$

	Results for $\psi'' \rightarrow \gamma \chi_{cJ}$		
	J=2	J=1	J=0
ε(%)	18	23	20
Branching Ratio: BR (10 ⁻³)	< 0.9	2.8 ±0.5 ±0.4	<44

- $B(\psi " \rightarrow \gamma \chi_{c0})$ is predicted to be the largest, but the small $B(\chi_{c0} \rightarrow \gamma J/\psi)$ limited our sensitivity
- In order to measure we B(ψ $'' \to \gamma \chi_{c0}$) turned to hadronic decays of $\chi_{cJ}.$

Technique for 2nd Method

$$\begin{split} & \mathsf{R} \!=\! \frac{\mathsf{BR}\!\left(\!\psi^{\,\prime}\!\rightarrow\!\gamma\chi_{cJ},\!\chi_{cJ}\!\rightarrow\!\mathsf{final\,state}\right)}{\mathsf{BR}\!\left(\!\psi^{\,\prime}\!\rightarrow\!\gamma\chi_{cJ},\!\chi_{cJ}\!\rightarrow\!\mathsf{final\,state}\right)} \\ & =\! \frac{\mathsf{N}_{events}^{\left(\!\psi^{\prime}\!\rightarrow\!\mathsf{final\,state}\!\right)}}{\mathsf{N}_{events}^{\left(\!\psi^{\prime}\!\rightarrow\!\mathsf{final\,state}\!\right)}} \!\times\!\! \frac{\varepsilon_{\!\left(\!\psi^{\prime}\!\rightarrow\!\mathsf{final\,state}\!\right)}}{\varepsilon_{\!\left(\!\psi^{\prime}\!\rightarrow\!\mathsf{final\,state}\!\right)}} \!\times\!\! \frac{\mathsf{N}_{\!\psi^{\prime}}}{\mathsf{N}_{\!\psi^{\prime\prime}}} \end{split}$$

$$\mathsf{BR}(\psi"\to\gamma\chi_{cJ})=\mathsf{R}\times\mathsf{BR}(\psi'\to\gamma\chi_{cJ})$$

PR D70, 112002(2004)

 $\rightarrow \gamma 4\pi (left), \gamma 2K2\pi (right)$

Number of events/5 MeV

 $\psi'' \rightarrow \gamma 6\pi (left), \gamma 2K (right)$

Combined plots for four hadronic decay modes

Number of events for ψ' A0=2816±58 A1= 886±32 A2=1329±40 Sum of fits (3 CBL with a linear background) to individual decay modes

Number of events for ψ'' A0=274±27 A1= 54±17 A2= 20±18 RR from ψ' A0=25.2 A1=12.0 A2=24.9 Sum of fits (6 CBL with quadratic background)

Jamila Butt

Results for $\psi'' \rightarrow \gamma \chi_{cJ}$

	Results for BR($\psi " \rightarrow \gamma \chi_{cJ}$) (10 ⁻³)		
	J=2	J=1	J=O
2 nd method	× 2.0	3.9 ±1.4 ±0.6	7.3 ±0.7 ±0.6
γγII	< 0.9	2.8 ±0.5 ±0.4	<44
Combined	< 0.9	2.9 ±0.5 ±0.6	7.3 ±0.7 ±0.6

Observe significant signal for $\psi'' \rightarrow \gamma \chi_{c0,1}$ and set a 90% C.L. upper limit for $\gamma \chi_{c2}$.

Interpretation of X(3872)

$$\frac{\Gamma(\psi" \to \gamma \chi_{c1})}{\Gamma(\psi" \to \pi^{+}\pi^{-} J/\psi)} = 1.56 \pm 0.37 \pm 0.37$$
PRL 96 082004 (2006)

$$\frac{\Gamma(\psi_{2} \rightarrow \gamma \chi_{c1})}{\Gamma(\psi_{2} \rightarrow \pi^{+} \pi^{-} J/\psi)} \approx (2-3.5) \times \frac{\Gamma(\psi^{"} \rightarrow \gamma \chi_{c1})}{\Gamma(\psi^{"} \rightarrow \pi^{+} \pi^{-} J/\psi)} > 2 \times 1.8$$
$$\frac{\Gamma(\mathbf{X}(3872) \rightarrow \gamma \chi_{c1})}{\Gamma(\mathbf{X}(3872) \rightarrow \pi^{+} \pi^{-} J/\psi)} < 0.9 \text{ Belle}$$

Nature of $\psi(3770)$

- Theoretically
 - $\Gamma_{\rm J} = \frac{4}{3}e^2 \alpha E_{\gamma}^3 C_{\rm J} |\langle 1^3 D_1 | r | 1^3 P_{\rm J} \rangle|^2$
- Non-relativistically $\langle 1^{3}D_{1}|r|1^{3}P_{J}\rangle$ is J independent
 - we can cancel it by calculating the ratios of widths
- J-dependence:
 - $C_J = 2/9$, 1/6 and 1/90 for $1^3D_1 \rightarrow 1^3P_J$ J=0, 1 and 2
 - Measured E_{γ}
- Thus in non-relativistic limit expect:
 - $\Gamma_0 \ / \ \Gamma_1$ = 3.2 and $\Gamma_0 \ / \ \Gamma_2 \ \text{~~85}$
- Measured:
 - Γ_0 / Γ_1 = 2.5 ± 0.6 and Γ_0 / Γ_2 >8

Evidence that $\psi^{\prime\prime}$ is predominantly 1^3D_1 state

Beyond the naïve theory

	$\Gamma(\psi " \rightarrow \gamma \chi_{cJ})$ (keV)		
	J=2	J=1	J=0
CLEO-c data	< 20	70 ±17	172 ±30
Rosner (non-relativistic)	24 ±4	73 ±9	523 ±12
Ding-Qin-Chao			
Non-relativistic	3.6	95	312
Relativistic	3.0	72	199
Eichten-Lane-Quigg			
Non-relativistic	3.2	183	254
Coupled-channel corrections	3.9	59	225
Barnes-Godfrey-Swanson			
Non-relativistic	4.9	125	403
Relativistic	3.3	77	213

 Relativistic/coupled-channel corrections in potential model calculations are important for agreement with the data

Decay width for $\psi(2S)$

	$\Gamma(\psi' \rightarrow \gamma \chi_{cJ})$ (keV)		
	J=2	J=1	J=0
CLEO data	27 ±4	27 ±3	27 ±3
Rosner (non-relativistic)	35 ±1	75 ±3	26 ±6
Ding-Qin-Chao Non-relativistic Relativistic	42 25	36 28	25 22
Eichten-Lane-Quigg Non-relativistic Coupled-channel corrections	23 23	33 32	36 38
Barnes-Godfrey-Swanson Non-relativistic Relativistic	38 24	54 29	63 26

- Corrections needed in potential model calculations for agreement with the data of $\psi(\text{2S})$ as well

Conclusions

- We have observed $\psi \,'' \to \gamma \chi_{c0,1}$ for the first time:
 - $\gamma\gamma$ II results published in PRL 96, 182002 (2006)
 - results for hadronic in PR D, Rapid Communications (hep-ex/0605070)
- In view of our results the 1³D₂ interpretation of X(3872) can be ruled out
- Spin dependence of the observed rates confirms that $\psi(\text{3770})$ is predominantly 1^3D_1 state
- Relativistic or couple channel effects are needed for quantitative agreement between potential model calculations and the data

BACK UP

K-f Effect

- 0-ggll
 - DATA: 128.85 5.629
 - w/ k-fit: 128.93 5.337
 - w/o: 127.57 7.082
- 1-4pi
 - DATA: 127.57 5.245 fixed to MC
 - w/ k-fit w/ k-fit: 126.94 4.969 1.224
 - w/o: 127.11 6.186 0.945
- 2-2k2pi
 - DATA: 128.45 5.422 fixed to MC
 - w/ k-fit w/ k-fit: 126.83 4.835 1.265
 - w/o: 126.95 6.339 1.009
- 3-6pi
 - DATA: 127.94 5.172 fixed to MC
 - w/ k-fit w/ k-fit: 126.91 4.966 1.201
 - w/o: 127.13 6.263 0.932
- 4-2k
 - DATA: 127.54 4.851 fixed to MC
 - w/ k-fit w/ k-fit: 126.87 4.570 1.220
 - w/o: 126.93 6.305 0.986

2S1-1D1 mixing

The measured rate for J=0 is much larger than for J=1 (which in turn is larger than J=2).

- Confirming naı̈ve prediction $BR_0 BR_1 BR_2$
- Confirming D state

Insensitive to mixing

- Mixing needed to explain large cross-section of ψ(3770) in e⁺e⁻ experiment
- Effects of mixing on the rates are small
- Can be explored more with better measurement of J=2

General

- mDD*=3871.2 MeV (neutral), 3879.3 MeV (charged)
- mDD= 3729.0 MeV (neutral), 3738.0 MeV (charged)
- Eqn's of k-fit
 - Pcm=Pl+ + Pl- + Pg1 + pg2
 - Pcm=Ph+ + Ph- + Pg
- ISR background

$$N_{\text{events}}^{(\psi' \text{ in } \psi'' \text{ from ISR})} = B_{(\psi' \rightarrow \text{final state})} \times \varepsilon_{(\psi'' \rightarrow \text{final state})} \times L_{\psi''} \times \Gamma_{ee}(\psi') \times I(s)$$

$$= \frac{N_{\text{events}}}{N_{\psi'} \times \varepsilon_{(\psi' \rightarrow \text{final state})}} \times \varepsilon_{(\psi'' \rightarrow \text{final state})} \times L_{\psi''} \times \Gamma_{ee}(\psi') \times I(s)$$

$$I(s) = \int_{0}^{x} W(s, x), b(s'(x)) F_{X}(s'(x)) dx$$

$$F(s') = (E_{y}^{ISR}(s')/E_{y}^{ISR}(M_{R}^{2}))^{3}$$