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Summary

The object of interest to us is the path integral,

Zk, G [M] =

∫
DA exp

ik

4π

∫
M

Tr

(
AdA +

2

3
A3

)
The path integral is over the connections on E → M a G bundle.
We will consider special classes of 3-manifold M namely those that
are themselves U(1) bundles, of degree p, over Σg a Riemann
surface of genus g . Denote these by M(g ,p).



The steps involved in solving the theory on U(1) bundles are:

1. Decomposing the gauge field

2. Fixing the gauge (partially)

3. Diagonalising

4. Pushing the calculations down to the base Σg .
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Zk, G [M] = Λ
e4πipΦ0

|W |
∑
r∈Zrk

p

∫
t
TS1(φ)χ(Σg )/2 exp i

k + cg

4π
Tr

(
pφ2 + 4πrφ

)

Λ is independent of p, TS1(φ) = detk

(
1− Ad eφ

)
is the

Ray-Singer Torsion on the circle and Φ0 = dim G/48.
One can perform the Gaussian integrals and/or the sums but this
is the nicest form so I leave it like this.



Background

1. The path integral gives (framed) 3-manifold invariants.

I Usually one follows a perturbative approach A → A/
√

k and
expands in large k.

I One gets an invariant for all G and k (even for G
non-compact)

I LMO have extracted from this a mathematically well defined
theory of ‘finite type’ invariants.

I One can also consider knot invariants (or link invariants)

Zk, G [M, γ,R] = 〈TrR P exp

∮
γ

A〉

2. Exact results also exist.

I Surgery prescription combined with CFT techniques allow one
to determine the Chern-Simons invariants.

I But there are very few exact (i.e. non-perturbative) path
integral computations of Chern-Simons theory, the exceptions
being on manifolds of the form Σg × S1. The technique
employed was Abelianisation of the non-Abelian theory.



Background

1. The path integral gives (framed) 3-manifold invariants.
I Usually one follows a perturbative approach A → A/

√
k and

expands in large k.

I One gets an invariant for all G and k (even for G
non-compact)

I LMO have extracted from this a mathematically well defined
theory of ‘finite type’ invariants.

I One can also consider knot invariants (or link invariants)

Zk, G [M, γ,R] = 〈TrR P exp

∮
γ

A〉

2. Exact results also exist.

I Surgery prescription combined with CFT techniques allow one
to determine the Chern-Simons invariants.

I But there are very few exact (i.e. non-perturbative) path
integral computations of Chern-Simons theory, the exceptions
being on manifolds of the form Σg × S1. The technique
employed was Abelianisation of the non-Abelian theory.



Background

1. The path integral gives (framed) 3-manifold invariants.
I Usually one follows a perturbative approach A → A/

√
k and

expands in large k.
I One gets an invariant for all G and k (even for G

non-compact)

I LMO have extracted from this a mathematically well defined
theory of ‘finite type’ invariants.

I One can also consider knot invariants (or link invariants)

Zk, G [M, γ,R] = 〈TrR P exp

∮
γ

A〉

2. Exact results also exist.

I Surgery prescription combined with CFT techniques allow one
to determine the Chern-Simons invariants.

I But there are very few exact (i.e. non-perturbative) path
integral computations of Chern-Simons theory, the exceptions
being on manifolds of the form Σg × S1. The technique
employed was Abelianisation of the non-Abelian theory.



Background

1. The path integral gives (framed) 3-manifold invariants.
I Usually one follows a perturbative approach A → A/

√
k and

expands in large k.
I One gets an invariant for all G and k (even for G

non-compact)
I LMO have extracted from this a mathematically well defined

theory of ‘finite type’ invariants.

I One can also consider knot invariants (or link invariants)

Zk, G [M, γ,R] = 〈TrR P exp

∮
γ

A〉

2. Exact results also exist.

I Surgery prescription combined with CFT techniques allow one
to determine the Chern-Simons invariants.

I But there are very few exact (i.e. non-perturbative) path
integral computations of Chern-Simons theory, the exceptions
being on manifolds of the form Σg × S1. The technique
employed was Abelianisation of the non-Abelian theory.



Background

1. The path integral gives (framed) 3-manifold invariants.
I Usually one follows a perturbative approach A → A/

√
k and

expands in large k.
I One gets an invariant for all G and k (even for G

non-compact)
I LMO have extracted from this a mathematically well defined

theory of ‘finite type’ invariants.
I One can also consider knot invariants (or link invariants)

Zk, G [M, γ,R] = 〈TrR P exp

∮
γ

A〉

2. Exact results also exist.

I Surgery prescription combined with CFT techniques allow one
to determine the Chern-Simons invariants.

I But there are very few exact (i.e. non-perturbative) path
integral computations of Chern-Simons theory, the exceptions
being on manifolds of the form Σg × S1. The technique
employed was Abelianisation of the non-Abelian theory.



Background

1. The path integral gives (framed) 3-manifold invariants.
I Usually one follows a perturbative approach A → A/

√
k and

expands in large k.
I One gets an invariant for all G and k (even for G

non-compact)
I LMO have extracted from this a mathematically well defined

theory of ‘finite type’ invariants.
I One can also consider knot invariants (or link invariants)

Zk, G [M, γ,R] = 〈TrR P exp

∮
γ

A〉

2. Exact results also exist.

I Surgery prescription combined with CFT techniques allow one
to determine the Chern-Simons invariants.

I But there are very few exact (i.e. non-perturbative) path
integral computations of Chern-Simons theory, the exceptions
being on manifolds of the form Σg × S1. The technique
employed was Abelianisation of the non-Abelian theory.



Background

1. The path integral gives (framed) 3-manifold invariants.
I Usually one follows a perturbative approach A → A/

√
k and

expands in large k.
I One gets an invariant for all G and k (even for G

non-compact)
I LMO have extracted from this a mathematically well defined

theory of ‘finite type’ invariants.
I One can also consider knot invariants (or link invariants)

Zk, G [M, γ,R] = 〈TrR P exp

∮
γ

A〉

2. Exact results also exist.
I Surgery prescription combined with CFT techniques allow one

to determine the Chern-Simons invariants.

I But there are very few exact (i.e. non-perturbative) path
integral computations of Chern-Simons theory, the exceptions
being on manifolds of the form Σg × S1. The technique
employed was Abelianisation of the non-Abelian theory.



Background

1. The path integral gives (framed) 3-manifold invariants.
I Usually one follows a perturbative approach A → A/

√
k and

expands in large k.
I One gets an invariant for all G and k (even for G

non-compact)
I LMO have extracted from this a mathematically well defined

theory of ‘finite type’ invariants.
I One can also consider knot invariants (or link invariants)

Zk, G [M, γ,R] = 〈TrR P exp

∮
γ

A〉

2. Exact results also exist.
I Surgery prescription combined with CFT techniques allow one

to determine the Chern-Simons invariants.
I But there are very few exact (i.e. non-perturbative) path

integral computations of Chern-Simons theory, the exceptions
being on manifolds of the form Σg × S1. The technique
employed was Abelianisation of the non-Abelian theory.



We are reconsidering the path integral on M(g ,p)

I To ask if the method of Abelianisation can be generalised
from trivial (p = 0) to non-trivial circle bundles.

I As Chern-Simons theory on general Seifert manifolds has
recently been studied by Beasley and Witten hep-th/0503126
using the method of non-Abelian localisation one would like
toknow if the diagonalisation procedure yields results that are
manifestly equivalent or comparable to those of BW?

I Chern-Simons theory on Lens spaces L(p, 1) = M(0,p) has also
recently appeared in the context of black hole partition
function calculations via topological string theory
hep-th/0211098 and the methods of Abeliansiation were
used to argue that this theory is equivalent to a “q-deformed”
two-dimensional Yang-Mills theory.



We are reconsidering the path integral on M(g ,p)

I To ask if the method of Abelianisation can be generalised
from trivial (p = 0) to non-trivial circle bundles.

I As Chern-Simons theory on general Seifert manifolds has
recently been studied by Beasley and Witten hep-th/0503126
using the method of non-Abelian localisation one would like
toknow if the diagonalisation procedure yields results that are
manifestly equivalent or comparable to those of BW?

I Chern-Simons theory on Lens spaces L(p, 1) = M(0,p) has also
recently appeared in the context of black hole partition
function calculations via topological string theory
hep-th/0211098 and the methods of Abeliansiation were
used to argue that this theory is equivalent to a “q-deformed”
two-dimensional Yang-Mills theory.



We are reconsidering the path integral on M(g ,p)

I To ask if the method of Abelianisation can be generalised
from trivial (p = 0) to non-trivial circle bundles.

I As Chern-Simons theory on general Seifert manifolds has
recently been studied by Beasley and Witten hep-th/0503126
using the method of non-Abelian localisation one would like
toknow if the diagonalisation procedure yields results that are
manifestly equivalent or comparable to those of BW?

I Chern-Simons theory on Lens spaces L(p, 1) = M(0,p) has also
recently appeared in the context of black hole partition
function calculations via topological string theory
hep-th/0211098 and the methods of Abeliansiation were
used to argue that this theory is equivalent to a “q-deformed”
two-dimensional Yang-Mills theory.





The Calculation

Geometric Set-Up

The M(g ,p) are themselves principal U(1) bundles

U(1) → M(g ,p)
π→ Σg over 2-dimensional surfaces Σg of genus g

and first Chern (or Euler) class −p ∈ Z.
Let κ be a connection on the principal U(1)-bundle M(g ,p) (a
globally defined real-valued 1-form on the total space of the
bundle), and denote by K the fundamental vector field on M(g ,p),
i.e. the generator of the U(1)-action.



I A connection κ is characterised by ιKκ = 1

I and the equivariance condition LK κ = 0 where LK = {d , ιK}
is the Lie derivative in the K direction. These two conditions
imply that ιKdκ = 0, i.e. that the curvature 2-form dκ of κ is
horizontal (as it should be).

I In local coordinates κ = dθ + a where θ is a fibre coordinate,
0 ≤ θ < 1, and a = ai dx i is a local representative on Σg of
the connection κ on M(g ,p).

I Since M(g ,p) has degree p, we may choose κ so that

dκ = p π∗(ω),

∫
Σg

ω = 1.

I With the above choices we see that

κ ∧ dκ = p dθ ∧ π∗(ω)

is nowhere vanishing as required providing that the U(1)
bundle is non-trivial, that is providing p 6= 0.

I For later use we note that∫
M

κ ∧ dκ = p

∫
Σg

ω = p .

Thus, depending on the sign of p,
∫
M κ ∧ dκ may be either

positive or negative.
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Decomposition

I As both K and κ are nowhere vanishing we have that κ ∧ ιK
and (1− κ ∧ ιK ) are projection operators, corresponding to
the decomposition

T ∗M = T ∗
κ (M)⊕ T ∗

H(M), T ∗
κ (M) ≈ Ω0(M)

into forms along the κ direction and those which are
horizontal.

I Concretely, for α ∈ Ω1(M, R) one has α = ακ + αH with

ακ = κ∧ιK α ∈ Ω1
κ(M, R), αH = (1−κ∧ιK ) α ∈ Ω1

H(M, R).

I Likewise we can decompose connections on vector bundles E
over M, thought of as elements of Ω1(M, g),

A = Aκ + AH ≡ φκ + AH .

Since φ ∈ Ω0(M, g) we can think of it as a section of the
adjoint bundle E = M × g.
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The Action Becomes

Tr

∫
M(g,p)

(
AH ∧ κ ∧ LφAH + 2φκ ∧ dAH + φ2 κ ∧ dκ

)
here

LφB = LKB + [φ,B].

Things are looking good! The action still has a cubic term but as
far as the horizontal fields are concerned we only have Gaussian
integration to perform.

Gauge Transformations

Under infinitesimal gauge transformations δA = dAΛ is

δφ = LφΛ ,

with
Lφ = LK + [φ, ].



Gauge Choice (partial)

I Having singled out a particular component of the gauge field
Aκ it is tempting to impose the gauge condition Aκ = 0 = φ.
However, this is not possible since Wilson loops along the
fibres of M(g ,p) → Σg are gauge invariant and non-trivial.

I Instead we impose, the allowed condition,

LKAκ = 0 ⇔ LKφ = ιK d φ = 0 .

I This gauge condition, LKφ = 0, tells us that φ is a
U(1)-invariant section of E . Equivalently, it can therefore be
regarded as a section of the (trivial) adjoint bundle V over Σg .

I So φ ‘only depends on Σg ’.
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Diagonalization

I Let T be some maximal torus of G and t the corresponding
Cartan subalgebra, with g = t⊕ k.

I There are still S1 independent gauge transformations
LKΛ = 0,

δφ = [φ,Λ]

and one checks that LKδφ = 0 so the partial gauge is
maintained.

I Use the residual conjugation symmetry to impose

φk = 0.

I So φ is in the Cartan sub-algebra (i.e. chargeless w.r.t the
U(1)’s) and we are almost done, or are we?
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I No the diagonal gauge, φk = 0, is junk. Here is the standard
counter example.

I Set Σg = S2, G = SU(2) so that g = R3 and pick φ so that
φ2 = 1 Then φ : S2 → S2 as the identity map. This map then
has winding number one. If we could smoothly conjugate this
φ into diagonal form we would find that we would have
smoothly deformed φ to φ̃ = σ3 which is a map
φ̃ : S2 → pt = (0, 0, 1). Since φ̃ has winding number zero this
is clearly impossible.
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Gauge Invariant Winding Number and Singular Gauge Transformations

I A gauge invariant winding number is

n(φ,A,Σg ) = −
∫

Σg

Tr

(
1

2π
φ ∧ FA +

1

16π
φ dφ ∧ dφ

)
with n(φ, 0,Σg ) =

∫
Σg

φ∗(ω) the winding number of the map

and n(φh,Ah,Σg ) = n(φ,A,Σg ) its gauge invariance.

I Applying this to our favourite map,

winding# = n(φ, 0,Σg ) = n(σ3, 0
h,Σg ) =

1

2π

∫
Σg

da = c1(L)

with a = −Tr σ3h
−1dh.
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I Moral of the story is that if we insist on imposing the diagonal
gauge then one must do so using singular gauge
transformations and then in turn we produce non-trivial U(1)
bundles. If the map has winding number t we will get a U(1)
bundle with first Chern class t (we have split
su(2) → L⊕ L−1). Consequently we should sum over all U(1)
bundles on Σg !

I From the 3-dimensional perspective over all T -bundles that
one gets by pull back from Σg . Since the pull-back π∗M(g ,p)

of the U(1)-bundle M(g ,p)
π→ Σg to the total space M(g ,p) is

(tautologically) trivial, π∗M(g ,p) = M(g ,p) × U(1), the
pull-back of the p-th power of any line bundle on Σg to
M(g ,p) is trivial. Thus the pull-backs of line bundles from Σg

to M(g ,p) are of finite order. All torsion (finite order p)
bundles on M(g ,p) arise in this way, so that it is precisely these
bundles that we should sum over in the path integral.

I Sum over all line bundles L of finite order L⊗p = M(g ,p) ⊗ C.
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Torsion Bundles

I Consider G = SU(2) and T = U(1): a line bundle L on Σg

has first Chern class c1(L) = r [ω], so that π∗(L) has first
Chern class

c1(π
∗(L)) = r [π∗(ω)] =

r

p
[dκ] .

I Thus the pull-back connection may be taken to be

A = 2π
r

p
κ .

I This connection has holonomy in the S1 direction of M(g ,p),

exp (i

∮
A) = exp (2πi

r

p
) ∈ Zp

and captures the torsion.
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I The curvature 2-form FH becomes

FH = dAH + dA = dAH + 2π
r

p
dκ

and the path integral should include a summation over
r = 0, . . . , p − 1.

I This argument generalises to higher rank. Normalising the
component fields by expanding φ and AH in a basis of simple
roots,

φ =
rk∑
i=1

φi αi , AH =
rk∑
i=1

Ai αi ,

FH is

FH =
rk∑
i=1

(
dAi

H + 2π
r i

p
dκ

)
αi .
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The Calculation (partly done)

I The action is now∫
M

Tr
(
At

H ∧ dAt
H + Ak

H ∧ κ ∧ LφAk
H + 2φ κ ∧ F t

H + φ2 κ ∧ dκ
)

I The charged gauge fields enter only through a Gaussian
integration and so we can perform the path integral to get a
determinant (

Det (∗κ ∧ iLφ)Ω1
H(M,k)

)−1/2

I There is also a (charged) ghost contribution which is

Det (iLφ)Ω0(M,t)

I This ratio of determinants, though almost unity, gives us three
things
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1. (The absolute value) The Ray-Singer torsion of S1 (with
respect to the flat connection 2πiφdθ), raised to one half of
the Euler characteristic of Σg , TS1(φ)χ(Σg )/2.

2. (The phase) The famous shift k → k + cg

3. (The phase) The phase Φ0 = 1
48 dim G

I Only those At
H that are not constant on the S1, LKAt

H 6= 0,
appear in the first term of the action (and they appear no
where else). Integrating these out gives rise to a determinant
which is precisely cancelled by a similar (chargeless) ghost
determinant.
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Two Dimensional Theory

I Having integrated out all the k-valued fields as well as all the
t-valued modes which are not U(1) invariant, the
Chern-Simons path integral essentially reduces to the path
integral of an Abelian 2-dimensional gauge theory on Σg ,

Zk [M(g ,p),G ] ∼ e4πipΦ0

∫
Dφ DAt

H TS1(φ)χ(Σg )/2 .

. exp

(
i
k + cg

4π
SM

)
.

The action is

SM =

∫
M

Tr (2φκ ∧ FH + φ2 κ ∧ dκ),



I Since the path integral is only over invariant modes, we can
push the action SM down to Σg ,

SM → SΣ[AH , φ] =
k + cg

4π

∫
Σg

Tr (2φFH + pφ2ω) ,

where AH = At
H and φ = φt.

I We must sum over all torus on M. We should therefore sum
over all allowed values of r i = 0, . . . , p − 1. But how does the
path integral know that r i = 0 is the same as r i = p? Shifting
the r i by multiples of p, r i → r i + pγi , γi ∈ Z is tantamount
to shifting FH by an element 2πγ = 2πγiαi of the integral
lattice I = 2πZ[αi ] of G and happily the transformation

FH → FH + 2π dκ γ φ → φ− 2πγ .

is a symmetry of the theory.
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Reduction to Finite Dimensional Integrals

I The path integral over At
H imposes a (delta function)

condition on φ, namely

ιKd(κ φ) = 0 .

This delta function constraint on φ together with the gauge
condition imply that φ is actually constant,

dφ = 0.

I With φ constant we have that∫
M

Tr κ ∧ dκ φ2 = p Tr φ2
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I The partition function has reduced to the finite-dimensional
integral

Zk [M(g ,p),G ] ∼ e4πipΦ0
∑
r∈Zrk

p

∫
t
TS1(φ)χ(Σg )/2 .

. exp i
k + cg

4π
Tr

(
p φ2 + 4πr φ

)

I Fix the remaining real normalisation constant, Λ, by
comparison with the known normalisation for p = 0.

I The formulae above are invariant under the action of the Weyl
group W which is part of the original gauge group. We thus
need to divide by the “volume” (or mod out by the action) of
W .

I The Ray-Singer torsion has zeros at the boundary of the Weyl
chamber, which means that for genus g > 1 the integrals
diverge. The way around this is to regularise by giving a small
mass term to the connection, while preserving the residual
U(1)rk invariance.
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