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Tokamak Schematic

*Electromagnetic Waves

*Ohmic Heating (by electric
currents)

*Neutral Particle Beams (atomic
hydrogen)

eCompression (by magnetic fields)

*Fusion Reactions (primarily D+T)

Stars & Galaxies

Gravity

*Compression (gravity)

*Fusion Reactions (such as the
p-p chain)

*Compression (implo
or ion beams, or by X-rays frc
ion beams)

*Fusion Reactions (primarily D+T)
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is also called a 2‘-1 |
Addresses the proble
rising time.

The inductive heating induces 0-
with rise time of few nanosecond and
Z- 0 pinch is found stable.

Theoretical model for Z- 6 pinch have been proposed by
al. (1989), assuming thin shell of the imploding Plasma.
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The total magnetic pressure caused by azimuthal and axia
can be written as
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The above nonlinear differential equation is numeric

Mo = 38 p g/cm, Bo = 0.02 MG, ro =4 cm and to =

evolution of the normalized outer z-pinch radius R and the nc

urrent |, versus time for various values of a and (. We see"that

radius of the imploding outer double gas-puff as a function of a and B. For fixed
alue of a (= 0.1), finite B, always delays the maximum compression. Small
alues of B < 0.1 gives higher compression. This indicates that double gas-puft
devices can be used for controlled thermonuclear fusion. Whereas, for large [3
ase, the maximum compression occurs at later times. Similarly, large a with
ixed B gives fast compression.




Fig.1: Normalized plots of axial current |, and outer z-pinch radius R versus
time, for different values of B and for a = 0.1. Curves 1-4 for 3 = 0, 0.025,
0.050, 0.075, respectively.
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Z being the charge state of the plasma ions. n'i
The energy equation under the adiabatic condition
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The energy loss term include
— ‘IL -
Pprem Hi3.32

The alpha-particle self-heating term can be

2 ]
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where n, can be obtained from the production rate equation
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Here IDOhm’ I:)brem’ I:)c:ycl and F)alpha
are in units of y m, MG, and k eV, respectively.

T06/3

are in units of keV/(nsec-cm?); ao, Bo and To
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values ao and To, no being the
10%2 cm™3,

Numerical Results and € SS

Using the typical parameters of the University of California

we have numerically integrated the above equations with 1o=10 N |
to = 50 nsec, Mo+ = 38 ug/cm, To = 20 eV, Bo = 20 kG, a0 = 0.02 ci )22
cm™ for different values of a and for B in the range 0 <@ <0.075. Figure a:'él)
displays the results for the normalized radius a, density n and temperature T as

a function of time during the final stages of collapse for a D-T 6-pinch plasma
when ohmic heating, adiabatic heating, a-particle self-heating and radiative
losses are included for different values of 8 with a = 0.1.
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Fig.2 (a, b): Dynamics of the 8-pinch displaying the plots of the normalize
radius a, normalized number density n (1022 cm=) and temperature T (k
versus time during the last stages of compression with a = 0.1 and for different
values of B. Curves 1-4 for g = 0, 0.025, 0.050, 0.075, respectively.
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It is evident from the graphs that without the kinetic pressure term (=0), one
can obtain high density (n~ 10> cm™) and high temperature (T~ 100 keV)
plasma with a = 0.1. However, for any finite- value with fixed a = 0.1, seems
to reduce the maximum compression, and leads to lower temperatures and
densities.

For example, for B = 0.025, the maximum density (Fig. 2(b)) at peak
compression is about 100 no and the temperature is about 10 keV. On the
other hand, for B = 0.075, the maximum density (Fig.2(d)) at peak
compression is about 0.3 no with a temperature of the order of 0.05 keV.

On the other hand, if we choose a relatively large value of a =0.5, then the
maximum density and temperature at peak compression drastically reduces
(see e.g., Fig. 3(a)-(c)) for any finite .

From these results one may conclude that the double gas-puff staged pinch
can be used for controlled thermonuclear fusion with small B and high a
values. Our numerical results demonstrates that large a (for a large density
ratio of the test to the driver gas at the interface position) gives fast
compression while high-p gives slow compression. The

. Thus for optimum choice of
a and (3 parameters, the double gas-puff staged pinch can be used as a
more feasible approach to achieve fusion conditions with enhanced stability.
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