
String Compactification with magnetic fluxes

In this talk — we discuss how — by turning on gauge fluxes

— which couple to the endpoints of open strings

one can obtain stabilization of – closed string moduli

This is done by analyzing — supersymmetry constraints – and — RR tadpole
conditions

– stabilization of complex and Kahler moduli — studied in a T 6/Z2 orientifold

based on work with – I. Antoniadis and T. Maillard, hep-th/0505260.

also, with S. Mukhopadhyay and K. Ray (in preparation)

to elaborate – D3-branes normally used – in this compactification – replaced
by D9’s – with magnetic fluxes along six compactified directions

we show – this is a consistent compactification – in the process the moduli
are fixed.
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Plan

short introduction

Analyze Supersymmetry of the brane – on magnetized tori – in some detail

Present solutions of the supersymmetry conditions

Discuss tadpole cancellation conditions

some explicit models
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a short introduction

Discussions on moduli stabilization in IIB string theory –
one generally uses — closed string 3-form fluxes – along the six
compactified directions.

The fluxes generate a potential in four dimensions — a potential for the
geocentric moduli —-as well as the axion-dilaton fields —- and lead to their
stabilization – upon minimization

In the implementation process – there are restrictions:

The primitivity condition – J ∧G = 0 : (J – Kahler form, G: (imaginary
self-dual (2, 1) - form flux) – can fix some of the Kahler moduli as well – but
never all.

In fact – this condition is trivial for CY’s

In the present talk – we discuss a different procedure for stabilizing the
moduli

This is achieved – by turning on fluxes of the worldvolume gauge fields on
the brane

and demanding that the magnetic field that is turned on preserves N = 1
supersymmetry after compactification to four dimensions.
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magnetic field

Another reason – D-branes with fluxes – generally introduced – is to obtain
stabilized models – with chiral fermions

The spectrum – Landau energy levels – harmonic oscillator term + a term
proportional to spin – (oscillator frequency given by the magnetic field) –

interplay between the two terms leaves one chirality of fermion massless, —
the other becomes massive – but pairs up with the opposite chirality from a
massive level (process repeats at all levels).

In string theory – work of Bachas, 1995, Blumenhagen, Gorlich, Kors, Lust:
2000, Blumehagen, Lust and Taylor: 2003, Cascalas and Uranga: 2003 etc.

known that – by turning on constant fluxes - one generates
non-commutativity – such magnetized tori – also known as –noncommutative
tori

Now – start discussion of supersymmetry property of the magnetized branes.
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Part-I: Supersymmetry

Start with the string action. The worldsheet action, in NSR formulation is
given by:

S = I0 + I1 + I2(1)

I0 = − 1

4πα′

Z

dτ

Z π

0

dσ
`

∂aX
µ∂aXµ − iψ̄µρa∂aψµ

´

(2)

I1 = −
Z

dτ

„

qLFij [X
i∂τX

j − i

2
ψ̄iρ0ψj ]

«

σ=0

(3)

I2 = −
Z

dτ

„

qRFij [X
i∂τX

j − i

2
ψ̄iρ0ψj ]

«

σ=π

(4)

ρa: Dirac matrices on the worldsheet, one also sets: α′ = 1
2
. Also:

i, j = 4, 5, ..., 9
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D-brane supersymmetry

discussion on supersymmetry below following:
Berkooz, Douglas, Leigh 1996, Balasubramanian, Leigh 1996, Witten 2000,
Marino, Minnasian, Moore, Strominger 1999

Now we start to discuss the supersymmetry of D-branes. For a
non-magnetized Dp-brane, the supersymmetry conditions are:
εL = Γ0Γ1...ΓpεR
where εL and εR are two spinors, both of +ve chirality in ten-dimensions –
one coming from the left-sector of string theory and another from the right
sector

Next question — what is the supersymmetry preserved by a magnetized
Dp-brane.

First consider fluxes turned on along T 2 only

On a two dimensional torus Fij has only a single nonzero component
identified with Fij = Hεij

To understand supersymmetry — we study the boundary conditions

For worldsheet fermions ψ, we recall, before the magnetic field – turned on
ψL = ψR|σ=0.
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spinor transformation

However — now one has – by defining b = πqLH:
ψR = 1+ib

1−ib
ψL|σ=0

then by using the relation: b = tanθ – one obtains
ψR = e2iθψL|
or in real notation the boundary condition of worldsheet fermions changes to:
ψ4

R = cos2θψ4
L − sin2θψ5

L|
ψ5

R = cos2θψ5
L − sin2θψ4

L|
In other words, there is a rotation in the left-sector in directions ψ4

L and ψ5
L,

with respect to the non-magnetized case.

simply note that for the rotation of vectors by an angle 2θ, as above, in
X4 −X5 space – spinors transformation by:

εL → eθγ45

εL
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supersymmetry of the brane

As a result, in general the D-brane supersymmetry condition now has a form
εL = Γ0Γ1...Γpρ(F )εR
with ρ(F ) giving the rotation of the spinors.

For magnetic fields which can be of block diagonal form along three T 2’s of

the compactified six dimensional space, we have: ρ ≡ eθ1γ12+θ2γ34+θ3γ56

We will come back to a general form of ρ little later. At the moment – let us
analyze some simple cases.

The question relevant to us: When a magnetized D-brane, say D5, D7 or D9
will have the same supersymmetry as that of the D3 brane.

This is because – we are studying T 6/Z2 orientifold model where we
necessarily have the O3 planes – having same susy property – as D3’s.

first example (D5-D3): without magnetic field
Susy of the D3: εL = Γ0...Γ3εR
susy of D5: εL = Γ0...Γ5εR

Both can be consistent only if Γ4Γ5εR = εR

This is not possible as Γ45 has only imaginary eigen values. In this case, the
situation does not change much in the presence of magnetic field
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D3-D5/D3-D7

In the case of magnetic field – condition translates into;

Γ45.eθΓ45

– having e.values ±1

for this to happen, θ = ± π
2

However from the relation b = tanθ – we learn that —this corresponds to
infinite magnetic field.

In other words the range of θ is restricted from −π/2 < θ < π/2

On the other hand — it is possible for a magnetized D7 to preserve the same
supersymmetry — as that of an ordinary D3

for this to happen – we obtain a condition – exactly in the same way :
±θ1 ± θ2 = 0

where θ1 and θ2 – the spinor rotations – associated with magnetic fields — in
directions, x4, x5 and x6, x7, the directions that are — transverse to the D3,
but are —the longitudinal directions of D7.

Note also the relation: bi = tanθi between the magnetic field and the spinor
rotation angle θ
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self-duality

This implies – for a D7 compactification on T 4 – the magnetic fields have to
satisfy a relation

b1 = ±b2,

or written in a covariant notation:

Fij = ±εijklFkl

In other words, the magnetic fields are either self-dual or anti-self dual –
instanton configurations in 4d (Euclidean gauge theory).

This equation – written in a complex coordinate: zi = xi + iyi, i = 1, 2

a notation we will use below, by identifying directions x4, x6, x8 with xi’s and
directions x5, x7, x9 with yi’s (for i = 1, 2, 3).

In this complex notation: the self-duality condition becomes

F(2,0) = 0

for T 6 – we have a similar equation – which we will use for the moduli
stabilization.

. – p.10/32



D9 on T
6

This is the case which will be of most interest to us, — as mentioned

Let us review the situation again, starting with the non-magnetized case. —
We have the D3 brane supersymmetry:
εL = Γ0Γ1...Γ3εR

and the D9-brane supersymmetry: εL = Γ0Γ1...Γ9εR

For both of these to be consistent, one will have to have: Γ4...Γ9εR = εR
which is not possible, as Γ4...Γ9 has only imaginary eigen value.

So, no D9 can be put together with D3 to produce a supersymmetric system.

D9 on T 6 with magnetic field

The situation changes when magnetic fields are turned on along the
compactified directions of D9

As a result, the supersymmetry condition now becomes

Γ4...Γ9e
θ1Γ45+θ2Γ67+θ3Γ89

εR = εR

and leads to the condition: ±θ1 ± θ2 ± θ3 = π
2

where – of course – we have turned on magnetic field components only
along three factorized T 2’s.
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spinor rotation matrix

We now obtain supersymmetry condition – for a general (constant) magnetic
flux on T 6. – For this we write down the spinor rotation matrix for a general
background metric and gauge flux

First – restricting to the – internal six dimensional space – with a metric
gij = δij – we can write –
ρ(F ) = 1√

det(1+F )
EXP.

ˆ

− 1
2
FijΓ

ij
˜

where notation: ‘Exp.’ – stands for an exponential expansion – with complete
antisymmetrization – in indices of Fij . As a result, the expansion is always
finite.

Now we discuss the general situation with the D9 branes. The condition we
analyze is:

Γ4..9 1
p

det(1 + F )
EXP (−1

2
FijΓ

ij)εR = εR(5)

also for general G – we make a change –
1√

det(1+F )
→

√
detG√

det(G+F )
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covariant form

The supersymmetry is written as:

1
p

det(1 + F )
Γ4..9

„

1 − FijΓ
ij +

1

2
F[ijFkl]Γ

ijkl−

1

3!
F[ijFklFmn] Γijklmn

”

εR = εR(6)

Moreover, this eqn. can be written in a covariant form (not keepng track of
factors) as:

√
detG

p

det(1 + F )

„

εijklmnΓijklmn + εijklmnFijΓ
klmn +

1

2
εijklmnF[ijFkl]Γ

mn+

1

3!
εijklmnF[ijFklFmn] Γijklmn

”

εR = εR(7)

Then using property of spinors: Γmn̄ε = iJmn̄ε etc., (with J : Kahler form)
where ε is the covariantly constant spinor on the particular space one is
talking about. In our case they are εL and εR, or more precisely their
decompositions in terms of a 4d and a 6d spinor.
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constraint on Kahler moduli

One obtains:

√
detG

p

det(G+ F )
[−iJ ∧ J ∧ J − J ∧ J ∧ F + iJ ∧ F ∧ F+

F ∧ F ∧ F ] = V6(8)

where V6 is the six dimensional volume element. It comes in the process of
changing the equation in components to that in terms of Kahler form.

in writing this form – a number of terms are dropped – only Fij̄ (in complex
notation) – are kept. This amounts to using – (a condition mentioned earlier):

F(2,0) = 0(9)

In a compact form one finally writes:

(iJ + F )3 = eiθ

p

(G+ F )√
detG

V6(10)
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supersymmetry: final form

for us: θ = 0, corresponding to D3 brane supersymmetry. on the other hand:
θ = π

2
if one wants a D9 brane supersymmetry.

These two cases will correspond to IIB on T 6/Ω(−)FLR, with
R : (X5, .., X9) → −(X5, .., X9) or IIB/Ω on T 6

one can similarly analyze other situations. Condition we have derived – can
also be written as:

e−iθ(iJ + F )3 =

p

(G+ F )√
detG

V6(11)

which further implies, (since RHS is a real quantity):
Im[e−iθ(iJ + F )3] = 0

In our case, as θ = 0, we therefore have:
J ∧ J ∧ J − J ∧ F ∧ F = 0

the real part of the above condition:

Re[e−iθ(iJ + F )3] =

p

(G+ F )√
detG

V6(12)
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positivity

which also implies:

Z

Re[e−iθ(iJ + F )3] =

Z

p

(G+ F )(13)

can also be verified. We have already done this for the 2 × 2 case.

Now since BI action:

VDBI =
µ9

gs

Z

M10

p

(G+ F ) =
µ9

gs

Z

T6

p

(G+ F )

Z

M4

√
g

=
µ9

gs

Z

T6

Re[e−iθ(iJ + F )3]

Z

M4

√
g

(14)

This implies a condition:

Re[e−iθ(iJ + F )3] > 0(15)
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positivity

condition can be seen from the requirement of the right sign for KE of the 4d
gauge field. For θ = 0 we then obtain:

F ∧ F ∧ F − J ∧ J ∧ F > 0(16)

summary: part-I
To summarize: the key supersymmetry conditions for us are:

F(2,0) = 0(17)

J ∧ J ∧ J − J ∧ F ∧ F = 0(18)

F ∧ F ∧ F − J ∧ J ∧ F > 0(19)

Above discussion: following Marino, Minasian, Moore, Strominger:
hep-th/0011206
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Part-II

1. Fixing Complex Structure Moduli

Ref: hep-th/0505260;
earlier work: Antoniadis and Maillard: hep-th/0412008 (for type I on T 6).

We now show how the condition: F a
(2,0) = 0, for a set of brane-stacks –

denoted by index a – fixes the complex structure moduli

For this, – first we introduce a set of brane-stacks which have fluxes of
various types – meaning – having different components of F turned on, –
with different magnitues.

The brane-stacks are being labeled by an index ‘a’

The complex structure matrix (in this case a 3 × 3 matrix), appears in this
condition through the definition zi = xi + τyi,
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torus : T
6

the six dimensional torus of for us will be defined by periodic coordinates xi,
yi (i = 1, 2, 3): xi = xi + 1, yi = yi + 1.

the orientation defined by:
R

dx1 ∧ dy1 ∧ dx2 ∧ dy2 ∧ dx3 ∧ dy3 = 1

the complex structure can be defined by choosing complex coordinate:
zi = xi + τ ijyj , with τ ij being 3 × 3 complex matrix —- implying 9 complex
components.
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torus – contd.

one can also define a basis for cohomology H3(T 6, Z), with a symplectic
structure: α0, αij , β0, βij : (i, j = 1, 2, 3) with: αo = dx1 ∧ dx2 ∧ dx3 etc.
R

T6 αA ∧ βB = −δB
A .

Furthermore H3(T 6, Z) can be decomposed into (3, 0), (2, 1), (1, 2) and (0,
3) forms. In this decomposition, ω = dz1 ∧ z2 ∧ dz3 is the unique (3, 0) form.

The complex structure τ is then also identified as a period of Ω and can be
identified from a relation:
Ω = τaαa − Gbβ

b

in our case, we again get their identification with τ ij ’s.

complex structure and Kahler moduli – also parameterized by the set of (2, 1)

(δgij) and (1, 1) (δgij̄) deformations of the metric. In particular, Kahler forms
J are given as:
J = iδgij̄dz

i ∧ z̄j
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fixing τ
ij’s

F(2,0) = 0 are now used to fix τ ij ’s.

In addition we also use the fact that flux components F a
xixj , F a

yiyj , F a
xiyj are

rationally quantized:

qaF
a
ij ≡ 2πpa

ij = 2π
ma

ij

na
ij

precise form of na
ij – will be clear later on – using the mapping between the

worldvol. to space-time.

Using the definition of pa’s given here, the complex structure matrix, τ
satisfies the equation:

F a
(2,0) = 0 → τT pa

xxτ − τT pa
xy − pa

yxτ + pa
yy = 0,(20)

Then by specifying pa
xx, pa

xy etc., for set of branes, one aims to fix τ ’s.
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fixing τ ’s

one can show that the off-diagonal components of τ can be forced to be
zero, by taking appropriate fluxes pxiyj , pxixj etc.along various brane-stacks:

τ12 = τ13 = τ21 = τ23 = τ31 = τ32 = 0 .(21)

For diagonal components of τ one can obtain:

τ11

τ22
=
p1

x2y1

p1
x1y2

≡ K1,
τ22

τ33
=
p2

x3y2

p2
x2y3

≡ K2,
τ33

τ11
=
p3

x1y3

p3
x3y1

≡ K3,(22)

and

τ11τ22 = −
p4

y1y2

p4
x1x2

≡ −K4, τ22τ33 = −
p5

y2y3

p5
x2x3

≡ −K5, τ33τ11 = −
p6

y3y1

p6
x3x1

≡ −K6.

(23)

with solution given as:

τ11 = i
√
K1K4, τ22 = i

r

K4

K1
, τ33 = i

√
K1K4K3.(24)
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contd.

We therefore see that by specifying fluxes, pa’s along a set of brane - stacks,
one can fix the complex structure moduli.

To stabilize the Kahler moduli one makes use of the conditions:

J ∧ J ∧ J − J ∧ F a ∧ F a = 0(25)

with the constraint:

F a ∧ F a ∧ F a − J ∧ J ∧ F a > 0(26)

where a is denoting the brane-stack.

Without going into detail, we mention that by specifying fluxes, as mentioned
above for the complex-structure stabilization

One can obtain solution for J ’s: the off-diagonal Kahler moduli are
zero:Jij̄ = 0 and

Diagonal components of Jij̄ are stabilized to the string scale

This is possible for many combination of fluxes and branes.

However, one needs to satisfy an additional constraint for building any model.
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Part-III: RR Tadpoles

Before giving explicit model we discuss the RR-tadpole cancellations

Constant fluxes generate RR charges, corresponding to lower dimensional
branes. Cancellation of all these charges - implies the worldvolume theory
free of anomaly.

The amount of charge that is generated can be seen by looking at the WZ
couplings of the brane. The total action is given by

I = VDBI + VWZ(27)

We have already looked at VDBI . VWZ has a general form (using that RR
forms are even or odd under the orientifolding Ω(−)FL ):

VWZ = µ9

X

a

Na

Z

M10

(C4 ∧ F a ∧ F a ∧ F a + C8 ∧ F a)(28)

Na’s are the number of branes in a stack with fluxes F a
ij .

implies new contributions to the 3-brane and 7-brane tadpoles.
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tadpole

Using – Jacobi matrix – giving map from the worldvolume – to space-time

(Bianchi and Trevigne, 2005): W i
A = ∂Xi

∂σA

The tadpole cancellation conditions are read from:

X

a

NaWaF
a ∧ F a ∧ F a +N = 16(29)

and
X

a

NaWaF
a = 0(30)

where N is the number of ordinary D3-branes which one can also put to
cancel the 3-brane tadpole and Wa = detW , Na: no. branes in a’th stack.
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tadpole-contd.

We choose the matrix W i
A to be diagonal:

W = diag.(n1, n2, n3;n1, n2, n3)(31)

where the first three directions correspond to the x directions and the last
three to the y directions.

toy model

We work with stacks, 1, 1’. 2, 2’.

1’, 2’ defined as: off-diagonal component of fluxes are of opposite sign w.r.t.
the branes: 1, 2.

As a result there are no 7-brane off-diagonal tadpoles left. the diagonal one:
computed below

We make the following choices for brane-1 for ni’s:

n
(1)
1 = 2, n

(1)
2 = 1, n

(1)
3 = 3, m

(1)
23 = 1, m

(1)

x3y3 = 1(32)

for brane 1’, the sign of the off-diagonal mij is opposite. For brane-2 we
have:

n
(2)
1 = 1, n

(2)
2 = 2, n

(2)
3 = 1, m

(2)
13 = 1, m

(2)
12 = 1, m

(2)

x3y3 = −1(33) . – p.26/32



tadpole-contd.

they correspond to flux:

p
(1)
23 =

1

3
, p

(2)
12 =

1

2
, p

(2)
13 = 1(34)

7-brane tadpole contributions are:

(q7)
(1)

x3y3 + (q7)
(1′)

x3y3 = 2(n
(1)
1 n

(1)
2 )

2
m

(1)

x3y3(35)

(q7)
(2)

x3y3 + (q7)
(2′)

x3y3 = 2(n
(2)
1 n

(2)
2 )

2
m

(2)

x3y3(36)

We now write down the 3-brane tadpole contribution. First, it is zero for the
stacks 1 and 1’. For the stack-2 on the other hand, using the diagonal form of
W we get:
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tadpole-contd.

(q3)
(3)

= −W3p
(3)
3 (p

(3)
12 )

2

= −(m
(3)
12 )

2
m

(3)

x3y3(37)

where we have used relations such as:

p12 =
m12

n1n2
(38)

Then using the above results in the 7-brane tadpoles above, we obtain:

(q7)
tot

x3y3 = 8(m(2)
x3y3 +m(3)

x3y3) = 0(39)

Also: for the total 3-brane tadpole:

(q3)
tot

x3y3 = −2.(−1)(m
(3)
12 )

2
= 2(40)

we have therefore shown that using branes 1, 1’, 2, 2’ one can obtain a
consistent model with all the 7-brane tadpoles cancelled and 3-brane tadpole
= 2. . – p.28/32



comments

However, this model corresponds to the case – when one of the diagonal J :
Jx2y2 is negative.

We then – turn on antisymmetric tensor B: — their values are constrained to
be 0 or 1

2

We choose: Bx1x2 = By1y2 = 1
2

— and show; G+B is positive definite —
implying a well-defined worldsheet theory

3-brane tadpoles are to be saturated to 4 rather than 16 (due to the presence
of – exotic orientifold planes)

The model satisfies this condition —

Several explicit models along this line – constructed with partial moduli
stabilizations
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contd.

It is difficult to obtain stabilization in T 6/Z2 orientifold model without B – as
generated 7-brane tadpoles are to cancel among themselves.– consistent
with supersymmetry and other requirements — however, no no-go theorem
yet.

In another work in progress, with S. Mukhopadhyay and K. Ray (in progress)
– we used non-abelian gauge fluxes

it seems possible to solve supersymmetry and tadpole cancellation
conditions to get all (diagonal) J ’s positive.
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other issues

RR Moduli: There are 15 RR moduli, 9 of them complexify the Kahler forms
to form the chiral multiplet in four dimensions. they are all absorbed by 9
gauge bosons on the branes, as one fixes the Kahler moduli. The remaining
6 RR moduli, together with 6 complex components of the metric, form the
complex structure τ which has nine components – and get fixed by the
mechanism mentioned.

large radius: The solution obtained above: all the radii are fixed at the string
scale, — as identified in this solution – due to the factorized form – of the
solution in products of three T 2’s: τii are given by the ratio of the radii and Ji

by the product.

however – possible to obtain solution with large radii, by scaling the windings
ni while maintaining the tadpole conditions.

axion-dilaton moduli

Unlike the stabilization using 3-form fluxes, the axion-dilaton modulus does
not appear – when using magnetic fluxes on D-branes

not surprising – since the string construction and action we are using, does
not allow φ to vary.
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final

One way to stabilize them – combine this mechanism with the one using
close string fluxes

However, possible(?) to generalize the Dp-Dp’ system to the one involving
the (p, q) - branes which carry SL(2, Z) S-duality charge – and get
constraints on them??
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