Chern-Simons Theory on S^{1}-Bundles:
 Abelianisation and q-deformed Yang-Mills Theory

George Thompson
ICTP, P.O. Box 586, 34100 Trieste, Italy.

Talk presented in Islamabad

Work done in collaboration with Matthias Blau: hep-th/0601068

The object of interest to us is the path integral,

$$
Z_{k, G}[M]=\int D A \exp \frac{i k}{4 \pi} \int_{M} \operatorname{Tr}\left(A d A+\frac{2}{3} A^{3}\right)
$$

The path integral is over the connections on $E \rightarrow M$ a G bundle. We will consider special classes of 3-manifold M namely those that are themselves $U(1)$ bundles, of degree p, over Σ_{g} a Riemann surface of genus g. Denote these by $M_{(g, p)}$.

The steps involved in solving the theory on $U(1)$ bundles are:

1. Decomposing the gauge field

The steps involved in solving the theory on $U(1)$ bundles are:

1. Decomposing the gauge field
2. Fixing the gauge (partially)

The steps involved in solving the theory on $U(1)$ bundles are:

1. Decomposing the gauge field
2. Fixing the gauge (partially)
3. Diagonalising

The steps involved in solving the theory on $U(1)$ bundles are:

1. Decomposing the gauge field
2. Fixing the gauge (partially)
3. Diagonalising
4. Pushing the calculations down to the base Σ_{g}.

$$
Z_{k, G}[M]=\Lambda \frac{e^{4 \pi i p \Phi_{0}}}{|W|} \sum_{r \in \mathbb{Z}_{p}^{\text {r. }}} \int_{\mathfrak{t}} T_{S^{1}}(\phi)^{\chi\left(\Sigma_{g}\right) / 2} \exp i \frac{k+c_{\mathfrak{g}}}{4 \pi} \operatorname{Tr}\left(p \phi^{2}+4 \pi r \phi\right)
$$

Λ is independent of $p, T_{S^{1}}(\phi)=\operatorname{det}_{\mathfrak{k}}\left(1-\operatorname{Ade}^{\phi}\right)$ is the Ray-Singer Torsion on the circle and $\Phi_{0}=\operatorname{dim} G / 48$. One can perform the Gaussian integrals and/or the sums but this is the nicest form so I leave it like this.

BACKGROUND

BACKGROUND

1. The path integral gives (framed) 3-manifold invariants.

- Usually one follows a perturbative approach $A \rightarrow A / \sqrt{k}$ and expands in large k.

BACKGROUND

1. The path integral gives (framed) 3-manifold invariants.

- Usually one follows a perturbative approach $A \rightarrow A / \sqrt{k}$ and expands in large k.
- One gets an invariant for all G and k (even for G non-compact)

BACKGROUND

1. The path integral gives (framed) 3-manifold invariants.

- Usually one follows a perturbative approach $A \rightarrow A / \sqrt{k}$ and expands in large k.
- One gets an invariant for all G and k (even for G non-compact)
- LMO have extracted from this a mathematically well defined theory of 'finite type' invariants.

BACKGROUND

1. The path integral gives (framed) 3-manifold invariants.

- Usually one follows a perturbative approach $A \rightarrow A / \sqrt{k}$ and expands in large k.
- One gets an invariant for all G and k (even for G non-compact)
- LMO have extracted from this a mathematically well defined theory of 'finite type' invariants.
- One can also consider knot invariants (or link invariants)

$$
Z_{k, G}[M, \gamma, R]=\left\langle\operatorname{Tr}_{R} P \exp \oint_{\gamma} A\right\rangle
$$

BACKGROUND

1. The path integral gives (framed) 3-manifold invariants.

- Usually one follows a perturbative approach $A \rightarrow A / \sqrt{k}$ and expands in large k.
- One gets an invariant for all G and k (even for G non-compact)
- LMO have extracted from this a mathematically well defined theory of 'finite type' invariants.
- One can also consider knot invariants (or link invariants)

$$
Z_{k, G}[M, \gamma, R]=\left\langle\operatorname{Tr}_{R} P \exp \oint_{\gamma} A\right\rangle
$$

2. Exact results also exist.

BACKGROUND

1. The path integral gives (framed) 3-manifold invariants.

- Usually one follows a perturbative approach $A \rightarrow A / \sqrt{k}$ and expands in large k.
- One gets an invariant for all G and k (even for G non-compact)
- LMO have extracted from this a mathematically well defined theory of 'finite type' invariants.
- One can also consider knot invariants (or link invariants)

$$
Z_{k, G}[M, \gamma, R]=\left\langle\operatorname{Tr}_{R} P \exp \oint_{\gamma} A\right\rangle
$$

2. Exact results also exist.

- Surgery prescription combined with CFT techniques allow one to determine the Chern-Simons invariants.

BACKGROUND

1. The path integral gives (framed) 3-manifold invariants.

- Usually one follows a perturbative approach $A \rightarrow A / \sqrt{k}$ and expands in large k.
- One gets an invariant for all G and k (even for G non-compact)
- LMO have extracted from this a mathematically well defined theory of 'finite type' invariants.
- One can also consider knot invariants (or link invariants)

$$
Z_{k, G}[M, \gamma, R]=\left\langle\operatorname{Tr}_{R} P \exp \oint_{\gamma} A\right\rangle
$$

2. Exact results also exist.

- Surgery prescription combined with CFT techniques allow one to determine the Chern-Simons invariants.
- But there are very few exact (i.e. non-perturbative) path integral computations of Chern-Simons theory, the exceptions being on manifolds of the form $\Sigma_{g} \times S^{1}$. The technique employed was Abelianisation of the non-Abelian theory.

We are reconsidering the path integral on $M_{(g, p)}$

- To ask if the method of Abelianisation can be generalised from trivial $(p=0)$ to non-trivial circle bundles.

We are reconsidering the path integral on $M_{(g, p)}$

- To ask if the method of Abelianisation can be generalised from trivial $(p=0)$ to non-trivial circle bundles.
- As Chern-Simons theory on general Seifert manifolds has recently been studied by Beasley and Witten hep-th/0503126 using the method of non-Abelian localisation one would like toknow if the diagonalisation procedure yields results that are manifestly equivalent or comparable to those of BW?

We are reconsidering the path integral on $M_{(g, p)}$

- To ask if the method of Abelianisation can be generalised from trivial $(p=0)$ to non-trivial circle bundles.
- As Chern-Simons theory on general Seifert manifolds has recently been studied by Beasley and Witten hep-th/0503126 using the method of non-Abelian localisation one would like toknow if the diagonalisation procedure yields results that are manifestly equivalent or comparable to those of BW?
- Chern-Simons theory on Lens spaces $L(p, 1)=M_{(0, p)}$ has also recently appeared in the context of black hole partition function calculations via topological string theory hep-th/0211098 and the methods of Abeliansiation were used to argue that this theory is equivalent to a "q-deformed" two-dimensional Yang-Mills theory.

Geometric Set-Up

The $M_{(g, p)}$ are themselves principal $U(1)$ bundles $U(1) \rightarrow M_{(g, p)} \xrightarrow{\pi} \Sigma_{g}$ over 2-dimensional surfaces Σ_{g} of genus g and first Chern (or Euler) class $-p \in \mathbb{Z}$.
Let κ be a connection on the principal $U(1)$-bundle $M_{(g, p)}$ (a globally defined real-valued 1 -form on the total space of the bundle), and denote by K the fundamental vector field on $M_{(g, p)}$, i.e. the generator of the $U(1)$-action.

- A connection κ is characterised by $\iota_{K} \kappa=1$
- A connection κ is characterised by $\iota_{K} \kappa=1$
- and the equivariance condition $L_{K} \kappa=0$ where $L_{K}=\left\{d, \iota_{K}\right\}$ is the Lie derivative in the K direction. These two conditions imply that $\iota_{K} d \kappa=0$, i.e. that the curvature 2 -form $d \kappa$ of κ is horizontal (as it should be).
- A connection κ is characterised by $\iota_{K} \kappa=1$
- and the equivariance condition $L_{K} \kappa=0$ where $L_{K}=\left\{d, \iota_{K}\right\}$ is the Lie derivative in the K direction. These two conditions imply that $\iota_{K} d \kappa=0$, i.e. that the curvature 2 -form $d \kappa$ of κ is horizontal (as it should be).
- In local coordinates $\kappa=d \theta+a$ where θ is a fibre coordinate, $0 \leq \theta<1$, and $a=a_{i} d x^{i}$ is a local representative on Σ_{g} of the connection κ on $M_{(g, p)}$.
- A connection κ is characterised by $\iota_{K} \kappa=1$
- and the equivariance condition $L_{K} \kappa=0$ where $L_{K}=\left\{d, \iota_{K}\right\}$ is the Lie derivative in the K direction. These two conditions imply that $\iota_{K} d \kappa=0$, i.e. that the curvature 2 -form $d \kappa$ of κ is horizontal (as it should be).
- In local coordinates $\kappa=d \theta+a$ where θ is a fibre coordinate, $0 \leq \theta<1$, and $a=a_{i} d x^{i}$ is a local representative on Σ_{g} of the connection κ on $M_{(g, p)}$.
- Since $M_{(g, p)}$ has degree p, we may choose κ so that

$$
d \kappa=p \pi^{*}(\omega), \quad \int_{\Sigma_{g}} \omega=1
$$

- A connection κ is characterised by $\iota_{K} \kappa=1$
- and the equivariance condition $L_{K} \kappa=0$ where $L_{K}=\left\{d, \iota_{K}\right\}$ is the Lie derivative in the K direction. These two conditions imply that $\iota_{K} d \kappa=0$, i.e. that the curvature 2 -form $d \kappa$ of κ is horizontal (as it should be).
- In local coordinates $\kappa=d \theta+a$ where θ is a fibre coordinate, $0 \leq \theta<1$, and $a=a_{i} d x^{i}$ is a local representative on Σ_{g} of the connection κ on $M_{(g, p)}$.
- Since $M_{(g, p)}$ has degree p, we may choose κ so that

$$
d \kappa=p \pi^{*}(\omega), \quad \int_{\Sigma_{g}} \omega=1
$$

- With the above choices we see that

$$
\kappa \wedge d \kappa=p d \theta \wedge \pi^{*}(\omega)
$$

is nowhere vanishing as required providing that the $U(1)$ bundle is non-trivial, that is providing $p \neq 0$.

- A connection κ is characterised by $\iota_{K} \kappa=1$
- and the equivariance condition $L_{K} \kappa=0$ where $L_{K}=\left\{d, \iota_{K}\right\}$ is the Lie derivative in the K direction. These two conditions imply that $\iota_{K} d \kappa=0$, i.e. that the curvature 2 -form $d \kappa$ of κ is horizontal (as it should be).
- In local coordinates $\kappa=d \theta+a$ where θ is a fibre coordinate, $0 \leq \theta<1$, and $a=a_{i} d x^{i}$ is a local representative on Σ_{g} of the connection κ on $M_{(g, p)}$.
- Since $M_{(g, p)}$ has degree p, we may choose κ so that

$$
d \kappa=p \pi^{*}(\omega), \quad \int_{\Sigma_{g}} \omega=1
$$

- With the above choices we see that

$$
\kappa \wedge d \kappa=p d \theta \wedge \pi^{*}(\omega)
$$

is nowhere vanishing as required providing that the $U(1)$ bundle is non-trivial, that is providing $p \neq 0$.

- For later use we note that

$$
\int_{M} \kappa \wedge d \kappa=p \int_{\Sigma_{g}} \omega=p
$$

Decomposition

- As both K and κ are nowhere vanishing we have that $\kappa \wedge \iota_{K}$ and ($1-\kappa \wedge \iota_{K}$) are projection operators, corresponding to the decomposition

$$
T^{*} M=T_{\kappa}^{*}(M) \oplus T_{H}^{*}(M), \quad T_{\kappa}^{*}(M) \approx \Omega^{0}(M)
$$

into forms along the κ direction and those which are horizontal.

Decomposition

- As both K and κ are nowhere vanishing we have that $\kappa \wedge \iota_{K}$ and ($1-\kappa \wedge \iota_{K}$) are projection operators, corresponding to the decomposition

$$
T^{*} M=T_{\kappa}^{*}(M) \oplus T_{H}^{*}(M), \quad T_{\kappa}^{*}(M) \approx \Omega^{0}(M)
$$

into forms along the κ direction and those which are horizontal.

- Concretely, for $\alpha \in \Omega^{1}(M, \mathbb{R})$ one has $\alpha=\alpha_{\kappa}+\alpha_{H}$ with

$$
\alpha_{\kappa}=\kappa \wedge \iota_{K} \alpha \in \Omega_{\kappa}^{1}(M, \mathbb{R}), \quad \alpha_{H}=\left(1-\kappa \wedge \iota_{K}\right) \alpha \in \Omega_{H}^{1}(M, \mathbb{R}) .
$$

Decomposition

- As both K and κ are nowhere vanishing we have that $\kappa \wedge \iota_{K}$ and ($1-\kappa \wedge \iota_{K}$) are projection operators, corresponding to the decomposition

$$
T^{*} M=T_{\kappa}^{*}(M) \oplus T_{H}^{*}(M), \quad T_{\kappa}^{*}(M) \approx \Omega^{0}(M)
$$

into forms along the κ direction and those which are horizontal.

- Concretely, for $\alpha \in \Omega^{1}(M, \mathbb{R})$ one has $\alpha=\alpha_{\kappa}+\alpha_{H}$ with $\alpha_{\kappa}=\kappa \wedge \iota_{K} \alpha \in \Omega_{\kappa}^{1}(M, \mathbb{R}), \quad \alpha_{H}=\left(1-\kappa \wedge \iota_{K}\right) \alpha \in \Omega_{H}^{1}(M, \mathbb{R})$.
- Likewise we can decompose connections on vector bundles E over M, thought of as elements of $\Omega^{1}(M, \mathfrak{g})$,

$$
A=A_{\kappa}+A_{H} \equiv \phi \kappa+A_{H} .
$$

Since $\phi \in \Omega^{0}(M, \mathfrak{g})$ we can think of it as a section of the adjoint bundle $E=M \times \mathfrak{g}$.

$$
\operatorname{Tr} \int_{M_{(g, p)}}\left(A_{H} \wedge \kappa \wedge \mathcal{L}_{\phi} A_{H}+2 \phi \kappa \wedge d A_{H}+\phi^{2} \kappa \wedge d \kappa\right)
$$

here

$$
\mathcal{L}_{\phi} B=L_{K} B+[\phi, B] .
$$

Things are looking good! The action still has a cubic term but as far as the horizontal fields are concerned we only have Gaussian integration to perform.

Gauge Transformations
Under infinitesimal gauge transformations $\delta A=d_{A} \Lambda$ is

$$
\delta \phi=\mathcal{L}_{\phi} \Lambda
$$

with

$$
\mathcal{L}_{\phi}=L_{K}+[\phi,] .
$$

Gauge Choice (partial)

- Having singled out a particular component of the gauge field A_{κ} it is tempting to impose the gauge condition $A_{\kappa}=0=\phi$. However, this is not possible since Wilson loops along the fibres of $M_{(g, p)} \rightarrow \Sigma_{g}$ are gauge invariant and non-trivial.

Gauge Choice (partial)

- Having singled out a particular component of the gauge field A_{κ} it is tempting to impose the gauge condition $A_{\kappa}=0=\phi$. However, this is not possible since Wilson loops along the fibres of $M_{(g, p)} \rightarrow \Sigma_{g}$ are gauge invariant and non-trivial.
- Instead we impose, the allowed condition,

$$
L_{K} A_{\kappa}=0 \Leftrightarrow L_{K} \phi=\iota_{K} d \phi=0 .
$$

Gauge Choice (partial)

- Having singled out a particular component of the gauge field A_{κ} it is tempting to impose the gauge condition $A_{\kappa}=0=\phi$. However, this is not possible since Wilson loops along the fibres of $M_{(g, p)} \rightarrow \Sigma_{g}$ are gauge invariant and non-trivial.
- Instead we impose, the allowed condition,

$$
L_{K} A_{\kappa}=0 \Leftrightarrow L_{K} \phi=\iota_{K} d \phi=0 .
$$

- This gauge condition, $L_{K} \phi=0$, tells us that ϕ is a $U(1)$-invariant section of E. Equivalently, it can therefore be regarded as a section of the (trivial) adjoint bundle V over Σ_{g}.

Gauge Choice (partial)

- Having singled out a particular component of the gauge field A_{κ} it is tempting to impose the gauge condition $A_{\kappa}=0=\phi$. However, this is not possible since Wilson loops along the fibres of $M_{(g, p)} \rightarrow \Sigma_{g}$ are gauge invariant and non-trivial.
- Instead we impose, the allowed condition,

$$
L_{K} A_{\kappa}=0 \Leftrightarrow L_{K} \phi=\iota_{K} d \phi=0 .
$$

- This gauge condition, $L_{K} \phi=0$, tells us that ϕ is a $U(1)$-invariant section of E. Equivalently, it can therefore be regarded as a section of the (trivial) adjoint bundle V over Σ_{g}.
- So ϕ 'only depends on Σ_{g}.

Diagonalization

- Let T be some maximal torus of G and \mathfrak{t} the corresponding Cartan subalgebra, with $\mathfrak{g}=\mathfrak{t} \oplus \mathfrak{k}$.

Diagonalization

- Let T be some maximal torus of G and \mathfrak{t} the corresponding Cartan subalgebra, with $\mathfrak{g}=\mathfrak{t} \oplus \mathfrak{k}$.
- There are still S^{1} independent gauge transformations $L_{K} \Lambda=0$,

$$
\delta \phi=[\phi, \Lambda]
$$

and one checks that $L_{K} \delta \phi=0$ so the partial gauge is maintained.

Diagonalization

- Let T be some maximal torus of G and \mathfrak{t} the corresponding Cartan subalgebra, with $\mathfrak{g}=\mathfrak{t} \oplus \mathfrak{k}$.
- There are still S^{1} independent gauge transformations $L_{K} \Lambda=0$,

$$
\delta \phi=[\phi, \Lambda]
$$

and one checks that $L_{K} \delta \phi=0$ so the partial gauge is maintained.

- Use the residual conjugation symmetry to impose

$$
\phi^{\mathfrak{k}}=0 .
$$

Diagonalization

- Let T be some maximal torus of G and \mathfrak{t} the corresponding Cartan subalgebra, with $\mathfrak{g}=\mathfrak{t} \oplus \mathfrak{k}$.
- There are still S^{1} independent gauge transformations $L_{K} \Lambda=0$,

$$
\delta \phi=[\phi, \Lambda]
$$

and one checks that $L_{K} \delta \phi=0$ so the partial gauge is maintained.

- Use the residual conjugation symmetry to impose

$$
\phi^{\mathfrak{k}}=0 .
$$

- So ϕ is in the Cartan sub-algebra (i.e. chargeless w.r.t the $U(1)$'s) and we are almost done, or are we?
- No the diagonal gauge, $\phi^{\mathfrak{k}}=0$, is junk. Here is the standard counter example.
- No the diagonal gauge, $\phi^{\mathfrak{k}}=0$, is junk. Here is the standard counter example.
- Set $\Sigma_{g}=S^{2}, G=S U(2)$ so that $\mathfrak{g}=\mathbb{R}^{3}$ and pick ϕ so that $\phi^{2}=1$ Then $\phi: S^{2} \rightarrow S^{2}$ as the identity map. This map then has winding number one. If we could smoothly conjugate this ϕ into diagonal form we would find that we would have smoothly deformed ϕ to $\widetilde{\phi}=\sigma_{3}$ which is a map $\widetilde{\phi}: S^{2} \rightarrow p t=(0,0,1)$. Since $\widetilde{\phi}$ has winding number zero this is clearly impossible.

Gauge Invariant Winding Number and Singular Gauge Transformations

- A gauge invariant winding number is

$$
n\left(\phi, A, \Sigma_{g}\right)=-\int_{\Sigma_{g}} \operatorname{Tr}\left(\frac{1}{2 \pi} \phi \wedge F_{A}+\frac{1}{16 \pi} \phi d \phi \wedge d \phi\right)
$$

with $n\left(\phi, 0, \Sigma_{g}\right)=\int_{\Sigma_{g}} \phi^{*}(\omega)$ the winding number of the map and $n\left(\phi^{h}, A^{h}, \Sigma_{g}\right)=n\left(\phi, A, \Sigma_{g}\right)$ its gauge invariance.

Gauge Invariant Winding Number and Singular Gauge Transformations

- A gauge invariant winding number is

$$
n\left(\phi, A, \Sigma_{g}\right)=-\int_{\Sigma_{g}} \operatorname{Tr}\left(\frac{1}{2 \pi} \phi \wedge F_{A}+\frac{1}{16 \pi} \phi d \phi \wedge d \phi\right)
$$

with $n\left(\phi, 0, \Sigma_{g}\right)=\int_{\Sigma_{g}} \phi^{*}(\omega)$ the winding number of the map and $n\left(\phi^{h}, A^{h}, \Sigma_{g}\right)=n\left(\phi, A, \Sigma_{g}\right)$ its gauge invariance.

- Applying this to our favourite map,
winding $\#=n\left(\phi, 0, \Sigma_{g}\right)=n\left(\sigma_{3}, 0^{h}, \Sigma_{g}\right)=\frac{1}{2 \pi} \int_{\Sigma_{g}} d a=c_{1}(L)$
with $a=-\operatorname{Tr} \sigma_{3} h^{-1} d h$.
- Moral of the story is that if we insist on imposing the diagonal gauge then one must do so using singular gauge transformations and then in turn we produce non-trivial $U(1)$ bundles. If the map has winding number t we will get a $U(1)$ bundle with first Chern class t (we have split $\left.\operatorname{su}(2) \rightarrow L \oplus L^{-1}\right)$. Consequently we should sum over all $U(1)$ bundles on Σ_{g} !
- Moral of the story is that if we insist on imposing the diagonal gauge then one must do so using singular gauge transformations and then in turn we produce non-trivial $U(1)$ bundles. If the map has winding number t we will get a $U(1)$ bundle with first Chern class t (we have split $\left.\operatorname{su}(2) \rightarrow L \oplus L^{-1}\right)$. Consequently we should sum over all $U(1)$ bundles on Σ_{g} !
- From the 3-dimensional perspective over all T-bundles that one gets by pull back from Σ_{g}. Since the pull-back $\pi^{*} M_{(g, p)}$ of the $U(1)$-bundle $M_{(g, p)} \xrightarrow{\pi} \Sigma_{g}$ to the total space $M_{(g, p)}$ is (tautologically) trivial, $\pi^{*} M_{(g, p)}=M_{(g, p)} \times U(1)$, the pull-back of the p-th power of any line bundle on Σ_{g} to $M_{(g, p)}$ is trivial. Thus the pull-backs of line bundles from Σ_{g} to $M_{(g, p)}$ are of finite order. All torsion (finite order p) bundles on $M_{(g, p)}$ arise in this way, so that it is precisely these bundles that we should sum over in the path integral.
- Moral of the story is that if we insist on imposing the diagonal gauge then one must do so using singular gauge transformations and then in turn we produce non-trivial $U(1)$ bundles. If the map has winding number t we will get a $U(1)$ bundle with first Chern class t (we have split $\left.\operatorname{su}(2) \rightarrow L \oplus L^{-1}\right)$. Consequently we should sum over all $U(1)$ bundles on Σ_{g} !
- From the 3-dimensional perspective over all T-bundles that one gets by pull back from Σ_{g}. Since the pull-back $\pi^{*} M_{(g, p)}$ of the $U(1)$-bundle $M_{(g, p)} \xrightarrow{\pi} \Sigma_{g}$ to the total space $M_{(g, p)}$ is (tautologically) trivial, $\pi^{*} M_{(g, p)}=M_{(g, p)} \times U(1)$, the pull-back of the p-th power of any line bundle on Σ_{g} to $M_{(g, p)}$ is trivial. Thus the pull-backs of line bundles from Σ_{g} to $M_{(g, p)}$ are of finite order. All torsion (finite order p) bundles on $M_{(g, p)}$ arise in this way, so that it is precisely these bundles that we should sum over in the path integral.
- Sum over all line bundles L of finite order $L^{\otimes p}=M_{(g, p)} \otimes \mathbb{C}$.

Torsion Bundles

- Consider $G=S U(2)$ and $T=U(1)$: a line bundle L on Σ_{g} has first Chern class $c_{1}(L)=r[\omega]$, so that $\pi^{*}(L)$ has first Chern class

$$
c_{1}\left(\pi^{*}(L)\right)=r\left[\pi^{*}(\omega)\right]=\frac{r}{p}[d \kappa] .
$$

Torsion Bundles

- Consider $G=S U(2)$ and $T=U(1)$: a line bundle L on Σ_{g} has first Chern class $c_{1}(L)=r[\omega]$, so that $\pi^{*}(L)$ has first Chern class

$$
c_{1}\left(\pi^{*}(L)\right)=r\left[\pi^{*}(\omega)\right]=\frac{r}{p}[d \kappa] .
$$

- Thus the pull-back connection may be taken to be

$$
\mathrm{A}=2 \pi \frac{r}{p} \kappa .
$$

- Consider $G=S U(2)$ and $T=U(1)$: a line bundle L on Σ_{g} has first Chern class $c_{1}(L)=r[\omega]$, so that $\pi^{*}(L)$ has first Chern class

$$
c_{1}\left(\pi^{*}(L)\right)=r\left[\pi^{*}(\omega)\right]=\frac{r}{p}[d \kappa] .
$$

- Thus the pull-back connection may be taken to be

$$
\mathrm{A}=2 \pi \frac{r}{p} \kappa
$$

- This connection has holonomy in the S^{1} direction of $M_{(g, p)}$,

$$
\exp (i \oint \mathrm{~A})=\exp \left(2 \pi i \frac{r}{p}\right) \in \mathbb{Z}_{p}
$$

and captures the torsion.

- The curvature 2-form F_{H} becomes

$$
F_{H}=d A_{H}+d \mathrm{~A}=d A_{H}+2 \pi \frac{r}{p} d \kappa
$$

and the path integral should include a summation over $r=0, \ldots, p-1$.

- The curvature 2-form F_{H} becomes

$$
F_{H}=d A_{H}+d \mathrm{~A}=d A_{H}+2 \pi \frac{r}{p} d \kappa
$$

and the path integral should include a summation over $r=0, \ldots, p-1$.

- This argument generalises to higher rank. Normalising the component fields by expanding ϕ and A_{H} in a basis of simple roots,

$$
\phi=\sum_{i=1}^{\mathrm{rk}} \phi^{i} \alpha_{i}, \quad A_{H}=\sum_{i=1}^{\mathrm{rk}} A^{i} \alpha_{i}
$$

F_{H} is

$$
F_{H}=\sum_{i=1}^{\mathrm{rk}}\left(d A_{H}^{i}+2 \pi \frac{r^{i}}{p} d \kappa\right) \alpha_{i}
$$

The Calculation (partly done)

- The action is now

$$
\int_{M} \operatorname{Tr}\left(A_{H}^{\mathfrak{t}} \wedge d A_{H}^{\mathfrak{t}}+A_{H}^{\mathfrak{k}} \wedge \kappa \wedge \mathcal{L}_{\phi} A_{H}^{\mathfrak{k}}+2 \phi \kappa \wedge F_{H}^{\mathfrak{t}}+\phi^{2} \kappa \wedge d \kappa\right)
$$

The Calculation (partly done)

- The action is now

$$
\int_{M} \operatorname{Tr}\left(A_{H}^{\mathfrak{t}} \wedge d A_{H}^{\mathfrak{t}}+A_{H}^{\mathfrak{k}} \wedge \kappa \wedge \mathcal{L}_{\phi} A_{H}^{\mathfrak{k}}+2 \phi \kappa \wedge F_{H}^{\mathfrak{t}}+\phi^{2} \kappa \wedge d \kappa\right)
$$

- The charged gauge fields enter only through a Gaussian integration and so we can perform the path integral to get a determinant

$$
\left(\operatorname{Det}\left(* \kappa \wedge i \mathcal{L}_{\phi}\right)_{\Omega_{H}^{1}(M, \mathfrak{k})}\right)^{-1 / 2}
$$

The Calculation (partly done)

- The action is now

$$
\int_{M} \operatorname{Tr}\left(A_{H}^{\mathfrak{t}} \wedge d A_{H}^{\mathfrak{t}}+A_{H}^{\mathfrak{k}} \wedge \kappa \wedge \mathcal{L}_{\phi} A_{H}^{\mathfrak{k}}+2 \phi \kappa \wedge F_{H}^{\mathfrak{t}}+\phi^{2} \kappa \wedge d \kappa\right)
$$

- The charged gauge fields enter only through a Gaussian integration and so we can perform the path integral to get a determinant

$$
\left(\operatorname{Det}\left(* \kappa \wedge i \mathcal{L}_{\phi}\right)_{\Omega_{H}^{1}(M, \mathfrak{k})}\right)^{-1 / 2}
$$

- There is also a (charged) ghost contribution which is

$$
\operatorname{Det}\left(i \mathcal{L}_{\phi}\right)_{\Omega^{0}(M, t)}
$$

The Calculation (partly done)

- The action is now

$$
\int_{M} \operatorname{Tr}\left(A_{H}^{\mathfrak{t}} \wedge d A_{H}^{\mathfrak{t}}+A_{H}^{\mathfrak{k}} \wedge \kappa \wedge \mathcal{L}_{\phi} A_{H}^{\mathfrak{k}}+2 \phi \kappa \wedge F_{H}^{\mathfrak{t}}+\phi^{2} \kappa \wedge d \kappa\right)
$$

- The charged gauge fields enter only through a Gaussian integration and so we can perform the path integral to get a determinant

$$
\left(\operatorname{Det}\left(* \kappa \wedge i \mathcal{L}_{\phi}\right)_{\Omega_{H}^{1}(M, \mathfrak{k})}\right)^{-1 / 2}
$$

- There is also a (charged) ghost contribution which is

$$
\operatorname{Det}\left(i \mathcal{L}_{\phi}\right)_{\Omega^{0}(M, t)}
$$

- This ratio of determinants, though almost unity, gives us three things

1. (The absolute value) The Ray-Singer torsion of S^{1} (with respect to the flat connection $2 \pi i \phi d \theta$), raised to one half of the Euler characteristic of $\Sigma_{g}, T_{S^{1}}(\phi)^{\chi\left(\Sigma_{g}\right) / 2}$.
2. (The absolute value) The Ray-Singer torsion of S^{1} (with respect to the flat connection $2 \pi i \phi d \theta$), raised to one half of the Euler characteristic of $\Sigma_{g}, T_{S^{1}}(\phi)^{\chi\left(\Sigma_{g}\right) / 2}$.
3. (The phase) The famous shift $k \rightarrow k+c_{\mathfrak{g}}$
4. (The absolute value) The Ray-Singer torsion of S^{1} (with respect to the flat connection $2 \pi i \phi d \theta$), raised to one half of the Euler characteristic of $\Sigma_{g}, T_{S^{1}}(\phi)^{\chi\left(\Sigma_{g}\right) / 2}$.
5. (The phase) The famous shift $k \rightarrow k+c_{\mathfrak{g}}$
6. (The phase) The phase $\Phi_{0}=\frac{1}{48} \operatorname{dim} G$
7. (The absolute value) The Ray-Singer torsion of S^{1} (with respect to the flat connection $2 \pi i \phi d \theta$), raised to one half of the Euler characteristic of $\Sigma_{g}, T_{S^{1}}(\phi)^{\chi\left(\Sigma_{g}\right) / 2}$.
8. (The phase) The famous shift $k \rightarrow k+c_{\mathfrak{g}}$
9. (The phase) The phase $\Phi_{0}=\frac{1}{48} \operatorname{dim} G$

- Only those $A_{H}^{\mathfrak{t}}$ that are not constant on the $S^{1}, L_{K} A_{H}^{\mathfrak{t}} \neq 0$, appear in the first term of the action (and they appear no where else). Integrating these out gives rise to a determinant which is precisely cancelled by a similar (chargeless) ghost determinant.

Two Dimensional Theory

- Having integrated out all the \mathfrak{k}-valued fields as well as all the t -valued modes which are not $U(1)$ invariant, the Chern-Simons path integral essentially reduces to the path integral of an Abelian 2-dimensional gauge theory on Σ_{g},

$$
\begin{aligned}
Z_{k}\left[M_{(g, p)}, G\right] \sim & e^{4 \pi i p \Phi_{0}} \int D \phi D A_{H}^{\mathfrak{t}} T_{S^{1}}(\phi)^{\chi\left(\Sigma_{g}\right) / 2} \\
& \cdot \exp \left(i \frac{k+c_{\mathfrak{g}}}{4 \pi} S_{M}\right)
\end{aligned}
$$

The action is

$$
S_{M}=\int_{M} \operatorname{Tr}\left(2 \phi \kappa \wedge F_{H}+\phi^{2} \kappa \wedge d \kappa\right)
$$

- Since the path integral is only over invariant modes, we can push the action S_{M} down to Σ_{g},

$$
S_{M} \rightarrow S_{\Sigma}\left[A_{H}, \phi\right]=\frac{k+c_{\mathfrak{g}}}{4 \pi} \int_{\Sigma_{g}} \operatorname{Tr}\left(2 \phi F_{H}+p \phi^{2} \omega\right)
$$

where $A_{H}=A_{H}^{\mathfrak{t}}$ and $\phi=\phi^{\mathfrak{t}}$.

- Since the path integral is only over invariant modes, we can push the action S_{M} down to Σ_{g},

$$
S_{M} \rightarrow S_{\Sigma}\left[A_{H}, \phi\right]=\frac{k+c_{\mathfrak{g}}}{4 \pi} \int_{\Sigma_{g}} \operatorname{Tr}\left(2 \phi F_{H}+p \phi^{2} \omega\right)
$$

where $A_{H}=A_{H}^{\mathfrak{t}}$ and $\phi=\phi^{\mathfrak{t}}$.

- We must sum over all torus on M. We should therefore sum over all allowed values of $r^{i}=0, \ldots, p-1$. But how does the path integral know that $r^{i}=0$ is the same as $r^{i}=p$? Shifting the r^{i} by multiples of $p, r^{i} \rightarrow r^{i}+p \gamma^{i}, \gamma^{i} \in \mathbb{Z}$ is tantamount to shifting F_{H} by an element $2 \pi \gamma=2 \pi \gamma^{i} \alpha_{i}$ of the integral lattice $I=2 \pi \mathbb{Z}\left[\alpha_{i}\right]$ of G and happily the transformation

$$
F_{H} \rightarrow F_{H}+2 \pi d \kappa \gamma \quad \phi \rightarrow \phi-2 \pi \gamma
$$

is a symmetry of the theory.

Reduction to Finite Dimensional Integrals

- The path integral over A_{H}^{t} imposes a (delta function) condition on ϕ, namely

$$
\iota_{K} d(\kappa \phi)=0 .
$$

This delta function constraint on ϕ together with the gauge condition imply that ϕ is actually constant,

$$
d \phi=0 .
$$

Reduction to Finite Dimensional Integrals

- The path integral over $A_{H}^{\mathfrak{t}}$ imposes a (delta function) condition on ϕ, namely

$$
\iota_{K} d(\kappa \phi)=0 .
$$

This delta function constraint on ϕ together with the gauge condition imply that ϕ is actually constant,

$$
d \phi=0 .
$$

- With ϕ constant we have that

$$
\int_{M} \operatorname{Tr} \kappa \wedge d \kappa \phi^{2}=p \operatorname{Tr} \phi^{2}
$$

- The partition function has reduced to the finite-dimensional integral

$$
\begin{aligned}
Z_{k}\left[M_{(g, p)}, G\right] \sim & \mathrm{e}^{4 \pi i p \Phi_{0}} \sum_{r \in \mathbb{Z}_{p}^{\mathfrak{r}}} \int_{\mathfrak{t}} T_{S^{1}}(\phi)^{\chi\left(\Sigma_{g}\right) / 2} \\
& . \exp i \frac{k+c_{\mathfrak{g}}}{4 \pi} \operatorname{Tr}\left(p \phi^{2}+4 \pi r \phi\right)
\end{aligned}
$$

- The partition function has reduced to the finite-dimensional integral

$$
\begin{aligned}
Z_{k}\left[M_{(g, p)}, G\right] \sim & e^{4 \pi i p \Phi_{0}} \sum_{r \in \mathbb{Z}_{p}^{\mathfrak{k}}} \int_{\mathfrak{t}} T_{S^{1}}(\phi)^{\chi\left(\Sigma_{g}\right) / 2} \\
& . \exp i \frac{k+c_{\mathfrak{g}}}{4 \pi} \operatorname{Tr}\left(p \phi^{2}+4 \pi r \phi\right)
\end{aligned}
$$

- Fix the remaining real normalisation constant, Λ, by comparison with the known normalisation for $p=0$.
- The partition function has reduced to the finite-dimensional integral

$$
\begin{aligned}
Z_{k}\left[M_{(g, p)}, G\right] \sim & \mathrm{e}^{4 \pi i p \Phi_{0}} \sum_{r \in \mathbb{Z}_{p}^{\text {r }}} \int_{\mathfrak{t}} T_{S^{1}}(\phi)^{\chi\left(\Sigma_{g}\right) / 2} \\
& \cdot \exp i \frac{k+c_{\mathfrak{g}}}{4 \pi} \operatorname{Tr}\left(p \phi^{2}+4 \pi r \phi\right)
\end{aligned}
$$

- Fix the remaining real normalisation constant, Λ, by comparison with the known normalisation for $p=0$.
- The formulae above are invariant under the action of the Weyl group W which is part of the original gauge group. We thus need to divide by the "volume" (or mod out by the action) of W.
- The partition function has reduced to the finite-dimensional integral

$$
\begin{aligned}
Z_{k}\left[M_{(g, p)}, G\right] \sim & e^{4 \pi i p \Phi_{0}} \sum_{r \in \mathbb{Z}_{p}^{\mathfrak{k}}} \int_{\mathfrak{t}} T_{S^{1}}(\phi)^{\chi\left(\Sigma_{g}\right) / 2} \\
& . \exp i \frac{k+c_{\mathfrak{g}}}{4 \pi} \operatorname{Tr}\left(p \phi^{2}+4 \pi r \phi\right)
\end{aligned}
$$

- Fix the remaining real normalisation constant, Λ, by comparison with the known normalisation for $p=0$.
- The formulae above are invariant under the action of the Weyl group W which is part of the original gauge group. We thus need to divide by the "volume" (or mod out by the action) of W.
- The Ray-Singer torsion has zeros at the boundary of the Weyl chamber, which means that for genus $g>1$ the integrals diverge. The way around this is to regularise by giving a small mass term to the connection, while preserving the residual $U(1)^{\text {rk }}$ invariance.

Acknowledgements

I would like to thank the organizers of this meeting for the possibility to be here. My thanks especially to Faheem Hussain and Riazuddin.

