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String theory is an attempt to construct a uni-

fied theory of matter and forces acting between

matter.

It is based on the hypothesis that the basic

building blocks of matter are not particles but

tiny elementary strings.

The size of the string is smaller than the reso-

lution of the most powerful microscope avail-

able to us today.

Hence a generic vibrational state of the string

looks like a particle.

2



String theory can be formulated only if the to-
tal dimension of space is 9 and not 3.

Nevertheless we can recover our 3 dimensional
world from string theory if the 9 dimensional
space is a product

R3 ×M

R3: 3 dimensional Euclidean space

M: a 6 dimensional compact space of small
size

e.g. product of six small circles.
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Different choices of M give rise to different

phases of string theory.

Our world would correspond to some particular

choice of M.

Nevertheless we need to explore the physics of

different possible M in order to unravel the

complete structure of string theory.

4



One of the important questions to study in any

of these phases is the charge spectrum.

How many different stable particles are there

with a given amount of charge?
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My talk today will be based on the study of

type IIA string theory for a specific class of M
known as CHL compactification.

M: labelled by a prime number N = 1,2,3,5,7
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Construction of M

1. First consider a compact space K3×S1×S̃1

K3: A well known four dimensional manifold

S1, S̃1: two circles labeled by y, ỹ of period 2π

Points on K3× S1 × S̃1: (P, y, ỹ), P ∈ K3

2. Now identify the points

(P, y, ỹ) and (P ′, y+ 2π
N , ỹ)

P ′ and P are related by an order N discrete
symmetry transformation of K3.
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We shall study charge spectrum in these phases.

These phases of string theory typically have

more than one electromagnetic field.

Thus a particle is labelled by not one charge

but a set of charges

~Q = (Q1, Q2, . . . Qr)

r =
48

N + 1
+ 4
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A generic particle in this theory also carries

magnetic charge.

Thus we also need a magnetic charge vector

to label the particle

~M = (M1,M2, . . .Mr)

Question: What is the number of stable par-

ticles carrying electric charge ~Q and magnetic

charge ~M?

→ should be a function d( ~Q, ~M)
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In string theory exact answers are very hard to

obtain.

Most of the results in string theory are ob-

tained as a perturbation expansion in some

small parameter labelling the compactification.

In few cases one can ‘guess’ exact answers for

some quantities and then test if it satisfies var-

ious consistency requirements.

In even fewer cases one can actually compute

exact answers.
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Our answer for d( ~Q, ~M) involves

guesswork + consistency tests

A better understanding of the answer may even-

tually lead to a proof.
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What are the consistency tests?

1. d( ~Q, ~M) must be integer for every ( ~Q, ~M).

2. d( ~Q, ~M) must be consistent with the sym-

metries of the theory.

If the theory has a symmetry that relates a

state of charge ( ~Q, ~M) to another state of charge

( ~Q′, ~M ′), then

d( ~Q, ~M) = d( ~Q′, ~M ′)
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3. For large values of charges the particle ac-

quires a large mass.

→ produces strong gravitational attraction.

For large enough charges the particle is so

heavy that even light cannot escape its gravi-

tational pull.

→ it behaves as a ‘black hole’.
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In quantum theory a black hole behaves as

a thermodynamic object with definite entropy

S( ~Q, ~M).

This entropy can be calculated from purely ge-

ometric data.

On the other hand in statistical mechanics

S( ~Q, ~M) = ln d( ~Q, ~M)

Thus knowledge of entropy provides informa-

tion about how d( ~Q, ~M) should behave for large

charges.
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Question: Can we find a d( ~Q, ~M) that satisfies

all the three requirements?
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Use of symmetry

CHL compactifications have some symmetries

which act on ~Q and ~M separately:

~Q′ = U ~Q, ~M ′ = U ~M

U is an r × r matrix with integer entries satis-

fying

UTLU = L

L is a fixed matrix with 6 eigenvalues +1 and

(r − 6) eigenvalues −1.
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~Q′ = U ~Q, ~M ′ = U ~M, UTLU = L

We can make d( ~Q, ~M) invariant under this sym-

metry by taking it as a function of invariant

bilinear forms:

d( ~Q, ~M) = f( ~Q2, ~M2, ~Q · ~M)

where

~Q2 = QTLQ, ~M2 = MTLM, ~Q· ~M = QTLM

This automatically satisfies d( ~Q, ~M) = d( ~Q′, ~M ′)
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S-duality symmetry:

d( ~Q, ~M) = d( ~Q′, ~M ′)

for (
~Q′

~M ′

)
=

(
a b

c d

)(
~Q
~M

)

where a, b, c, d are intergers satisfying

ad− bc = 1, (a− 1), c are multiples of N

This gives non-trivial condition on f(k, l,m).

18



Thus we are looking for a function f(k, l,m) of
three variables which satisfy the conditions:

1. f(k, l,m) is integer for every allowed value
of (k, l,m).

2. It must not change under an S-duality trans-
formation.

3. For large values of k, l,m it should agree
with the result of black hole entropy calcula-
tion.

Note: Electric and magnetic charges are quan-
tized → k, l,m take discrete values.
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Generating function

Introduce a set of new variables t, u, v and
define

g(t, u, v) =
∑
k,l,m

f(k, l,m)e2πi(k t+l u+mv)

Knowing g(t, u, v) ↔ knowing f(k, l,m)

The symmetry requirement + other require-
ments on f

→ specific requirements on g(t, u, v).

Question: Can we guess a form of g(t, u, v)
satisfying these requirements?
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One can construct a function satisfying these
requirements.

Furthermore this function has some nice math-
ematical properties.

→ gives hope that it may be possible to even-
tually prove this conjecture.

The answer:

g(t, u, v) =
1

Φ(t, u, v)

Φ(t, u, v): A Siegel modular form of a subgroup
of Sp(2, Z)
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Define

Ω =

(
t v

v u

)
, k+ 2 = 24/(N + 1)

Then

Φ((AΩ+B)(CΩ+D)−1) = (det(CΩ+D))kΦ(Ω)

where A, B, C, D are 2× 2 matrices satisfying

1. ABT = BAT , CDT = DCT , ADT −BCT = 1

2. Entries of A,B,C,D are integers

3. Entries of C are integer multiples of N

4. detA− 1 is integer multiple of N
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We have an explicit algorithm for constructing

Φ(t, u, v) and hence g(t, u, v) and f(k, l,m).

Given a computer we can calculate f(k, l,m)

for any k, l,m.

A prediction for the exact number of states

with a given set of charges.
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The result was guessed by Dijkgraaf, Verlinde

and Verlinde for the N = 1 case.

Our work generalizes this to N = 2,3,5,7.

Some sort of proof was given for the N = 1

case by Shih, Strominger, Yin (hep-th/0505094)

by mapping this to the problem of calculating

degeneracy of a rotating black hole in five di-

mensions.

Question: Can we generalize this proof to other

values of N?

24



In our earlier construction we expressed Φ as

a series expansion of the form

Φ(t, u, v) =
∑
k,l,m

ψ(k, l,m) e2πi(k t+l u+mv)

ψ(k, l,m): known coefficients

Now we have a different proposal for Φ in a

product form:

Φ(t, u, v) =
∏
k,l,m

(
1− e2πi(k t+l u+mv)

)c(k,l,m)

c(k, l,m): known coefficients
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Φ(t, u, v) =
∑
k,l,m

ψ(k, l,m) e2πi(k t+l u+mv)

Φ(t, u, v) =
∏
k,l,m

(
1− e2πi(k t+l u+mv)

)c(k,l,m)

This implies non-trivial relation between the

ψ(k, l,m)’s and c(k, l,m)’s.

We have checked numerically that the first few

terms in the expansion of these two expressions

agree.
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According to the second expression:

g(t, u, v) =
∏
k,l,m

(
1− e2πi(k t+l u+mv)

)−c(k,l,m)

This is easier to interprete in terms of a count-

ing problem.

Thus there is hope that using this new expres-

sion we shall be able to interprete our proposal

for d( ~Q, ~M) as the result of a counting prob-

lem.

This may eventually lead to a proof of our con-

jecture.
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Application of our results to black hole

physics:

We know that for large charges our formula

reproduces the entropy of a black hole carrying

the same charges.

But since we have an exact formula, we can

systematically calculate corrections to the en-

tropy as a power series expansion in inverse

power of charges.
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Question: Can we reproduce these corrections

from systematic computation of black hole en-

tropy directly?

If so this would test our understanding of black

hole physics beyond the leading approximation.
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