String Compactification with magnetic fluxes

- In this talk - we discuss how - by turning on gauge fluxes
- - which couple to the endpoints of open strings
- one can obtain stabilization of - closed string moduli
- This is done by analyzing - supersymmetry constraints - and — RR tadpole conditions
- - stabilization of complex and Kahler moduli — studied in a T^{6} / Z_{2} orientifold
- based on work with - I. Antoniadis and T. Maillard, hep-th/0505260.
- also, with S. Mukhopadhyay and K. Ray (in preparation)
- to elaborate - $D 3$-branes normally used - in this compactification - replaced by $D 9$'s - with magnetic fluxes along six compactified directions
- we show - this is a consistent compactification - in the process the moduli are fixed.

Plan

- short introduction
- Analyze Supersymmetry of the brane - on magnetized tori - in some detail
- Present solutions of the supersymmetry conditions
- Discuss tadpole cancellation conditions
- some explicit models

a short introduction

- Discussions on moduli stabilization in IIB string theory one generally uses - closed string 3 -form fluxes - along the six compactified directions.
- The fluxes generate a potential in four dimensions - a potential for the geocentric moduli --as well as the axion-dilaton fields - and lead to their stabilization - upon minimization
- In the implementation process - there are restrictions:
- The primitivity condition $-J \wedge G=0:(J$ - Kahler form, G: (imaginary self-dual $(2,1)$ - form flux) - can fix some of the Kahler moduli as well - but never all.
- In fact - this condition is trivial for CY's
- In the present talk - we discuss a different procedure for stabilizing the moduli
- This is achieved - by turning on fluxes of the worldvolume gauge fields on the brane
- and demanding that the magnetic field that is turned on preserves $N=1$ supersymmetry after compactification to four dimensions.

magnetic field

- Another reason - D-branes with fluxes - generally introduced - is to obtain stabilized models - with chiral fermions
- The spectrum - Landau energy levels - harmonic oscillator term + a term proportional to spin - (oscillator frequency given by the magnetic field) -
- interplay between the two terms leaves one chirality of fermion massless, the other becomes massive - but pairs up with the opposite chirality from a massive level (process repeats at all levels).
- In string theory - work of Bachas, 1995, Blumenhagen, Gorlich, Kors, Lust: 2000, Blumehagen, Lust and Taylor: 2003, Cascalas and Uranga: 2003 etc.
- known that - by turning on constant fluxes - one generates non-commutativity - such magnetized tori - also known as -noncommutative tori
- Now - start discussion of supersymmetry property of the magnetized branes.

Part-I: Supersymmetry

- Start with the string action. The worldsheet action, in NSR formulation is given by:

$$
\begin{equation*}
S=I_{0}+I_{1}+I_{2} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
I_{0}=-\frac{1}{4 \pi \alpha^{\prime}} \int d \tau \int_{0}^{\pi} d \sigma\left(\partial_{a} X^{\mu} \partial^{a} X_{\mu}-i \bar{\psi}^{\mu} \rho^{a} \partial_{a} \psi_{\mu}\right) \tag{2}
\end{equation*}
$$

$$
\begin{align*}
& I_{1}=-\int d \tau\left(q_{L} F_{i j}\left[X^{i} \partial_{\tau} X^{j}-\frac{i}{2} \bar{\psi}^{i} \rho^{0} \psi_{j}\right]\right)_{\sigma=0} \tag{3}\\
& I_{2}=-\int d \tau\left(q_{R} F_{i j}\left[X^{i} \partial_{\tau} X^{j}-\frac{i}{2} \bar{\psi}^{i} \rho^{0} \psi_{j}\right]\right)_{\sigma=\pi}
\end{align*}
$$

- ρ^{a} : Dirac matrices on the worldsheet, one also sets: $\alpha^{\prime}=\frac{1}{2}$. Also:
$i, j=4,5, \ldots, 9$

D-brane supersymmetry

- discussion on supersymmetry below following: Berkooz, Douglas, Leigh 1996, Balasubramanian, Leigh 1996, Witten 2000, Marino, Minnasian, Moore, Strominger 1999
- Now we start to discuss the supersymmetry of D-branes. For a non-magnetized Dp-brane, the supersymmetry conditions are:
$\epsilon_{L}=\Gamma_{0} \Gamma_{1} \ldots \Gamma_{p} \epsilon_{R}$
where ϵ_{L} and ϵ_{R} are two spinors, both of +ve chirality in ten-dimensions one coming from the left-sector of string theory and another from the right sector
- Next question - what is the supersymmetry preserved by a magnetized Dp-brane.
- First consider fluxes turned on along T^{2} only
- On a two dimensional torus $F_{i j}$ has only a single nonzero component identified with $F_{i j}=H \epsilon_{i j}$
- To understand supersymmetry - we study the boundary conditions
- For worldsheet fermions ψ, we recall, before the magnetic field - turned on $\psi_{L}=\left.\psi_{R}\right|_{\sigma=0}$.

spinor transformation

- However - now one has - by defining $b=\pi q_{L} H$:
$\psi_{R}=\left.\frac{1+i b}{1-i b} \psi_{L}\right|_{\sigma=0}$
- then by using the relation: $b=\tan \theta-$ one obtains
$\psi_{R}=e^{2 i \theta} \psi_{L}$
- or in real notation the boundary condition of worldsheet fermions changes to:
$\psi_{R}^{4}=\cos 2 \theta \psi_{L}^{4}-\sin 2 \theta \psi_{L}^{5} \mid$
$\psi_{R}^{5}=\cos 2 \theta \psi_{L}^{5}-\sin 2 \theta \psi_{L}^{4} \mid$
- In other words, there is a rotation in the left-sector in directions ψ_{L}^{4} and ψ_{L}^{5}, with respect to the non-magnetized case.
- simply note that for the rotation of vectors by an angle 2θ, as above, in $X^{4}-X^{5}$ space - spinors transformation by:
$\epsilon_{L} \rightarrow e^{\theta \gamma^{45}} \epsilon_{L}$

supersymmetry of the brane

- As a result, in general the D-brane supersymmetry condition now has a form $\epsilon_{L}=\Gamma_{0} \Gamma_{1} \ldots \Gamma_{p} \rho(F) \epsilon_{R}$ with $\rho(F)$ giving the rotation of the spinors.
- For magnetic fields which can be of block diagonal form along three T^{2},s of the compactified six dimensional space, we have: $\rho \equiv e^{\theta_{1} \gamma^{12}+\theta_{2} \gamma^{34}+\theta_{3} \gamma^{56}}$
- We will come back to a general form of ρ little later. At the moment - let us analyze some simple cases.
- The question relevant to us: When a magnetized D-brane, say $D 5, D 7$ or $D 9$ will have the same supersymmetry as that of the $D 3$ brane.
- This is because - we are studying T^{6} / Z_{2} orientifold model where we necessarily have the $O 3$ planes - having same susy property - as D3's.
- first example (D5-D3): without magnetic field Susy of the D3: $\epsilon_{L}=\Gamma_{0} \ldots \Gamma_{3} \epsilon_{R}$ susy of $D 5$: $\epsilon_{L}=\Gamma_{0} \ldots \Gamma_{5} \epsilon_{R}$
- Both can be consistent only if $\Gamma_{4} \Gamma_{5} \epsilon_{R}=\epsilon_{R}$
- This is not possible as Γ_{45} has only imaginary eigen values. In this case, the situation does not change much in the presence of magnetic field

D3-D5/D3-D7

- In the case of magnetic field - condition translates into;
- $\Gamma^{45} \cdot e^{\theta \Gamma^{45}}$ - having e.values ± 1
- for this to happen, $\theta= \pm \frac{\pi}{2}$
- However from the relation $b=\tan \theta$ - we learn that -this corresponds to infinite magnetic field.
- In other words the range of θ is restricted from $-\pi / 2<\theta<\pi / 2$
- On the other hand - it is possible for a magnetized $D 7$ to preserve the same supersymmetry - as that of an ordinary D3
- for this to happen - we obtain a condition - exactly in the same way : $\pm \theta_{1} \pm \theta_{2}=0$
- where θ_{1} and θ_{2} - the spinor rotations - associated with magnetic fields - in directions, x^{4}, x^{5} and x^{6}, x^{7}, the directions that are - transverse to the $D 3$, but are -the longitudinal directions of $D 7$.
- Note also the relation: $b_{i}=\tan \theta_{i}$ between the magnetic field and the spinor rotation angle θ

self-duality

- This implies - for a $D 7$ compactification on T^{4} - the magnetic fields have to satisfy a relation
- $b_{1}= \pm b_{2}$,
- or written in a covariant notation:
- $F_{i j}= \pm \epsilon_{i j k l} F_{k l}$
- In other words, the magnetic fields are either self-dual or anti-self dual instanton configurations in 4d (Euclidean gauge theory).
- This equation - written in a complex coordinate: $z^{i}=x^{i}+i y^{i}, i=1,2$
- a notation we will use below, by identifying directions x^{4}, x^{6}, x^{8} with x^{i} 's and directions x^{5}, x^{7}, x^{9} with y^{i} 's (for $i=1,2,3$).
- In this complex notation: the self-duality condition becomes
- $F_{(2,0)}=0$
- for T^{6} - we have a similar equation - which we will use for the moduli stabilization.

$D 9$ on T^{6}

- This is the case which will be of most interest to us, - as mentioned
- Let us review the situation again, starting with the non-magnetized case. We have the $D 3$ brane supersymmetry: $\epsilon_{L}=\Gamma_{0} \Gamma_{1} \ldots \Gamma_{3} \epsilon_{R}$
- and the $D 9$-brane supersymmetry: $\epsilon_{L}=\Gamma_{0} \Gamma_{1} \ldots \Gamma_{9} \epsilon_{R}$
- For both of these to be consistent, one will have to have: $\Gamma_{4} \ldots \Gamma_{9} \epsilon_{R}=\epsilon_{R}$ which is not possible, as $\Gamma_{4} \ldots \Gamma_{9}$ has only imaginary eigen value.
- So, no $D 9$ can be put together with $D 3$ to produce a supersymmetric system.

$D 9$ on T^{6} with magnetic field

- The situation changes when magnetic fields are turned on along the compactified directions of $D 9$
- As a result, the supersymmetry condition now becomes
$\Gamma_{4} \ldots \Gamma_{9} e^{\theta_{1} \Gamma^{45}+\theta_{2} \Gamma^{67}+\theta_{3} \Gamma^{89}} \epsilon_{R}=\epsilon_{R}$
- and leads to the condition: $\pm \theta_{1} \pm \theta_{2} \pm \theta_{3}=\frac{\pi}{2}$ where - of course - we have turned on magnetic field components only along three factorized T^{2} 's.

spinor rotation matrix

- We now obtain supersymmetry condition - for a general (constant) magnetic flux on T^{6}. - For this we write down the spinor rotation matrix for a general background metric and gauge flux
- First - restricting to the - internal six dimensional space - with a metric $g_{i j}=\delta_{i j}$ - we can write $\rho(F)=\frac{1}{\sqrt{\operatorname{det}(1+F)}} E X P .\left[-\frac{1}{2} F_{i j} \Gamma^{i j}\right]$
- where notation: 'Exp.' - stands for an exponential expansion - with complete antisymmetrization - in indices of $F_{i j}$. As a result, the expansion is always finite.
- Now we discuss the general situation with the $D 9$ branes. The condition we analyze is:

$$
\begin{equation*}
\Gamma^{4.9} \frac{1}{\sqrt{\operatorname{det}(1+F)}} E X P\left(-\frac{1}{2} F_{i j} \Gamma^{i j}\right) \epsilon_{R}=\epsilon_{R} \tag{5}
\end{equation*}
$$

- also for general G - we make a change -

$$
\frac{1}{\sqrt{\operatorname{det}(1+F)}} \rightarrow \frac{\sqrt{\operatorname{det} G}}{\sqrt{\operatorname{det}(G+F)}}
$$

covariant form

- The supersymmetry is written as:

$$
\begin{array}{r}
\frac{1}{\sqrt{\operatorname{det}(1+F)}} \Gamma^{4 . .9}\left(1-F_{i j} \Gamma^{i j}+\frac{1}{2} F_{[i j} F_{k l]} \Gamma^{i j k l}-\right. \\
\left.\frac{1}{3!} F_{[i j} F_{k l} F_{m n]} \Gamma^{i j k l m n}\right) \epsilon_{R}=\epsilon_{R} \tag{6}
\end{array}
$$

- Moreover, this eqn. can be written in a covariant form (not keepng track of factors) as:

$$
\begin{array}{r}
\frac{\sqrt{\operatorname{detG}}}{\sqrt{\operatorname{det}(1+F)}}\left(\epsilon^{i j k l m n} \Gamma^{i j k l m n}+\epsilon^{i j k l m n} F_{i j} \Gamma^{k l m n}+\frac{1}{2} \epsilon^{i j k l m n} F_{[i j} F_{k l]} \Gamma^{m n}+\right. \\
\text { (7) } \left.\quad \frac{1}{3!} \epsilon^{i j k l m n} F_{[i j} F_{k l} F_{m n]} \Gamma^{i j k l m n}\right) \epsilon_{R}=\epsilon_{R} \tag{7}
\end{array}
$$

- Then using property of spinors: $\Gamma_{m \bar{n}} \epsilon=i J_{m \bar{n}} \epsilon$ etc., (with J : Kahler form) where ϵ is the covariantly constant spinor on the particular space one is talking about. In our case they are ϵ_{L} and ϵ_{R}, or more precisely their decompositions in terms of a 4d and a 6d spinor.

constraint on Kahler moduli

- One obtains:

$$
\frac{\sqrt{\operatorname{det} G}}{\sqrt{\operatorname{det}(G+F)}}[-i J \wedge J \wedge J-J \wedge J \wedge F+i J \wedge F \wedge F+
$$

$$
\begin{equation*}
F \wedge F \wedge F]=V_{6} \tag{8}
\end{equation*}
$$

where V_{6} is the six dimensional volume element. It comes in the process of changing the equation in components to that in terms of Kahler form.

- in writing this form - a number of terms are dropped - only $F_{i \bar{j}}$ (in complex notation) - are kept. This amounts to using - (a condition mentioned earlier):

$$
\begin{equation*}
F_{(2,0)}=0 \tag{9}
\end{equation*}
$$

- In a compact form one finally writes:

$$
\begin{equation*}
(i J+F)^{3}=e^{i \theta} \frac{\sqrt{(} G+F)}{\sqrt{\operatorname{det} G}} V_{6} \tag{10}
\end{equation*}
$$

supersymmetry: final form

- for us: $\theta=0$, corresponding to $D 3$ brane supersymmetry. on the other hand: $\theta=\frac{\pi}{2}$ if one wants a $D 9$ brane supersymmetry.
- These two cases will correspond to IIB on $T^{6} / \Omega(-)^{F_{L}} R$, with $R:\left(X^{5}, . ., X^{9}\right) \rightarrow-\left(X^{5}, . ., X^{9}\right)$ or $I I B / \Omega$ on T^{6}
- one can similarly analyze other situations. Condition we have derived - can also be written as:

$$
\begin{equation*}
e^{-i \theta}(i J+F)^{3}=\frac{\sqrt{(} G+F)}{\sqrt{\operatorname{det} G}} V_{6} \tag{11}
\end{equation*}
$$

- which further implies, (since RHS is a real quantity): $\operatorname{Im}\left[e^{-i \theta}(i J+F)^{3}\right]=0$
- In our case, as $\theta=0$, we therefore have:
$J \wedge J \wedge J-J \wedge F \wedge F=0$
- the real part of the above condition:

$$
\begin{equation*}
\operatorname{Re}\left[e^{-i \theta}(i J+F)^{3}\right]=\frac{\sqrt{(} G+F)}{\sqrt{\operatorname{det} G}} V_{6} \tag{12}
\end{equation*}
$$

positivity

- which also implies:

$$
\begin{equation*}
\left.\int \operatorname{Re}\left[e^{-i \theta}(i J+F)^{3}\right]=\int \sqrt{(} G+F\right) \tag{13}
\end{equation*}
$$

can also be verified. We have already done this for the 2×2 case.

- Now since BI action:

$$
\begin{array}{r}
\left.\left.V_{D B I}=\frac{\mu_{9}}{g_{s}} \int_{M_{1} 0} \sqrt{(} G+F\right)=\frac{\mu_{9}}{g_{s}} \int_{T^{6}} \sqrt{(} G+F\right) \int_{M^{4}} \sqrt{g} \\
=\frac{\mu_{9}}{g_{s}} \int_{T^{6}} \operatorname{Re}\left[e^{-i \theta}(i J+F)^{3}\right] \int_{M^{4}} \sqrt{g} \tag{14}
\end{array}
$$

- This implies a condition:

$$
\begin{equation*}
\operatorname{Re}\left[e^{-i \theta}(i J+F)^{3}\right]>0 \tag{15}
\end{equation*}
$$

positivity

- condition can be seen from the requirement of the right sign for KE of the $4 d$ gauge field. For $\theta=0$ we then obtain:

$$
\begin{equation*}
F \wedge F \wedge F-J \wedge J \wedge F>0 \tag{16}
\end{equation*}
$$

summary: part-I

- To summarize: the key supersymmetry conditions for us are:

$$
\begin{gather*}
F_{(2,0)}=0 \tag{17}\\
J \wedge J \wedge J-J \wedge F \wedge F=0 \tag{18}\\
F \wedge F \wedge F-J \wedge J \wedge F>0 \tag{19}
\end{gather*}
$$

- Above discussion: following Marino, Minasian, Moore, Strominger: hep-th/0011206

Part-II

- 1. Fixing Complex Structure Moduli
- Ref: hep-th/0505260; earlier work: Antoniadis and Maillard: hep-th/0412008 (for type I on T^{6}).
- We now show how the condition: $F_{(2,0)}^{a}=0$, for a set of brane-stacks denoted by index a - fixes the complex structure moduli
- For this, - first we introduce a set of brane-stacks which have fluxes of various types - meaning - having different components of F turned on, with different magnitues.
- The brane-stacks are being labeled by an index ' a '
- The complex structure matrix (in this case a 3×3 matrix), appears in this condition through the definition $z^{i}=x^{i}+\tau y^{i}$,

torus : T^{6}

- the six dimensional torus of for us will be defined by periodic coordinates x^{i}, $y_{i}(i=1,2,3): x^{i}=x^{i}+1, y_{i}=y_{i}+1$.
- the orientation defined by:

$$
\int d x^{1} \wedge d y_{1} \wedge d x^{2} \wedge d y_{2} \wedge d x^{3} \wedge d y_{3}=1
$$

- the complex structure can be defined by choosing complex coordinate: $z^{i}=x^{i}+\tau^{i j} y_{j}$, with $\tau^{i j}$ being 3×3 complex matrix --implying 9 complex components.

torus - contd.

- one can also define a basis for cohomology $H^{3}\left(T^{6}, Z\right)$, with a symplectic structure: $\alpha_{0}, \alpha_{i j}, \beta^{0}, \beta^{i j}:(i, j=1,2,3)$ with: $\alpha_{o}=d x^{1} \wedge d x^{2} \wedge d x^{3}$ etc. $\int_{T^{6}} \alpha_{A} \wedge \beta^{B}=-\delta_{A}^{B}$.
- Furthermore $H^{3}\left(T^{6}, Z\right)$ can be decomposed into (3, 0), (2, 1), (1, 2) and (0, 3) forms. In this decomposition, $\omega=d z^{1} \wedge z^{2} \wedge d z^{3}$ is the unique $(3,0)$ form.
- The complex structure τ is then also identified as a period of Ω and can be identified from a relation:
$\Omega=\tau^{a} \alpha_{a}-\mathcal{G}_{b} \beta^{b}$
- in our case, we again get their identification with $\tau^{i j}$'s.
- complex structure and Kahler moduli - also parameterized by the set of $(2,1)$ $\left(\delta g_{i j}\right)$ and $(1,1)\left(\delta g_{i \bar{j}}\right)$ deformations of the metric. In particular, Kahler forms J are given as:
$J=i \delta g_{i \bar{j}} d z^{i} \wedge \bar{z}^{j}$

fixing $\tau^{i j}$, \mathbf{s}

- $F_{(2,0)}=0$ are now used to fix $\tau^{i j}$,s.
- In addition we also use the fact that flux components $F_{x^{i} x^{j}}^{a}, F_{y^{i} y^{j}}^{a}, F_{x^{i} y^{j}}^{a}$ are rationally quantized:
- $q_{a} F_{i j}^{a} \equiv 2 \pi p_{i j}^{a}=2 \pi \frac{m_{i j}^{a}}{n_{i j}^{a}}$
- precise form of $n_{i j}^{a}$ - will be clear later on - using the mapping between the worldvol. to space-time.
- Using the definition of p^{a} 's given here, the complex structure matrix, τ satisfies the equation:

$$
\begin{equation*}
F_{(2,0)}^{a}=0 \rightarrow \tau^{T} p_{x x}^{a} \tau-\tau^{T} p_{x y}^{a}-p_{y x}^{a} \tau+p_{y y}^{a}=0 \tag{20}
\end{equation*}
$$

- Then by specifying $p_{x x}^{a}, p_{x y}^{a}$ etc., for set of branes, one aims to fix τ 's.

fixing τ 's

- one can show that the off-diagonal components of τ can be forced to be zero, by taking appropriate fluxes $p_{x^{i} y^{j}}, p_{x^{i} x^{j}}$ etc.along various brane-stacks:

$$
\begin{equation*}
\tau^{12}=\tau^{13}=\tau^{21}=\tau^{23}=\tau^{31}=\tau^{32}=0 \tag{21}
\end{equation*}
$$

- For diagonal components of τ one can obtain:
(22) $\quad \frac{\tau^{11}}{\tau^{22}}=\frac{p_{x^{2} y^{1}}^{1}}{p_{x^{1} y^{2}}^{1}} \equiv K_{1}, \quad \frac{\tau^{22}}{\tau^{33}}=\frac{p_{x^{3} y^{2}}^{2}}{p_{x^{2} y^{3}}^{2}} \equiv K_{2}, \quad \frac{\tau^{33}}{\tau^{11}}=\frac{p_{x^{1} y^{3}}^{3}}{p_{x^{3} y^{1}}^{3}} \equiv K_{3}$,
and
$\tau^{11} \tau^{22}=-\frac{p_{y^{1} y^{2}}^{4}}{p_{x^{1} x^{2}}^{4}} \equiv-K_{4}, \quad \tau^{22} \tau^{33}=-\frac{p_{y^{2} y^{3}}^{5}}{p_{x^{2} x^{3}}^{5}} \equiv-K_{5}, \quad \tau^{33} \tau^{11}=-\frac{p_{y^{3} y^{1}}^{6}}{p_{x^{3} x^{1}}^{6}} \equiv-K$ (23)
- with solution given as:

$$
\begin{equation*}
\tau^{11}=i \sqrt{K_{1} K_{4}}, \quad \tau^{22}=i \sqrt{\frac{K_{4}}{K_{1}}}, \quad \tau^{33}=i \sqrt{K_{1} K_{4}} K_{3} \tag{24}
\end{equation*}
$$

contd.

- We therefore see that by specifying fluxes, p^{a} 's along a set of brane - stacks, one can fix the complex structure moduli.
- To stabilize the Kahler moduli one makes use of the conditions:

$$
\begin{equation*}
J \wedge J \wedge J-J \wedge F^{a} \wedge F^{a}=0 \tag{25}
\end{equation*}
$$

with the constraint:

$$
\begin{equation*}
F^{a} \wedge F^{a} \wedge F^{a}-J \wedge J \wedge F^{a}>0 \tag{26}
\end{equation*}
$$

where a is denoting the brane-stack.

- Without going into detail, we mention that by specifying fluxes, as mentioned above for the complex-structure stabilization
- One can obtain solution for J's: the off-diagonal Kahler moduli are zero: $J_{i \bar{j}}=0$ and
- Diagonal components of $J_{i \bar{j}}$ are stabilized to the string scale
- This is possible for many combination of fluxes and branes.
- However, one needs to satisfy an additional constraint for building any model.

Part-III: RR Tadpoles

- Before giving explicit model we discuss the RR-tadpole cancellations
- Constant fluxes generate RR charges, corresponding to lower dimensional branes. Cancellation of all these charges - implies the worldvolume theory free of anomaly.
- The amount of charge that is generated can be seen by looking at the WZ couplings of the brane. The total action is given by

$$
\begin{equation*}
I=V_{D B I}+V_{W Z} \tag{27}
\end{equation*}
$$

- We have already looked at $V_{D B I} . V_{W Z}$ has a general form (using that RR forms are even or odd under the orientifolding $\left.\Omega(-)^{F_{L}}\right)$:

$$
\begin{equation*}
V_{W Z}=\mu_{9} \sum_{a} N_{a} \int_{M^{10}}\left(C_{4} \wedge F^{a} \wedge F^{a} \wedge F^{a}+C_{8} \wedge F^{a}\right) \tag{28}
\end{equation*}
$$

N_{a} 's are the number of branes in a stack with fluxes $F_{i j}^{a}$.

- implies new contributions to the 3-brane and 7-brane tadpoles.

tadpole

- Using - Jacobi matrix - giving map from the worldvolume - to space-time (Bianchi and Trevigne, 2005): $W_{A}^{i}=\frac{\partial X^{i}}{\partial \sigma_{A}}$
- The tadpole cancellation conditions are read from:

$$
\begin{equation*}
\sum_{a} N_{a} W_{a} F^{a} \wedge F^{a} \wedge F^{a}+N=16 \tag{29}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{a} N_{a} W_{a} F^{a}=0 \tag{30}
\end{equation*}
$$

where N is the number of ordinary $D 3$-branes which one can also put to cancel the 3-brane tadpole and $W_{a}=\operatorname{det} W, N_{a}$: no. branes in a'th stack.

tadpole-contd.

- We choose the matrix W_{A}^{i} to be diagonal:

$$
\begin{equation*}
W=\operatorname{diag} .\left(n_{1}, n_{2}, n_{3} ; n_{1}, n_{2}, n_{3}\right) \tag{31}
\end{equation*}
$$

where the first three directions correspond to the x directions and the last three to the y directions.
toy model

- We work with stacks, 1, 1'. 2, 2'.
- 1', 2' defined as: off-diagonal component of fluxes are of opposite sign w.r.t. the branes: 1, 2.
- As a result there are no 7-brane off-diagonal tadpoles left. the diagonal one: computed below
- We make the following choices for brane-1 for n_{i} 's:

$$
\begin{equation*}
n_{1}^{(1)}=2, \quad n_{2}^{(1)}=1, \quad n_{3}^{(1)}=3, \quad m_{23}^{(1)}=1, \quad m_{x^{3} y^{3}}^{(1)}=1 \tag{32}
\end{equation*}
$$

- for brane 1', the sign of the off-diagonal $m_{i j}$ is opposite. For brane-2 we have:

$$
\begin{equation*}
n_{1}^{(2)}=1, \quad n_{2}^{(2)}=2, \quad n_{3}^{(2)}=1, \quad m_{13}^{(2)}=1, \quad m_{12}^{(2)}=1, \quad m_{x^{3} y^{3}}^{(2)}=-1 \tag{33}
\end{equation*}
$$

tadpole-contd.

- they correspond to flux:

$$
\begin{equation*}
p_{23}^{(1)}=\frac{1}{3}, p_{12}^{(2)}=\frac{1}{2}, \quad p_{13}^{(2)}=1 \tag{34}
\end{equation*}
$$

- 7-brane tadpole contributions are:

$$
\begin{align*}
& \left(q^{7}\right)_{x^{3} y^{3}}^{(1)}+\left(q^{7}\right)_{x^{3} y^{3}}^{\left(1^{\prime}\right)}=2\left(n_{1}^{(1)} n_{2}^{(1)}\right)^{2} m_{x^{3} y^{3}}^{(1)} \tag{35}\\
& \left(q^{7}\right)_{x^{3} y^{3}}^{(2)}+\left(q^{7}\right)_{x^{3} y^{3}}^{\left(2^{\prime}\right)}=2\left(n_{1}^{(2)} n_{2}^{(2)}\right)^{2} m_{x^{3} y^{3}}^{(2)}
\end{align*}
$$

- We now write down the 3-brane tadpole contribution. First, it is zero for the stacks 1 and 1'. For the stack-2 on the other hand, using the diagonal form of W we get:

tadpole-contd.

$$
\begin{align*}
\left(q^{3}\right)^{(3)} & =-W_{3} p_{3}^{(3)}\left(p_{12}^{(3)}\right)^{2} \\
& =-\left(m_{12}^{(3)}\right)^{2} m_{x^{3} y^{3}}^{(3)} \tag{37}
\end{align*}
$$

- where we have used relations such as:

$$
\begin{equation*}
p_{12}=\frac{m_{12}}{n_{1} n_{2}} \tag{38}
\end{equation*}
$$

- Then using the above results in the 7-brane tadpoles above, we obtain:

$$
\begin{equation*}
\left(q^{7}\right)_{x^{3} y^{3}}^{t o t}=8\left(m_{x^{3} y^{3}}^{(2)}+m_{x^{3} y^{3}}^{(3)}\right)=0 \tag{39}
\end{equation*}
$$

- Also: for the total 3-brane tadpole:

$$
\begin{equation*}
\left(q^{3}\right)_{x^{3} y^{3}}^{t o t}=-2 \cdot(-1)\left(m_{12}^{(3)}\right)^{2}=2 \tag{40}
\end{equation*}
$$

- we have therefore shown that using branes 1,1 , 2,2 ' one can obtain a consistent model with all the 7-brane tadpoles cancelled and 3-brane tadpole $=2$.

comments

- However, this model corresponds to the case - when one of the diagonal J : $J_{x^{2} y^{2}}$ is negative.
- We then - turn on antisymmetric tensor B : - their values are constrained to be 0 or $\frac{1}{2}$
- We choose: $B_{x^{1} x^{2}}=B_{y^{1} y^{2}}=\frac{1}{2}$ - and show; $G+B$ is positive definite implying a well-defined worldsheet theory
- 3-brane tadpoles are to be saturated to 4 rather than 16 (due to the presence of - exotic orientifold planes)
- The model satisfies this condition -
- Several explicit models along this line - constructed with partial moduli stabilizations

contd.

- It is difficult to obtain stabilization in T^{6} / Z_{2} orientifold model without B - as generated 7-brane tadpoles are to cancel among themselves.- consistent with supersymmetry and other requirements - however, no no-go theorem yet.
- In another work in progress, with S. Mukhopadhyay and K. Ray (in progress) - we used non-abelian gauge fluxes
- it seems possible to solve supersymmetry and tadpole cancellation conditions to get all (diagonal) J's positive.

other issues

- RR Moduli: There are 15 RR moduli, 9 of them complexify the Kahler forms to form the chiral multiplet in four dimensions. they are all absorbed by 9 gauge bosons on the branes, as one fixes the Kahler moduli. The remaining 6 RR moduli, together with 6 complex components of the metric, form the complex structure τ which has nine components - and get fixed by the mechanism mentioned.
- large radius: The solution obtained above: all the radii are fixed at the string scale, - as identified in this solution - due to the factorized form - of the solution in products of three T^{2} 's: $\tau_{i i}$ are given by the ratio of the radii and J_{i} by the product.
- however - possible to obtain solution with large radii, by scaling the windings n_{i} while maintaining the tadpole conditions.

axion-dilaton moduli

- Unlike the stabilization using 3-form fluxes, the axion-dilaton modulus does not appear - when using magnetic fluxes on D-branes
- not surprising - since the string construction and action we are using, does not allow ϕ to vary.

final

- One way to stabilize them - combine this mechanism with the one using close string fluxes
- However, possible(?) to generalize the Dp-Dp' system to the one involving the (p, q) - branes which carry $S L(2, Z)$ S-duality charge - and get constraints on them??

