Bosonization of a Finite Number of Non-Relativistic Fermions and Applications

Avinash Dhar

Tata Institute of Fundamental Research, Mumbai

12th Regional Conference on Mathematical Physics
National Center for Physics, Islamabad
March 31, 2006

Contents

- Introduction and Motivation
- Exact Bosonization
- Applications
- AdS/CFT - Half-BPS States and LLM Geometries
- Free nonrelativistic fermions on a circle Tomonaga's Problem
- Summary

Introduction and Motivation

- The idea of bosonization - finding a bosonic system equivalent to a given fermionic system - is almost as old as quantum mechanics itself.

Introduction and Motivation

- The idea of bosonization - finding a bosonic system equivalent to a given fermionic system - is almost as old as quantum mechanics itself.
- Bloch - earliest observation for the existence of quantized collective bose excitations - sound waves in a gas of fermions in 3-dimensions
- Bohm and Pines - charge density waves - plasma oscillations - in a gas of electrons.

Introduction and Motivation

- The idea of bosonization - finding a bosonic system equivalent to a given fermionic system - is almost as old as quantum mechanics itself.
- Bloch - earliest observation for the existence of quantized collective bose excitations - sound waves in a gas of fermions in 3-dimensions
- Bohm and Pines - charge density waves - plasma oscillations - in a gas of electrons.
- Tomonaga - first important breakthrough in treating a large system of interacting fermions. In a rigorously defined simple one-dimensional model, he showed that interactions between fermions can mediate new collective bosonic d.o.f

Introduction and Motivation

- Non-relativistic fermions have a quadratic dispersion relation - Tomonaga's treatment is valid only in the low-energy approximation
- Luttinger later used a strictly linear dispersion relation. Other work - Mattis and Lieb, Haldane, => relativistic bosonization due to Coleman and Mandlestam
- Tomonaga-Luttinger liquid provides an important paradigm in condensed matter physics.

Introduction and Motivation

- Non-relativistic fermions in 1-dimension appear in many situations in string theory and quantum field theory.

Introduction and Motivation

- Non-relativistic fermions in 1-dimension appear in many situations in string theory and quantum field theory.
- Non-critical string theory in 2-dimensions

Introduction and Motivation

- Non-relativistic fermions in 1-dimension appear in many situations in string theory and quantum field theory.
- Non-critical string theory in 2-dimensions
- Half-BPS sector of $\mathcal{N}=4$ super Yang-Mills theory in 4-dimensions

Introduction and Motivation

- Non-relativistic fermions in 1-dimension appear in many situations in string theory and quantum field theory.
- Non-critical string theory in 2-dimensions
- Half-BPS sector of $\mathcal{N}=4$ super Yang-Mills theory in 4-dimensions
- Yang-Mills theory on a cylinder in 2-dimensions

Introduction and Motivation

- Non-relativistic fermions in 1-dimension appear in many situations in string theory and quantum field theory.
- Non-critical string theory in 2-dimensions
- Half-BPS sector of $\mathcal{N}=4$ super Yang-Mills theory in 4-dimensions
- Yang-Mills theory on a cylinder in 2-dimensions

This is closely related to Tomonaga's problem

Introduction and Motivation

- A common feature of all these examples is that the fermionic system arises from an underlying matrix quantum mechanics problem

$$
S=\int d t\left\{\frac{1}{2} \dot{M}^{2}-V(M)\right\}
$$

Introduction and Motivation

- A common feature of all these examples is that the fermionic system arises from an underlying matrix quantum mechanics problem

Introduction and Motivation

- A common feature of all these examples is that the fermionic system arises from an underlying matrix quantum mechanics problem

$$
S=\int d t\left\{\frac{1}{2} \dot{M}^{2}-V(M)\right\}
$$

- In the $U(N)$ invariant sector, the matrix model is equivalent to a system of N non-relativistic fermions ${ }^{\text {a }}$
- Jevicki and Sakita used this equivalence to develop a bosonization in the large- N limit - collective field theory

[^0]
Introduction and Motivation

- Bosonization in terms of Wigner phase space density ${ }^{\text {a }}$

$$
u(p, q, t)=\int d x e^{-i p x} \sum_{i=1}^{N} \psi_{i}^{\dagger}(q-x / 2, t) \psi_{i}(q+x / 2, t)
$$

- $u(p, q, t)$ satisfies two constraints:
- $\int \frac{d p d q}{2 \pi} u(p, q, t)=N$
- $u * u=u$

Introduction and Motivation

- Bosonization in terms of Wigner phase space density a

$$
u(p, q, t)=\int d x e^{-i p x} \sum_{i=1}^{N} \psi_{i}^{\dagger}(q-x / 2, t) \psi_{i}(q+x / 2, t)
$$

- $u(p, q, t)$ satisfies two constraints:
- $\int \frac{d p d q}{2 \pi} u(p, q, t)=N$
- $u * u=u$

Many more variables than are necessary

Exact Bosonization

The Setup:

- each can occupy a state in an infinite-dimensional Hilbert space \mathcal{H}_{f}
- there is a countable basis of $\mathcal{H}_{f}:\{|m\rangle, m=0,1, \cdots, \infty\}$
- creation and annihilation operators $\psi_{m}^{\dagger}, \psi_{m}$ create and destroy particles in the state $|m\rangle, \quad\left\{\psi_{m}, \psi_{n}^{\dagger}\right\}=\delta_{m n}$
- total number of fermions is fixed:

$$
\sum_{n} \psi_{n}^{\dagger} \psi_{n}=N
$$

Exact Bosonization

- The N-fermion states are given by (linear combinations of)

$$
\left|f_{1}, \cdots, f_{N}\right\rangle=\psi_{f_{N}}^{\dagger} \cdots \psi_{f_{2}}^{\dagger} \psi_{f_{1}}^{\dagger}|0\rangle_{F},
$$

- $|0\rangle_{F}$ is Fock vacuum
- f_{k} are ordered $0 \leq f_{1}<f_{2}<\cdots<f_{N}$
- Repeated applications of the bilinear $\psi_{m}^{\dagger} \psi_{n}$ gives any desired state

Exact Bosonization

Exact Bosonization

Bosonization: ${ }^{\text {a }}$

- Introduce the bosonic operators

$$
\sigma_{k}, k=1,2, \cdots, N
$$

- and their conjugates

$$
\sigma_{k}^{\dagger}, k=1,2, \cdots, N
$$

${ }^{a}$ Dhar, Mandal and Suryanarayana, hep-th/0509164

Exact Bosonization

Exact Bosonization

Exact Bosonization

- By definition:
- $\sigma_{k} \sigma_{k}^{\dagger}=1$
- $\sigma_{k}^{\dagger} \sigma_{k}=1$, if σ_{k} does not annihilate the state

Exact Bosonization

- By definition:
- $\sigma_{k} \sigma_{k}^{\dagger}=1$
- $\sigma_{k}^{\dagger} \sigma_{k}=1$, if σ_{k} does not annihilate the state

Exact Bosonization

- By definition:
- $\sigma_{k} \sigma_{k}^{\dagger}=1$
- $\sigma_{k}^{\dagger} \sigma_{k}=1$, if σ_{k} does not annihilate the state
- For $k \neq l,\left[\sigma_{k}, \sigma_{l}^{\dagger}\right]=0$

Exact Bosonization

- Introduce creation (annihilation) operators $a_{k}^{\dagger}\left(a_{k}\right)$ which satisfy the standard commutation relations

$$
\left[a_{k}, a_{l}^{\dagger}\right]=\delta_{k l}, \quad k, l=1, \cdots, N
$$

- The states of the bosonic system are given by (a linear combination of)

$$
\left|r_{1}, \cdots, r_{N}\right\rangle=\frac{\left(a_{1}^{\dagger}\right)^{r_{1}} \cdots\left(a_{N}^{\dagger}\right)^{r_{N}}}{\sqrt{r_{1}!\cdots r_{N}!}}|0\rangle
$$

Exact Bosonization

- Now, make the following identifications

$$
\sigma_{k}=\frac{1}{\sqrt{a_{k}^{\dagger} a_{k}+1}} a_{k} ; \quad \sigma_{k}^{\dagger}=a_{k}^{\dagger} \frac{1}{\sqrt{a_{k}^{\dagger} a_{k}+1}}
$$

- together with the map ${ }^{\text {a }}$

$$
r_{N}=f_{1} ; \quad r_{k}=f_{N-k+1}-f_{N-k}-1, \quad k=1,2, \cdots N-1
$$

- For the Fermi vacuum, $f_{k+1}=f_{k}+1$ and so $r_{k}=0$ for all $k=>$ Fermi vacuum = Bose vacuum

[^1]
Exact Bosonization

- The $\sigma_{k}, k=1,2, \cdots, N$ are necessary and sufficient
- Any bilinear $\psi_{n}^{\dagger} \psi_{m}$ can be built out of σ_{k} 's

Exact Bosonization

- The $\sigma_{k}, k=1,2, \cdots, N$ are necessary and sufficient - Any bilinear $\psi_{n}^{\dagger} \psi_{m}$ can be built out of σ_{k} 's

Exact Bosonization

- The $\sigma_{k}, k=1,2, \cdots, N$ are necessary and sufficient
- Any bilinear $\psi_{n}^{\dagger} \psi_{m}$ can be built out of σ_{k} 's

Exact Bosonization

Generic properties of the bosonized theory:

- Each boson can occupy only a finite number of different states, as a consequence of a finite number of fermions => a cut-off or graininess in the bosonized theory!

Exact Bosonization

Generic properties of the bosonized theory:

- Each boson can occupy only a finite number of different states, as a consequence of a finite number of fermions => a cut-off or graininess in the bosonized theory!
- There is no natural "space" in the bosonic theory - in the examples we will discuss, a spatial direction will emerge in the low-energy large- N limit.

Exact Bosonization

Generic properties of the bosonized theory:

- Each boson can occupy only a finite number of different states, as a consequence of a finite number of fermions => a cut-off or graininess in the bosonized theory!
- There is no natural "space" in the bosonic theory - in the examples we will discuss, a spatial direction will emerge in the low-energy large- N limit.
- In applications involving matrix quantum mechanics, our bosonization can be considered to be an exact solution of the matrix problem in the singlet sector

Exact Bosonization

- The non-interacting fermionic Hamiltonian:

$$
H=\sum_{n} \mathcal{E}(n) \psi_{n}^{\dagger} \psi_{n}
$$

Exact Bosonization

- The non-interacting fermionic Hamiltonian:

$$
H=\sum_{n} \mathcal{E}(n) \psi_{n}^{\dagger} \psi_{n}
$$

- The bosonized Hamiltonian:

$$
H=\sum_{k=1}^{N} \mathcal{E}\left(\hat{n}_{k}\right), \quad \hat{n}_{k}=\sum_{i=k}^{N} a_{i}^{\dagger} a_{i}+N-k
$$

Exact Bosonization

- The non-interacting fermionic Hamiltonian:

$$
H=\sum_{n} \mathcal{E}(n) \psi_{n}^{\dagger} \psi_{n}
$$

- The bosonized Hamiltonian:

$$
H=\sum_{k=1}^{N} \mathcal{E}\left(\hat{n}_{k}\right), \quad \hat{n}_{k}=\sum_{i=k}^{N} a_{i}^{\dagger} a_{i}+N-k
$$

- What about fermion interactions? These can also be included since the generic bilinear $\psi_{n}^{\dagger} \psi_{m}$ has a bosonized expression

Half-BPS states and LLM geometries

- Space-time, gravity lagrangians and gravitons -low-energy emergent properties of an underlying microscopic dynamics
- String theory is a consistent theory of quantum gravity => we should be able to test these ideas
- AdS/CFT correspondence => a precise setting in which to explore these ideas

Half-BPS states and LLM geometries

- Space-time, gravity lagrangians and gravitons -low-energy emergent properties of an underlying microscopic dynamics
- String theory is a consistent theory of quantum gravity => we should be able to test these ideas
- AdS/CFT correspondence => a precise setting in which to explore these ideas
- Classic example of dual pair $-\mathcal{N}=4$ SYM and string theory on $\mathrm{AdS}_{5} \times \mathrm{S}^{5}$. No hint of 10-d space-time or gravitons in the SYM theory!
- This duality $=>$ weakly coupled low-energy type IIB gravity on $\mathrm{AdS}_{5} \times \mathrm{S}^{5}$ and strongly coupled $\mathcal{N}=4$ SYM theory in the large-N limit have exactly the same physical content

Half-BPS states and LLM geometries

- LLM work - a small new window of opportunity.
- Limited to half-BPS sector, but hopefully has some wider lessons
- SYM - half-BPS states are described by a holomorphic sector of quantum mechanics of an $N \times N$ complex matrix Z in a harmonic potential
- This system can be shown ${ }^{b}$ to be equivalent to the quantum mechanics of an $N \times N$ hermitian matrix Z in a harmonic potential

[^2]
Half-BPS states and LLM geometries

- Gauge invariance => physical observables on boundary are $U(N)$-invariant traces:

$$
\operatorname{tr} Z^{k}, \quad k=1,2, \cdots, N
$$

- Physical states <=> operators

$$
\left(\operatorname{tr} Z^{k_{1}}\right)^{l_{1}}\left(\operatorname{tr} Z^{k_{2}}\right)^{l_{2}} \ldots
$$

- Total number of Z 's is a conserved RR charge $Q=\sum_{i} k_{i} l_{i}$. BPS condition $=>E=Q$

Half-BPS states and LLM geometries

- At large N there is a semiclassical picture of the states of this system in terms of droplets of fermi fluid in phase space

Half-BPS states and LLM geometries

- At large N there is a semiclassical picture of the states of this system in terms of droplets of fermi fluid in phase space

ground state distribution

Half-BPS states and LLM geometries

- At large N there is a semiclassical picture of the states of this system in terms of droplets of fermi fluid in phase space

small fluctuations around the ground state

Half-BPS states and LLM geometries

- By explicitly solving equations of type IIB gravity, LLM showed that there is a similar structure in the classical geometries in the half-BPS sector!
- LLM solutions - two of the space coordinates are identified with the phase space of a single fermion => noncommutativity in two space directions in the semicalssical description ${ }^{\text {® }}$
- Small fluctuations around AdS space, i.e low-energy graviton excitations ${ }^{b \in G} \equiv$ low-energy fluctuations of the fermi vacuum ${ }^{d}$

[^3]
Half-BPS states and LLM geometries

- Motivation for our work ${ }^{\text {a }}$ - on the CFT side the half-BPS system can be quantized exactly in terms of our bosons => window of opportunity to learn about aspects of quantum gravity.
- At finite N, only the low-energy excitations on the boundary can be identified with low-energy $(\ll N)$ gravitons in the bulk
- The single-particle graviton excitations are related to our bosons. On the boundary, these states are:

$$
\beta_{m}^{\dagger}|0\rangle=\sum_{n=1}^{m}(-1)^{n-1} \sqrt{\frac{(N+m-n)!}{2^{m}(N-n)!}} \sigma_{1}^{\dagger}{ }^{m-n} \sigma_{n}^{\dagger}|0\rangle
$$

Half-BPS states and LLM geometries

- One can compute exactly the correlation functions $<\beta_{k_{1}}^{\dagger} \beta_{k_{2}}^{\dagger} \cdots>$

Half-BPS states and LLM geometries

- One can compute exactly the correlation functions $<\beta_{k_{1}}^{\dagger} \beta_{k_{2}}^{\dagger} \cdots>$
- On the boundary:

Half-BPS states and LLM geometries

- One can compute exactly the correlation functions $<\beta_{k_{1}}^{\dagger} \beta_{k_{2}}^{\dagger} \cdots>$
- On the boundary:
- at low energies, perturbation theory is good and reproduces supergravity answers; there is an effective cubic hamiltonian

Half-BPS states and LLM geometries

- One can compute exactly the correlation functions $<\beta_{k_{1}}^{\dagger} \beta_{k_{2}}^{\dagger} \cdots>$
- On the boundary:
- at low energies, perturbation theory is good and reproduces supergravity answers; there is an effective cubic hamiltonian
- perturbation theory breaks down for β 's with energy of order \sqrt{N}

Half-BPS states and LLM geometries

- One can compute exactly the correlation functions $<\beta_{k_{1}}^{\dagger} \beta_{k_{2}}^{\dagger} \cdots>$
- On the boundary:
- at low energies, perturbation theory is good and reproduces supergravity answers; there is an effective cubic hamiltonian
- perturbation theory breaks down for β 's with energy of order \sqrt{N}
- At energies of order N, the β interactions grow exponentially with N

Half-BPS states and LLM geometries

- One can compute exactly the correlation functions $<\beta_{k_{1}}^{\dagger} \beta_{k_{2}}^{\dagger} \cdots>$
- In the bulk:

Half-BPS states and LLM geometries

- One can compute exactly the correlation functions $<\beta_{k_{1}}^{\dagger} \beta_{k_{2}}^{\dagger} \cdots>$
- In the bulk:
- gravitons with energies larger than \sqrt{N} have a size smaller than 10-dim planck scale

Half-BPS states and LLM geometries

- One can compute exactly the correlation functions $<\beta_{k_{1}}^{\dagger} \beta_{k_{2}}^{\dagger} \cdots>$
- In the bulk:
- gravitons with energies larger than \sqrt{N} have a size smaller than 10-dim planck scale
- nonlocal solitonic excitations with energy of order N
- giant gravitons ${ }^{\text {a }}$
${ }^{a}$ McGreevy, Susskind and Toumbas, hep-th/0003075

Half-BPS states and LLM geometries

- One can compute exactly the correlation functions $<\beta_{k_{1}}^{\dagger} \beta_{k_{2}}^{\dagger} \cdots>$
- In the bulk:
- gravitons with energies larger than \sqrt{N} have a size smaller than 10-dim planck scale
- nonlocal solitonic excitations with energy of order N
- giant gravitons ${ }^{\text {a }}$
- The size of giant gravitons is larger than 10-dim planck scale for energies larger than \sqrt{N}

[^4]
Half-BPS states and LLM geometries

- On the boundary, single-particle giant graviton states map to linear combinations of multi-graviton states ${ }^{a}$. Example:

$$
\mid \text { giant graviton of energy } 2\rangle=\left(\beta_{1}^{\dagger^{2}}-\beta_{2}^{\dagger}\right)|0\rangle
$$

[^5]
Half-BPS states and LLM geometries

- On the boundary, single-particle giant graviton states map to linear combinations of multi-graviton states ${ }^{a}$. Example:

$$
\mid \text { giant graviton of energy } 2\rangle=\left(\beta_{1}^{\dagger^{2}}-\beta_{2}^{\dagger}\right)|0\rangle=a_{2}^{\dagger}|0\rangle
$$

[^6]
Half-BPS states and LLM geometries

- Boundary states corresponding to single-particle bulk giant states are our single-particle bosonic states:

$$
\mid \text { giant graviton of energy } k\rangle=a_{k}^{\dagger}|0\rangle
$$

Half-BPS states and LLM geometries

- Boundary states corresponding to single-particle bulk giant states are our single-particle bosonic states:

$$
\mid \text { giant graviton of energy } k\rangle=a_{k}^{\dagger}|0\rangle
$$

- Hamiltonian: $H_{F}=\sum_{n} \mathcal{E}(n) \psi_{n}^{\dagger} \psi_{n}=>H_{B}=\sum_{k=1}^{N} k a_{k}^{\dagger} a_{k}$

Half-BPS states and LLM geometries

- Boundary states corresponding to single-particle bulk giant states are our single-particle bosonic states:

$$
\mid \text { giant graviton of energy } k\rangle=a_{k}^{\dagger}|0\rangle
$$

- Hamiltonian: $H_{F}=\sum_{n} \mathcal{E}(n) \psi_{n}^{\dagger} \psi_{n}=>H_{B}=\sum_{k=1}^{N} k a_{k}^{\dagger} a_{k}$
- Discrete space?

$$
\phi\left(\theta_{n}\right)=\sum_{k=1}^{N}\left(e^{i k \theta_{n}} a_{k}+e^{-i k \theta_{n}} a_{k}^{\dagger}\right), \quad \theta_{n}=\frac{2 \pi n}{N}
$$

Half-BPS states and LLM geometries

Summary (half-BPS sector):

- low-energy fluctuations of the metric around AdS are adequately described by gravitons
- at moderately high energies of order \sqrt{N}, perturbative gravity breaks down; one must now sum to all orders in $1 / N$ to get correct answers
- at very high energies of order N, gravitons cease to provide a meaningful description; instead we must now use a new set of d.o.f., namely the giant gravitons, which are weakly coupled at high energies

Free fermions on a circle

- We will mainly discuss ${ }^{\text {a }}$ the free fermion problem. Interactions can be taken into account once the free part has been dealt with properly.
- The free hamiltonian:

$$
H=-\frac{\hbar^{2}}{2 m} \int_{0}^{L} d x \chi^{\dagger}(x) \partial_{x}^{2} \chi(x)
$$

[^7]
Free fermions on a circle

- We will mainly discuss ${ }^{\text {a }}$ the free fermion problem. Interactions can be taken into account once the free part has been dealt with properly.
- Hamiltonian in terms of fourier modes:

$$
H=\omega \hbar \sum_{n=-\infty}^{\infty} n^{2} \chi_{n}^{\dagger} \chi_{n}, \quad \omega \equiv \frac{2 \pi^{2} \hbar}{m L^{2}}
$$

Free fermions on a circle

- We will mainly discuss ${ }^{\text {a }}$ the free fermion problem. Interactions can be taken into account once the free part has been dealt with properly.
- Hamiltonian in terms of fourier modes:

$$
H=\omega \hbar \sum_{n=-\infty}^{\infty} n^{2} \chi_{n}^{\dagger} \chi_{n}, \quad \omega \equiv \frac{2 \pi^{2} \hbar}{m L^{2}}
$$

- To apply our bosonization rules, need to introduce an ordering in the spectrum. For example, replace $n^{2} \rightarrow(n+\epsilon)^{2}$

[^8]
Free fermions on a circle

Free fermions on a circle

- Effectively, we have set $\chi_{+n}=\psi_{2 n}$ and $\chi_{-n}=\psi_{2 n-1}$

Free fermions on a circle

- Effectively, we have set $\chi_{+n}=\psi_{2 n}$ and $\chi_{-n}=\psi_{2 n-1}$
- Fermionic hamiltonian:

$$
H=\omega \hbar \sum_{n=1}^{\infty}\left(\frac{n+e(n)}{2}\right)^{2} \psi_{n}^{\dagger} \psi_{n}
$$

Free fermions on a circle

- Effectively, we have set $\chi_{+n}=\psi_{2 n}$ and $\chi_{-n}=\psi_{2 n-1}$
- Fermionic hamiltonian:

$$
H=\omega \hbar \sum_{n=1}^{\infty}\left(\frac{n+e(n)}{2}\right)^{2} \psi_{n}^{\dagger} \psi_{n}
$$

- Bosonized hamiltonian:

$$
H=\omega \hbar \sum_{k=1}^{N}\left(\frac{\hat{n}_{k}+e\left(\hat{n}_{k}\right)}{2}\right)^{2}
$$

where $\hat{n}_{k}=\sum_{i=k}^{N} a_{i}^{\dagger} a_{i}+N-k$

Free fermions on a circle

- Large- N low energy limit: $H=H_{F}+H_{0}+H_{1}$

Free fermions on a circle

- Large- N low energy limit: $H=H_{F}+H_{0}+H_{1}$

$$
H_{0}=\frac{\hbar \omega N}{2}\left(\sum_{k=1}^{N} k a_{k}^{\dagger} a_{k}+\hat{\nu}\right)
$$

- $\hat{\nu}=N_{-}-N_{-F}=\sum_{k=1}^{N}\left(e\left(\hat{n}_{k}\right)-e(N-k)\right)$ is the number of excess fermions in negative momentum states over and above the number in fermi vacuum
- H_{1} is order one on excited states whose energy is low compared to N

Free fermions on a circle

- The massless collective boson:

Free fermions on a circle

- The massless collective boson:
- The partition function

$$
Z_{N}=\sum e^{-\beta H_{0}}
$$

Free fermions on a circle

- The massless collective boson:
- The partition function

$$
Z_{N}=\sum e^{-\beta H_{0}}
$$

- In the limit $N \rightarrow \infty$, the partition function turns out to be

$$
Z_{\infty}=\sum_{\nu=-\infty}^{+\infty} q^{\nu^{2}}\left[\prod_{n=1}^{\infty}\left(1-q^{n}\right)^{-1}\right]^{2} ; \quad q=e^{-\hbar \omega N \beta}
$$

Free fermions on a circle

- States $(\nu=0)$:

Free fermions on a circle

- States $(\nu=0)$:
- states at level l have energy $E_{0 l}=\hbar \omega N l$ - these include multiparticle states of both chiralities

Free fermions on a circle

- States $(\nu=0)$:
- states at level l have energy $E_{0 l}=\hbar \omega N l$ - these include multiparticle states of both chiralities
- example, $l=2$:

$$
\left(\sigma_{1}^{\dagger}\right)^{4}|0\rangle, \sigma_{1}^{\dagger} \sigma_{3}^{\dagger}|0\rangle,\left(\sigma_{1}^{\dagger}\right)^{2} \sigma_{2}^{\dagger}|0\rangle, \sigma_{4}^{\dagger}|0\rangle,\left(\sigma_{2}^{\dagger}\right)^{2}|0\rangle
$$

- first two have momentum of opposite sign to the next two; the last state has zero momentum
- first four states: two single-particle and two 2-particle states of each chirality; the last state is non-chiral 2-particle state

Free fermions on a circle

- $1 / N$ corrections:

Free fermions on a circle

- $1 / N$ corrections:
- linear combinations exist in which expectation value of H_{1} vanishes:

$$
\frac{1}{\sqrt{2}}\left[\left(\sigma_{1}^{\dagger}\right)^{4} \pm \sigma_{1}^{\dagger} \sigma_{3}^{\dagger}\right]|0\rangle ; \quad \frac{1}{\sqrt{2}}\left[\left(\sigma_{1}^{\dagger}\right)^{2} \sigma_{2}^{\dagger} \pm \sigma_{4}^{\dagger}\right]|0\rangle
$$

Free fermions on a circle

- $1 / N$ corrections:
- linear combinations exist in which expectation value of H_{1} vanishes:

$$
\frac{1}{\sqrt{2}}\left[\left(\sigma_{1}^{\dagger}\right)^{4} \pm \sigma_{1}^{\dagger} \sigma_{3}^{\dagger}\right]|0\rangle ; \quad \frac{1}{\sqrt{2}}\left[\left(\sigma_{1}^{\dagger}\right)^{2} \sigma_{2}^{\dagger} \pm \sigma_{4}^{\dagger}\right]|0\rangle
$$

- such linear combinations exist at all levels; at each level there is one linear combination which is identical to an appropriate mode of the fermion density!

$$
\frac{1}{\sqrt{l}} \sum_{n} \psi_{n+2 l}^{\dagger} \psi_{n}\left|F_{0}\right\rangle \equiv \rho_{l}^{\dagger}|0\rangle=\frac{1}{\sqrt{l}} \sum_{k}^{[2 l]}\left(\sigma_{1}^{\dagger}\right)^{2 l-k} \sigma_{k}^{\dagger}|0\rangle
$$

Free fermions on a circle

- Cubic interaction:

Free fermions on a circle

- Cubic interaction:

$$
H_{1} \rho_{l}^{\dagger}|0\rangle=\hbar \omega \sum_{m=1}^{l-1} c_{m}^{l} \rho_{m}^{\dagger} \rho_{(l-m)}^{\dagger}|0\rangle, \quad l \leq \frac{N+1}{2}
$$

Free fermions on a circle

- Cubic interaction:

$$
H_{1} \rho_{l}^{\dagger}|0\rangle=\hbar \omega \sum_{m=1}^{l-1} c_{m}^{l} \rho_{m}^{\dagger} \rho_{(l-m)}^{\dagger}|0\rangle, \quad l \leq \frac{N+1}{2}
$$

- the coefficient:

$$
c_{m}^{l}=\sqrt{l m(l-m)}
$$

Free fermions on a circle

- Beyond low-energy perturbation theory:

Free fermions on a circle

- Beyond low-energy perturbation theory:
- states created by modes of fermion density have an extra term at high energies:

$$
\tilde{\rho}_{l}^{\dagger}|0\rangle=\rho_{l}^{\dagger}|0\rangle+\frac{1}{\sqrt{l}} \sum_{n=1}^{l} \psi_{2(l-n)}^{\dagger} \psi_{2 n-1}|0\rangle
$$

Free fermions on a circle

- Beyond low-energy perturbation theory:
- states created by modes of fermion density have an extra term at high energies:

$$
\tilde{\rho}_{l}^{\dagger}|0\rangle=\rho_{l}^{\dagger}|0\rangle+\frac{1}{\sqrt{l}} \sum_{n=1}^{l} \psi_{2(l-n)}^{\dagger} \psi_{2 n-1}|0\rangle
$$

- last term cannot be ignored at high energies; it is in fact a $\nu=-1$ state!

Free fermions on a circle

?

$$
\tilde{\rho}_{m}^{\dagger} \tilde{\rho}_{\left(\frac{N+3}{2}-m\right)}^{\dagger}|0\rangle=\rho_{m}^{\dagger} \rho_{\left(\frac{N+3}{2}-m\right)}^{\dagger}|0\rangle+\frac{1}{\sqrt{m\left(\frac{N+3}{2}-m\right)}} \sigma_{1}^{\dagger} \sigma_{N-1}^{\dagger}|0\rangle
$$

- last term will contribute in

$$
\langle 0| \tilde{\rho}_{+\frac{N+3}{2}}^{\dagger} \tilde{\rho}_{+m}^{\dagger} \tilde{\rho}_{+\left(\frac{N+3}{2}-m\right)}^{\dagger}|0\rangle
$$

Free fermions on a circle

- Exact partition function for finite N (H_{0} part only):

$$
Z_{N}=\sum_{\nu=-\frac{N-1}{2}}^{+\frac{N+1}{2}} q^{\nu^{\nu^{\prime}}} \prod_{n=1}^{\frac{N+1}{2}-\nu}\left(1-q^{n}\right)^{-1} \prod_{n=1}^{\frac{N-1}{2}+\nu}\left(1-q^{n}\right)^{-1}
$$

Free fermions on a circle

- Exact partition function for finite N (H_{0} part only):

$$
Z_{N}=\sum_{\nu=-\frac{N-1}{2}}^{+\frac{N+1}{2}} q^{\nu^{2}} \prod_{n=1}^{\frac{N+1}{2}-\nu}\left(1-q^{n}\right)^{-1} \prod_{n=1}^{\frac{N-1}{2}+\nu}\left(1-q^{n}\right)^{-1}
$$

- For large $-N$:

$$
Z_{N}=\left(1+2 q-q^{\frac{N+1}{2}}\right)\left(1-q^{\frac{N+1}{2}}\right)\left[\prod_{n=1}^{\infty}\left(1-q^{n}\right)^{-1}\right]^{2}
$$

Free fermions on a circle

- Exact partition function for finite N (H_{0} part only):

$$
Z_{N}=\sum_{\nu=-\frac{N-1}{2}}^{+\frac{N+1}{2}} q^{\nu^{\nu^{\prime}}} \prod_{n=1}^{\frac{N+1}{2}-\nu}\left(1-q^{n}\right)^{-1} \prod_{n=1}^{\frac{N-1}{2}+\nu}\left(1-q^{n}\right)^{-1}
$$

- For large $-N$:

$$
Z_{N}=(1+2 q-\underbrace{q^{\frac{N+1}{2}}})\left(1-q^{\frac{N+1}{2}}\right)\left[\prod_{n=1}^{\infty}\left(1-q^{n}\right)^{-1}\right]^{2}
$$

- nonperturbative effects in 2-d YM
- black-hole counting and baby universes

Free fermions on a circle

Summary:

- Tomonaga's problem has an exact solution in terms of our bosons. Low-energy local cubic collective field theory can be derived; the collective field is a linear combination of multi-particle states of our bosons, like the graviton in the LLM case
- our bosonization goes beyond this low-energy local limit, but then there is no natural local space-time field theory interpretation
- density-density interactions, as in a system of electrons with Coulomb interactions, can be incorporated - easy at low-energies, but requires more work at high energies

SUMMARY

- We have developed a simple and exact bosonization of a finite number of non-relativistic fermions; we discussed here applications to concrete problems in different areas of physics
- Our bosonization trades finiteness of the number of fermions for finite dimensionality of the single-particle boson Hilbert space
- the bosonized theory is inherently grainy; in the specific applications we discussed, a local space-time field theory emerges only in the large $-N$ and low-energy limit
- Bosonization of finite number of fermions in higher dimensions?

[^0]: ${ }^{a}$ Brezin, Itzykson, Parisi and Zuber, Comm. Math. Phys.59, 35, 1978
 ${ }^{\text {b/Nucl.Phys.B165, 511, }} 1980$

[^1]: asuryanarayana, hep-th/0411145

[^2]: ${ }^{a}$ Lin, Lunin and Maldacena, hep-th/0409174
 Takayama and Tsuchiya, hep-th/0507070

[^3]: ${ }^{a}$ Mandal, hep-th/0502104
 ${ }^{b}$ Grant, Maoz, Marsano, Papadodimas and Rychkov, hep-th/0505079
 ${ }^{c}$ Maoz and Rychkov, hep-th/0508059
 ${ }^{d}$ Dhar, hep-th/0505084

[^4]: ${ }^{a}$ McGreevy, Susskind and Toumbas, hep-th/0003075

[^5]: ${ }^{a}$ Balasubramanian, Berkooz, Naqvi and Strassler, hep-th/0107119

[^6]: ${ }^{a}$ Balasubramanian, Berkooz, Naqvi and Strassler, hep-th/0107119

[^7]: ${ }^{a}$ Dhar and Mandal, hep-th/0603154

[^8]: ${ }^{a}$ Dhar and Mandal, hep-th/0603154

