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Introduction and Motivation

The idea of bosonization - finding a bosonic system
equivalent to a given fermionic system - is almost as old
as quantum mechanics itself.
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quantized collective bose excitations - sound waves -
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Bohm and Pines - charge density waves - plasma
oscillations - in a gas of electrons.
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Introduction and Motivation

The idea of bosonization - finding a bosonic system
equivalent to a given fermionic system - is almost as old
as quantum mechanics itself.

Bloch - earliest observation for the existence of
quantized collective bose excitations - sound waves -
in a gas of fermions in 3-dimensions
Bohm and Pines - charge density waves - plasma
oscillations - in a gas of electrons.
Tomonaga - first important breakthrough in treating
a large system of interacting fermions. In a
rigorously defined simple one-dimensional model, he
showed that interactions between fermions can
mediate new collective bosonic d.o.f
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Introduction and Motivation

Non-relativistic fermions have a quadratic dispersion
relation - Tomonaga’s treatment is valid only in the
low-energy approximation

Luttinger later used a strictly linear dispersion relation.
Other work - Mattis and Lieb, Haldane, .... => relativistic
bosonization due to Coleman and Mandlestam

Tomonaga-Luttinger liquid provides an important
paradigm in condensed matter physics.
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Introduction and Motivation

Non-relativistic fermions in 1-dimension appear in many
situations in string theory and quantum field theory.
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Introduction and Motivation

Non-relativistic fermions in 1-dimension appear in many
situations in string theory and quantum field theory.

Non-critical string theory in 2-dimensions
Half-BPS sector of N = 4 super Yang-Mills theory in
4-dimensions
Yang-Mills theory on a cylinder in 2-dimensions

This is closely related to Tomonaga’s problem
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Introduction and Motivation

A common feature of all these examples is that the
fermionic system arises from an underlying matrix
quantum mechanics problem

S =

∫

dt {1

2
Ṁ2 − V (M)}
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Introduction and Motivation

A common feature of all these examples is that the
fermionic system arises from an underlying matrix
quantum mechanics problem

S =

∫

dt {1

2
Ṁ2 − V (M)}

M is an N ×N matrix
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Introduction and Motivation

A common feature of all these examples is that the
fermionic system arises from an underlying matrix
quantum mechanics problem

S =

∫

dt {1

2
Ṁ2 − V (M)}

In the U(N) invariant sector, the matrix model is
equivalent to a system of N non-relativistic fermions a

Jevicki and Sakita b used this equivalence to develop a
bosonization in the large-N limit - collective field theory

aBrezin, Itzykson, Parisi and Zuber, Comm. Math. Phys.59, 35, 1978
bNucl.Phys.B165, 511, 1980
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Introduction and Motivation

Bosonization in terms of Wigner phase space density a

u(p, q, t) =

∫

dx e−ipx
N

∑

i=1

ψ†
i (q − x/2, t)ψi(q + x/2, t)

u(p, q, t) satisfies two constraints:
∫

dpdq
2π

u(p, q, t) = N

u ∗ u = u

aDhar, Mandal and Wadia, hep-th/9204028; 9207011; 9309028
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Introduction and Motivation

Bosonization in terms of Wigner phase space density a

u(p, q, t) =

∫

dx e−ipx
N

∑

i=1

ψ†
i (q − x/2, t)ψi(q + x/2, t)

u(p, q, t) satisfies two constraints:
∫

dpdq
2π

u(p, q, t) = N

u ∗ u = u

Many more variables than are necessary

aDhar, Mandal and Wadia, hep-th/9204028; 9207011; 9309028
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Exact Bosonization

The Setup:

each can occupy a state in an infinite-dimensional
Hilbert space Hf

there is a countable basis of Hf : {|m〉,m = 0, 1, · · · ,∞}

creation and annihilation operators ψ†
m, ψm create and

destroy particles in the state |m〉, {ψm, ψ
†
n} = δmn

total number of fermions is fixed:
∑

n

ψ†
nψn = N
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Exact Bosonization

The N -fermion states are given by (linear combinations
of)

|f1, · · · , fN 〉 = ψ†
fN

· · ·ψ†
f2
ψ†

f1
|0〉F ,

|0〉F is Fock vacuum
fk are ordered 0 ≤ f1 < f2 < · · · < fN

Repeated applications of the bilinear ψ†
m ψn gives any

desired state

Bosonization of a Finite Number of Non-Relativistic Fermions and Applications – p. 9/41



Exact Bosonization

f 1
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Exact Bosonization

Bosonization: a

Introduce the bosonic operators

σk, k = 1, 2, · · · , N

and their conjugates

σ†k, k = 1, 2, · · · , N

aDhar, Mandal and Suryanarayana, hep-th/0509164
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Exact Bosonization
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Exact Bosonization
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Exact Bosonization

By definition:

σkσ
†
k = 1

σ†kσk = 1, if σk does not annihilate the state
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Exact Bosonization

By definition:

σkσ
†
k = 1

σ†kσk = 1, if σk does not annihilate the state

σ
k 0

fN

fN−1

fN−k+2
fN−k+1

Bosonization of a Finite Number of Non-Relativistic Fermions and Applications – p. 14/41



Exact Bosonization

By definition:

σkσ
†
k = 1

σ†kσk = 1, if σk does not annihilate the state

For k 6= l, [σk, σ
†
l ] = 0
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Exact Bosonization

Introduce creation (annihilation) operators a†k (ak) which
satisfy the standard commutation relations

[ak, a
†
l ] = δkl, k, l = 1, · · · , N

The states of the bosonic system are given by (a linear
combination of)

|r1, · · · , rN 〉 =
(a†1)

r1 · · · (a†N )rN

√
r1! · · · rN !

|0〉
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Exact Bosonization

Now, make the following identifications

σk =
1

√

a†kak + 1
ak; σ†k = a†k

1
√

a†kak + 1

together with the map a

rN = f1; rk = fN−k+1 − fN−k − 1, k = 1, 2, · · · N − 1

For the Fermi vacuum, fk+1 = fk + 1 and so rk = 0 for
all k => Fermi vacuum = Bose vacuum

aSuryanarayana, hep-th/0411145
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Exact Bosonization

The σk, k = 1, 2, · · · , N are necessary and sufficient

Any bilinear ψ†
nψm can be built out of σk’s
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Exact Bosonization

The σk, k = 1, 2, · · · , N are necessary and sufficient

Any bilinear ψ†
nψm can be built out of σk’s

f 1

f

f

f

f

2

N

N−1

N−2

f 3

+ψψ
n m

m

n

= fN−k+1
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Exact Bosonization

The σk, k = 1, 2, · · · , N are necessary and sufficient

Any bilinear ψ†
nψm can be built out of σk’s

+
n

ψ  ψ
m

N−1

N−3

0
1

 2

m

n

N−2

(−1)
N−m−1 σ     σ N

+

n

N−1

2
1
 0

m−m 1

+ n−N N−2
N−3
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Exact Bosonization

Generic properties of the bosonized theory:

Each boson can occupy only a finite number of different
states, as a consequence of a finite number of fermions
=> a cut-off or graininess in the bosonized theory!
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Exact Bosonization

Generic properties of the bosonized theory:

Each boson can occupy only a finite number of different
states, as a consequence of a finite number of fermions
=> a cut-off or graininess in the bosonized theory!

There is no natural “space” in the bosonic theory - in
the examples we will discuss, a spatial direction will
emerge in the low-energy large-N limit.
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Exact Bosonization

Generic properties of the bosonized theory:

Each boson can occupy only a finite number of different
states, as a consequence of a finite number of fermions
=> a cut-off or graininess in the bosonized theory!

There is no natural “space” in the bosonic theory - in
the examples we will discuss, a spatial direction will
emerge in the low-energy large-N limit.

In applications involving matrix quantum mechanics,
our bosonization can be considered to be an exact
solution of the matrix problem in the singlet sector
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Exact Bosonization

The non-interacting fermionic Hamiltonian:

H =
∑

n

E(n)ψ†
nψn
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Exact Bosonization

The non-interacting fermionic Hamiltonian:

H =
∑

n

E(n)ψ†
nψn

The bosonized Hamiltonian:

H =
N

∑

k=1

E(n̂k), n̂k =
N

∑

i=k

a†iai +N − k
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Exact Bosonization

The non-interacting fermionic Hamiltonian:

H =
∑

n

E(n)ψ†
nψn

The bosonized Hamiltonian:

H =
N

∑

k=1

E(n̂k), n̂k =
N

∑

i=k

a†iai +N − k

What about fermion interactions? These can also be
included since the generic bilinear ψ†

nψm has a
bosonized expression
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Half-BPS states and LLM geometries

Space-time, gravity lagrangians and gravitons -
low-energy emergent properties of an underlying
microscopic dynamics

String theory is a consistent theory of quantum gravity
=> we should be able to test these ideas

AdS/CFT correspondence => a precise setting in which
to explore these ideas
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Half-BPS states and LLM geometries

Space-time, gravity lagrangians and gravitons -
low-energy emergent properties of an underlying
microscopic dynamics

String theory is a consistent theory of quantum gravity
=> we should be able to test these ideas

AdS/CFT correspondence => a precise setting in which
to explore these ideas

Classic example of dual pair - N = 4 SYM and string
theory on AdS5×S5. No hint of 10-d space-time or
gravitons in the SYM theory!
This duality => weakly coupled low-energy type IIB
gravity on AdS5×S5 and strongly coupled N = 4
SYM theory in the large-N limit have exactly the
same physical content
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Half-BPS states and LLM geometries

LLM work a - a small new window of opportunity.

Limited to half-BPS sector, but hopefully has some
wider lessons

SYM - half-BPS states are described by a
holomorphic sector of quantum mechanics of an
N ×N complex matrix Z in a harmonic potential
This system can be shown b to be equivalent to the
quantum mechanics of an N ×N hermitian matrix Z
in a harmonic potential

aLin, Lunin and Maldacena, hep-th/0409174
bTakayama and Tsuchiya, hep-th/0507070
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Half-BPS states and LLM geometries

Gauge invariance => physical observables on boundary
are U(N)-invariant traces:

trZk, k = 1, 2, · · · , N

Physical states <=> operators

(trZk1)l1(trZk2)l2 · · ·

Total number of Z ’s is a conserved RR charge
Q =

∑

i kili. BPS condition => E = Q
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Half-BPS states and LLM geometries

At large N there is a semiclassical picture of the states
of this system in terms of droplets of fermi fluid in phase
space
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Half-BPS states and LLM geometries

At large N there is a semiclassical picture of the states
of this system in terms of droplets of fermi fluid in phase
space

q

p

ground state distribution
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Half-BPS states and LLM geometries

At large N there is a semiclassical picture of the states
of this system in terms of droplets of fermi fluid in phase
space

p

q

small fluctuations around the ground state
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Half-BPS states and LLM geometries

By explicitly solving equations of type IIB gravity, LLM
showed that there is a similar structure in the classical
geometries in the half-BPS sector!

LLM solutions - two of the space coordinates are
identified with the phase space of a single fermion =>
noncommutativity in two space directions in the
semicalssical description a

Small fluctuations around AdS space, i.e low-energy
graviton excitations b c ≡ low-energy fluctuations of the
fermi vacuum d

aMandal, hep-th/0502104
bGrant, Maoz, Marsano, Papadodimas and Rychkov, hep-th/0505079
cMaoz and Rychkov, hep-th/0508059
dDhar, hep-th/0505084
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Half-BPS states and LLM geometries

Motivation for our work a - on the CFT side the half-BPS
system can be quantized exactly in terms of our bosons
=> window of opportunity to learn about aspects of
quantum gravity.

At finite N , only the low-energy excitations on the
boundary can be identified with low-energy (<< N )
gravitons in the bulk

The single-particle graviton excitations are related to
our bosons. On the boundary, these states are:

β†m|0〉 =
m

∑

n=1

(−1)n−1

√

(N +m− n)!

2m(N − n)!
σ†1

m−n
σ†n|0〉

aDhar, Mandal and Smedback, hep-th/0512312Bosonization of a Finite Number of Non-Relativistic Fermions and Applications – p. 25/41



Half-BPS states and LLM geometries

One can compute exactly the correlation functions
< β†k1

β†k2
· · · >
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Half-BPS states and LLM geometries

One can compute exactly the correlation functions
< β†k1

β†k2
· · · >

On the boundary:
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Half-BPS states and LLM geometries

One can compute exactly the correlation functions
< β†k1

β†k2
· · · >

On the boundary:

at low energies, perturbation theory is good and
reproduces supergravity answers; there is an
effective cubic hamiltonian
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Half-BPS states and LLM geometries

One can compute exactly the correlation functions
< β†k1

β†k2
· · · >

On the boundary:

at low energies, perturbation theory is good and
reproduces supergravity answers; there is an
effective cubic hamiltonian

perturbation theory breaks down for β’s with energy
of order

√
N
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Half-BPS states and LLM geometries

One can compute exactly the correlation functions
< β†k1

β†k2
· · · >

On the boundary:

at low energies, perturbation theory is good and
reproduces supergravity answers; there is an
effective cubic hamiltonian

perturbation theory breaks down for β’s with energy
of order

√
N

At energies of order N , the β interactions grow
exponentially with N
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Half-BPS states and LLM geometries

One can compute exactly the correlation functions
< β†k1

β†k2
· · · >

In the bulk:
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Half-BPS states and LLM geometries

One can compute exactly the correlation functions
< β†k1

β†k2
· · · >

In the bulk:

gravitons with energies larger than
√
N have a size

smaller than 10-dim planck scale
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Half-BPS states and LLM geometries

One can compute exactly the correlation functions
< β†k1

β†k2
· · · >

In the bulk:

gravitons with energies larger than
√
N have a size

smaller than 10-dim planck scale

nonlocal solitonic excitations with energy of order N
- giant gravitons a

aMcGreevy, Susskind and Toumbas, hep-th/0003075
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Half-BPS states and LLM geometries

One can compute exactly the correlation functions
< β†k1

β†k2
· · · >

In the bulk:

gravitons with energies larger than
√
N have a size

smaller than 10-dim planck scale

nonlocal solitonic excitations with energy of order N
- giant gravitons a

The size of giant gravitons is larger than 10-dim
planck scale for energies larger than

√
N

aMcGreevy, Susskind and Toumbas, hep-th/0003075
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Half-BPS states and LLM geometries

On the boundary, single-particle giant graviton states
map to linear combinations of multi-graviton states a.
Example:

|giant graviton of energy 2〉 = (β†1
2 − β†2)|0〉

aBalasubramanian, Berkooz, Naqvi and Strassler, hep-th/0107119
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Half-BPS states and LLM geometries

On the boundary, single-particle giant graviton states
map to linear combinations of multi-graviton states a.
Example:

|giant graviton of energy 2〉 = (β†1
2 − β†2)|0〉= a†2|0〉

aBalasubramanian, Berkooz, Naqvi and Strassler, hep-th/0107119
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Half-BPS states and LLM geometries

Boundary states corresponding to single-particle bulk
giant states are our single-particle bosonic states:

|giant graviton of energy k〉 = a†k|0〉
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Half-BPS states and LLM geometries

Boundary states corresponding to single-particle bulk
giant states are our single-particle bosonic states:

|giant graviton of energy k〉 = a†k|0〉

Hamiltonian: HF =
∑

n E(n)ψ†
nψn=>HB =

∑N
k=1 ka

†
kak
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Half-BPS states and LLM geometries

Boundary states corresponding to single-particle bulk
giant states are our single-particle bosonic states:

|giant graviton of energy k〉 = a†k|0〉

Hamiltonian: HF =
∑

n E(n)ψ†
nψn=>HB =

∑N
k=1 ka

†
kak

Discrete space?

φ(θn) =

N
∑

k=1

(eikθnak + e−ikθna†k), θn =
2πn

N
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Half-BPS states and LLM geometries

Summary (half-BPS sector):

low-energy fluctuations of the metric around AdS are
adequately described by gravitons

at moderately high energies of order
√
N , perturbative

gravity breaks down; one must now sum to all orders in
1/N to get correct answers

at very high energies of order N , gravitons cease to
provide a meaningful description; instead we must now
use a new set of d.o.f., namely the giant gravitons,
which are weakly coupled at high energies
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Free fermions on a circle

We will mainly discuss a the free fermion problem.
Interactions can be taken into account once the free
part has been dealt with properly.

The free hamiltonian:

H = − ~
2

2m

∫ L

0
dx χ†(x)∂2

xχ(x)

To apply our bosonization rules, need to introduce an
ordering in the spectrum. For example, replace
n2 → (n+ ε)2

aDhar and Mandal, hep-th/0603154
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Free fermions on a circle

We will mainly discuss a the free fermion problem.
Interactions can be taken into account once the free
part has been dealt with properly.

Hamiltonian in terms of fourier modes:

H = ω~

∞
∑

n=−∞

n2χ†nχn, ω ≡ 2π2
~

mL2

To apply our bosonization rules, need to introduce an
ordering in the spectrum. For example, replace
n2 → (n+ ε)2

aDhar and Mandal, hep-th/0603154

Bosonization of a Finite Number of Non-Relativistic Fermions and Applications – p. 29/41



Free fermions on a circle

We will mainly discuss a the free fermion problem.
Interactions can be taken into account once the free
part has been dealt with properly.

Hamiltonian in terms of fourier modes:

H = ω~

∞
∑

n=−∞

n2χ†nχn, ω ≡ 2π2
~

mL2

To apply our bosonization rules, need to introduce an
ordering in the spectrum. For example, replace
n2 → (n+ ε)2

aDhar and Mandal, hep-th/0603154
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Free fermions on a circle
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Free fermions on a circle

Effectively, we have set χ+n = ψ2n and χ−n = ψ2n−1
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Free fermions on a circle

Effectively, we have set χ+n = ψ2n and χ−n = ψ2n−1

Fermionic hamiltonian:

H = ω~

∞
∑

n=1

(

n+ e(n)

2

)2

ψ†
nψn
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Free fermions on a circle

Effectively, we have set χ+n = ψ2n and χ−n = ψ2n−1

Fermionic hamiltonian:

H = ω~

∞
∑

n=1

(

n+ e(n)

2

)2

ψ†
nψn

Bosonized hamiltonian:

H = ω~

N
∑

k=1

(

n̂k + e(n̂k)

2

)2

where n̂k =
∑N

i=k a
†
iai +N − k
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Free fermions on a circle

Large-N low energy limit: H = HF +H0 +H1

Bosonization of a Finite Number of Non-Relativistic Fermions and Applications – p. 32/41



Free fermions on a circle

Large-N low energy limit: H = HF +H0 +H1

H0 =
~ωN

2

( N
∑

k=1

k a†kak + ν̂

)

ν̂ = N− −N−F =
∑N

k=1(e(n̂k) − e(N − k)) is the
number of excess fermions in negative momentum
states over and above the number in fermi vacuum

H1 is order one on excited states whose energy is
low compared to N
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Free fermions on a circle

The massless collective boson:
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Free fermions on a circle

The massless collective boson:

The partition function

ZN =
∑

e−βH0
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Free fermions on a circle

The massless collective boson:

The partition function

ZN =
∑

e−βH0

In the limit N → ∞, the partition function turns out to
be

Z∞ =
+∞
∑

ν=−∞

qν
2

[ ∞
∏

n=1

(1 − qn)−1

]2

; q = e−~ωNβ
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Free fermions on a circle

States (ν = 0):
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Free fermions on a circle

States (ν = 0):

states at level l have energy E0l = ~ωNl - these
include multiparticle states of both chiralities
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Free fermions on a circle

States (ν = 0):

states at level l have energy E0l = ~ωNl - these
include multiparticle states of both chiralities

example, l = 2:

(σ†1)
4|0〉, σ†1σ

†
3|0〉, (σ†1)

2σ†2|0〉, σ
†
4|0〉, (σ†2)

2|0〉

first two have momentum of opposite sign to the next
two; the last state has zero momentum
first four states: two single-particle and two 2-particle
states of each chirality; the last state is non-chiral
2-particle state
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Free fermions on a circle

1/N corrections:
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Free fermions on a circle

1/N corrections:

linear combinations exist in which expectation value
of H1 vanishes:

1√
2
[(σ†1)

4 ± σ†1σ
†
3]|0〉;

1√
2
[(σ†1)

2σ†2 ± σ†4]|0〉
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Free fermions on a circle

1/N corrections:

linear combinations exist in which expectation value
of H1 vanishes:

1√
2
[(σ†1)

4 ± σ†1σ
†
3]|0〉;

1√
2
[(σ†1)

2σ†2 ± σ†4]|0〉

such linear combinations exist at all levels; at each
level there is one linear combination which is
identical to an appropriate mode of the fermion
density!

1√
l

∑

n

ψ†
n+2lψn|F0〉 ≡ ρ†l |0〉 =

1√
l

[2l]
∑

k

(σ†1)
2l−kσ†k|0〉
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Free fermions on a circle

Cubic interaction:
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Free fermions on a circle

Cubic interaction:

H1ρ
†
l |0〉 = ~ω

l−1
∑

m=1

clmρ
†
mρ

†

(l−m)
|0〉, l ≤ N + 1

2
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Free fermions on a circle

Cubic interaction:

H1ρ
†
l |0〉 = ~ω

l−1
∑

m=1

clmρ
†
mρ

†

(l−m)
|0〉, l ≤ N + 1

2

the coefficient:

clm =
√

lm(l −m)
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Free fermions on a circle

Beyond low-energy perturbation theory:
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Free fermions on a circle

Beyond low-energy perturbation theory:

states created by modes of fermion density have an
extra term at high energies:

ρ̃†l |0〉 = ρ†l |0〉 +
1√
l

l
∑

n=1

ψ†

2(l−n)
ψ2n−1|0〉
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Free fermions on a circle

Beyond low-energy perturbation theory:

states created by modes of fermion density have an
extra term at high energies:

ρ̃†l |0〉 = ρ†l |0〉 +
1√
l

l
∑

n=1

ψ†

2(l−n)
ψ2n−1|0〉

last term cannot be ignored at high energies; it is in
fact a ν = −1 state!
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Free fermions on a circle

ρ̃†mρ̃
†

(N+3

2
−m)

|0〉 = ρ†mρ
†

(N+3

2
−m)

|0〉+ 1
√

m(N+3
2 −m)

σ†1σ
†
N−1|0〉

last term will contribute in

〈0|ρ̃†
+N+3

2

ρ̃†+mρ̃
†

+(N+3

2
−m)

|0〉
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Free fermions on a circle

Exact partition function for finite N (H0 part only):

ZN =

+N+1

2
∑

ν=−N−1

2

qν
2

N+1

2
−ν

∏

n=1

(1 − qn)−1

N−1

2
+ν

∏

n=1

(1 − qn)−1
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Free fermions on a circle

Exact partition function for finite N (H0 part only):

ZN =

+N+1

2
∑

ν=−N−1

2

qν
2

N+1

2
−ν

∏

n=1

(1 − qn)−1

N−1

2
+ν

∏

n=1

(1 − qn)−1

For large-N :

ZN = (1 + 2q − q
N+1

2 )(1 − q
N+1

2 )

[ ∞
∏

n=1

(1 − qn)−1

]2
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Free fermions on a circle

Exact partition function for finite N (H0 part only):

ZN =

+N+1

2
∑

ν=−N−1

2

qν
2

N+1

2
−ν

∏

n=1

(1 − qn)−1

N−1

2
+ν

∏

n=1

(1 − qn)−1

For large-N :

ZN = (1 + 2q − q
N+1

2 )(1 − q
N+1

2 )

[ ∞
∏

n=1

(1 − qn)−1

]2

O(e−N )
nonperturbative effects in 2-d YM
black-hole counting and baby universes
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Free fermions on a circle

Summary:

Tomonaga’s problem has an exact solution in terms of
our bosons. Low-energy local cubic collective field
theory can be derived; the collective field is a linear
combination of multi-particle states of our bosons, like
the graviton in the LLM case

our bosonization goes beyond this low-energy local
limit, but then there is no natural local space-time field
theory interpretation

density-density interactions, as in a system of electrons
with Coulomb interactions, can be incorporated - easy
at low-energies, but requires more work at high
energies
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SUMMARY

We have developed a simple and exact bosonization of
a finite number of non-relativistic fermions; we
discussed here applications to concrete problems in
different areas of physics

Our bosonization trades finiteness of the number of
fermions for finite dimensionality of the single-particle
boson Hilbert space

the bosonized theory is inherently grainy; in the specific
applications we discussed, a local space-time field
theory emerges only in the large-N and low-energy limit

Bosonization of finite number of fermions in higher
dimensions?
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