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Foliation
Splitting a space (S) into a sequence 
of subspaces (SS) such that each and 
every point of the space lies on one 
and only one of the subspaces is 
called a foliation.

Codim of Foliation = dim(S) - dim(SS)

Subspaces (SS) are called 
hypersurfaces if Codimension = 1



A hypersurface is flat if all the components
of the Riemann Curvature Tensor are zero.

________________

Consider Spherically Symmetric Static 
Spacetime metric
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To obtain flat hypersurfaces solve
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Instead: Writing unit tangent vector to the world-line of the 
observer falling freely from infinity as n and the the unit tangent 

vector to the hypersurface as T, we require that
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We have flat Hypersurfaces if k=1.
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Now Consider hypersurface
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The induced metric (of hypersurfaces) is

Considering spherical symmetry the 
above hypersurface in explicit form can 
be given as 
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For the induced metric to be flat a 
necessary but not sufficient condition

0     :Scalar Ricci =Ri.e.
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Using the substitution
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Equation (1) becomes 
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and we have the solution
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0     if     0 
i.e.flat  is metric above The
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The induced metric is then
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The Flat Hypersurfaces are then given 
as: 
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The mean extrinsic curvature, K, of these 
hypersurfaces is
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Thank You


