Chern-Simons Theory on S¹-Bundles: Abelianisation and q-deformed Yang-Mills Theory

George Thompson

ICTP, P.O. Box 586, 34100 Trieste, Italy.

Talk presented in Islamabad

Work done in collaboration with Matthias Blau: hep-th/0601068

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

・ロト・国・・ヨト・ヨー うらの

The object of interest to us is the path integral,

$$Z_{k,G}[M] = \int DA \exp{\frac{ik}{4\pi}} \int_M \operatorname{Tr}\left(AdA + \frac{2}{3}A^3\right)$$

The path integral is over the connections on $E \to M$ a G bundle. We will consider special classes of 3-manifold M namely those that are themselves U(1) bundles, of degree p, over Σ_g a Riemann surface of genus g. Denote these by $M_{(g,p)}$.

- ロ ト - 4 回 ト - 4 □ - 4

The steps involved in solving the theory on U(1) bundles are: 1. Decomposing the gauge field

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

The steps involved in solving the theory on U(1) bundles are:

▲□▶▲□▶▲□▶▲□▶ □ のQ@

- 1. Decomposing the gauge field
- 2. Fixing the gauge (partially)

The steps involved in solving the theory on U(1) bundles are:

- $1. \ \ {\rm Decomposing \ the \ gauge \ field}$
- 2. Fixing the gauge (partially)
- 3. Diagonalising

The steps involved in solving the theory on U(1) bundles are:

- 1. Decomposing the gauge field
- 2. Fixing the gauge (partially)
- 3. Diagonalising
- 4. Pushing the calculations down to the base Σ_g .

$$Z_{k,G}[M] = \Lambda \frac{e^{4\pi i p \Phi_0}}{|W|} \sum_{r \in \mathbb{Z}_p^{\mathsf{rk}}} \int_{\mathfrak{t}} \mathcal{T}_{S^1}(\phi)^{\chi(\Sigma_g)/2} \exp i \frac{k + c_g}{4\pi} \operatorname{Tr}\left(p\phi^2 + 4\pi r\phi\right)$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

A is independent of p, $T_{S^1}(\phi) = \det_{\mathfrak{k}} \left(1 - \operatorname{Ad} e^{\phi}\right)$ is the Ray-Singer Torsion on the circle and $\Phi_0 = \dim G/48$. One can perform the Gaussian integrals and/or the sums but this is the nicest form so I leave it like this.

BACKGROUND

▲□▶ ▲圖▶ ▲≧▶ ▲≣▶ = 単 - 釣�?

BACKGROUND

- 1. The path integral gives (framed) 3-manifold invariants.
 - Usually one follows a perturbative approach $A \rightarrow A/\sqrt{k}$ and expands in large k.

- 1. The path integral gives (framed) 3-manifold invariants.
 - Usually one follows a perturbative approach $A \rightarrow A/\sqrt{k}$ and expands in large k.

One gets an invariant for all G and k (even for G non-compact)

- 1. The path integral gives (framed) 3-manifold invariants.
 - Usually one follows a perturbative approach $A \rightarrow A/\sqrt{k}$ and expands in large k.
 - One gets an invariant for all G and k (even for G non-compact)
 - LMO have extracted from this a mathematically well defined theory of 'finite type' invariants.

- 1. The path integral gives (framed) 3-manifold invariants.
 - Usually one follows a perturbative approach $A \rightarrow A/\sqrt{k}$ and expands in large k.
 - One gets an invariant for all G and k (even for G non-compact)
 - LMO have extracted from this a mathematically well defined theory of 'finite type' invariants.
 - One can also consider knot invariants (or link invariants)

$$Z_{k,G}[M,\gamma,R] = \langle \operatorname{Tr}_R P \exp \oint_{\gamma} A \rangle$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- 1. The path integral gives (framed) 3-manifold invariants.
 - Usually one follows a perturbative approach $A \rightarrow A/\sqrt{k}$ and expands in large k.
 - One gets an invariant for all G and k (even for G non-compact)
 - LMO have extracted from this a mathematically well defined theory of 'finite type' invariants.
 - One can also consider knot invariants (or link invariants)

$$Z_{k, G}[M, \gamma, R] = \langle \operatorname{Tr}_{R} P \exp \oint_{\gamma} A
angle$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

2. Exact results also exist.

BACKGROUND

- 1. The path integral gives (framed) 3-manifold invariants.
 - Usually one follows a perturbative approach $A \rightarrow A/\sqrt{k}$ and expands in large k.
 - One gets an invariant for all G and k (even for G non-compact)
 - LMO have extracted from this a mathematically well defined theory of 'finite type' invariants.
 - One can also consider knot invariants (or link invariants)

$$Z_{k,\,G}[M,\gamma,R] = \langle \operatorname{Tr}_R P \, \exp \oint_\gamma A
angle$$

- 2. Exact results also exist.
 - Surgery prescription combined with CFT techniques allow one to determine the Chern-Simons invariants.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

BACKGROUND

- 1. The path integral gives (framed) 3-manifold invariants.
 - Usually one follows a perturbative approach $A \rightarrow A/\sqrt{k}$ and expands in large k.
 - One gets an invariant for all G and k (even for G non-compact)
 - LMO have extracted from this a mathematically well defined theory of 'finite type' invariants.
 - One can also consider knot invariants (or link invariants)

$$Z_{k, G}[M, \gamma, R] = \langle \operatorname{Tr}_{R} P \exp \oint_{\gamma} A
angle$$

- 2. Exact results also exist.
 - Surgery prescription combined with CFT techniques allow one to determine the Chern-Simons invariants.
 - ► But there are very few exact (i.e. non-perturbative) path integral computations of Chern-Simons theory, the exceptions being on manifolds of the form $\Sigma_g \times S^1$. The technique employed was Abelianisation of the non-Abelian theory.

We are reconsidering the path integral on $M_{(g,p)}$

To ask if the method of Abelianisation can be generalised from trivial (p = 0) to non-trivial circle bundles.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

We are reconsidering the path integral on $M_{(g,p)}$

- ► To ask if the method of Abelianisation can be generalised from trivial (p = 0) to non-trivial circle bundles.
- As Chern-Simons theory on general Seifert manifolds has recently been studied by Beasley and Witten hep-th/0503126 using the method of non-Abelian localisation one would like toknow if the diagonalisation procedure yields results that are manifestly equivalent or comparable to those of BW?

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

We are reconsidering the path integral on $M_{(g,p)}$

- To ask if the method of Abelianisation can be generalised from trivial (p = 0) to non-trivial circle bundles.
- As Chern-Simons theory on general Seifert manifolds has recently been studied by Beasley and Witten hep-th/0503126 using the method of non-Abelian localisation one would like toknow if the diagonalisation procedure yields results that are manifestly equivalent or comparable to those of BW?
- Chern-Simons theory on Lens spaces L(p, 1) = M_(0,p) has also recently appeared in the context of black hole partition function calculations via topological string theory
 hep-th/0211098 and the methods of Abeliansiation were used to argue that this theory is equivalent to a "q-deformed" two-dimensional Yang-Mills theory.

・ロト・国・・ヨト・ヨー うらの

The Calculation

Geometric Set-Up

The $M_{(g,p)}$ are themselves principal U(1) bundles $U(1) \rightarrow M_{(g,p)} \xrightarrow{\pi} \Sigma_g$ over 2-dimensional surfaces Σ_g of genus gand first Chern (or Euler) class $-p \in \mathbb{Z}$. Let κ be a connection on the principal U(1)-bundle $M_{(g,p)}$ (a globally defined real-valued 1-form on the total space of the bundle), and denote by K the fundamental vector field on $M_{(g,p)}$, i.e. the generator of the U(1)-action.

• A connection κ is characterised by $\iota_K \kappa = 1$

<□ > < @ > < E > < E > E のQ @

- A connection κ is characterised by $\iota_K \kappa = 1$
- And the equivariance condition L_K κ = 0 where L_K = {d, ι_K} is the Lie derivative in the K direction. These two conditions imply that ι_Kdκ = 0, i.e. that the curvature 2-form dκ of κ is horizontal (as it should be).

- A connection κ is characterised by $\iota_K \kappa = 1$
- And the equivariance condition L_K κ = 0 where L_K = {d, ι_K} is the Lie derivative in the K direction. These two conditions imply that ι_Kdκ = 0, i.e. that the curvature 2-form dκ of κ is horizontal (as it should be).
- In local coordinates κ = dθ + a where θ is a fibre coordinate, 0 ≤ θ < 1, and a = a_i dxⁱ is a local representative on Σ_g of the connection κ on M_(g,p).

- A connection κ is characterised by $\iota_K \kappa = 1$
- And the equivariance condition L_K κ = 0 where L_K = {d, ι_K} is the Lie derivative in the K direction. These two conditions imply that ι_Kdκ = 0, i.e. that the curvature 2-form dκ of κ is horizontal (as it should be).
- In local coordinates κ = dθ + a where θ is a fibre coordinate, 0 ≤ θ < 1, and a = a_i dxⁱ is a local representative on Σ_g of the connection κ on M_(g,p).
- Since $M_{(g,p)}$ has degree p, we may choose κ so that

$$d\kappa = p \, \pi^*(\omega), \quad \int_{\Sigma_g} \omega = 1.$$

- A connection κ is characterised by $\iota_K \kappa = 1$
- And the equivariance condition L_K κ = 0 where L_K = {d, ι_K} is the Lie derivative in the K direction. These two conditions imply that ι_Kdκ = 0, i.e. that the curvature 2-form dκ of κ is horizontal (as it should be).
- In local coordinates κ = dθ + a where θ is a fibre coordinate, 0 ≤ θ < 1, and a = a_i dxⁱ is a local representative on Σ_g of the connection κ on M_(g,p).
- Since $M_{(g,p)}$ has degree p, we may choose κ so that

$$d\kappa = p \, \pi^*(\omega), \quad \int_{\Sigma_g} \omega = 1.$$

With the above choices we see that

$$\kappa \wedge d\kappa = p \, d\theta \wedge \pi^*(\omega)$$

is nowhere vanishing as required providing that the U(1) bundle is non-trivial, that is providing $p \neq 0$.

- A connection κ is characterised by $\iota_K \kappa = 1$
- And the equivariance condition L_K κ = 0 where L_K = {d, ι_K} is the Lie derivative in the K direction. These two conditions imply that ι_Kdκ = 0, i.e. that the curvature 2-form dκ of κ is horizontal (as it should be).
- In local coordinates κ = dθ + a where θ is a fibre coordinate, 0 ≤ θ < 1, and a = a_i dxⁱ is a local representative on Σ_g of the connection κ on M_(g,p).
- Since $M_{(g,p)}$ has degree p, we may choose κ so that

$$d\kappa = p \, \pi^*(\omega), \quad \int_{\Sigma_g} \omega = 1.$$

With the above choices we see that

$$\kappa \wedge d\kappa = p \, d\theta \wedge \pi^*(\omega)$$

is nowhere vanishing as required providing that the U(1) bundle is non-trivial, that is providing $p \neq 0$.

For later use we note that

$$\int_M \kappa \wedge d\kappa = p \int_{\Sigma_g} \omega = p .$$

Decomposition

As both K and κ are nowhere vanishing we have that κ ∧ ι_K and (1 − κ ∧ ι_K) are projection operators, corresponding to the decomposition

$$T^*M = T^*_\kappa(M) \oplus T^*_H(M), \quad T^*_\kappa(M) \approx \Omega^0(M)$$

into forms along the κ direction and those which are horizontal.

Decomposition

As both K and κ are nowhere vanishing we have that κ ∧ ι_K and (1 − κ ∧ ι_K) are projection operators, corresponding to the decomposition

$$T^*M = T^*_{\kappa}(M) \oplus T^*_{H}(M), \quad T^*_{\kappa}(M) \approx \Omega^0(M)$$

into forms along the κ direction and those which are horizontal.

• Concretely, for $\alpha \in \Omega^1(M, \mathbb{R})$ one has $\alpha = \alpha_{\kappa} + \alpha_H$ with

$$\alpha_{\kappa} = \kappa \wedge \iota_{K} \, \alpha \in \Omega^{1}_{\kappa}(M, \mathbb{R}), \quad \alpha_{H} = (1 - \kappa \wedge \iota_{K}) \, \alpha \in \Omega^{1}_{H}(M, \mathbb{R}).$$

Decomposition

As both K and κ are nowhere vanishing we have that κ ∧ ι_K and (1 − κ ∧ ι_K) are projection operators, corresponding to the decomposition

 $T^*M = T^*_{\kappa}(M) \oplus T^*_{H}(M), \quad T^*_{\kappa}(M) \approx \Omega^0(M)$

into forms along the κ direction and those which are horizontal.

• Concretely, for $\alpha \in \Omega^1(M, \mathbb{R})$ one has $\alpha = \alpha_{\kappa} + \alpha_H$ with

$$\alpha_{\kappa} = \kappa \wedge \iota_{\mathcal{K}} \, \alpha \in \Omega^{1}_{\kappa}(\mathcal{M},\mathbb{R}), \quad \alpha_{\mathcal{H}} = (1 - \kappa \wedge \iota_{\mathcal{K}}) \, \alpha \in \Omega^{1}_{\mathcal{H}}(\mathcal{M},\mathbb{R}).$$

 Likewise we can decompose connections on vector bundles E over M, thought of as elements of Ω¹(M, g),

$$A = A_{\kappa} + A_{H} \equiv \phi \, \kappa + A_{H}.$$

Since $\phi \in \Omega^0(M, \mathfrak{g})$ we can think of it as a section of the adjoint bundle $E = M \times \mathfrak{g}$.

$$\mathsf{Tr} \int_{\mathcal{M}_{(g,p)}} \left(\mathcal{A}_{\mathcal{H}} \wedge \kappa \wedge \mathcal{L}_{\phi} \mathcal{A}_{\mathcal{H}} + 2\phi \, \kappa \wedge d\mathcal{A}_{\mathcal{H}} + \phi^2 \, \kappa \wedge d\kappa \right)$$

here

$$\mathcal{L}_{\phi}B = L_{K}B + [\phi, B].$$

Things are looking good! The action still has a cubic term but as far as the horizontal fields are concerned we only have Gaussian integration to perform.

Gauge Transformations

Under infinitesimal gauge transformations $\delta A = d_A \Lambda$ is

$$\delta\phi = \mathcal{L}_{\phi}\Lambda \ ,$$

with

$$\mathcal{L}_{\phi} = \mathcal{L}_{\mathcal{K}} + [\phi,].$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

► Having singled out a particular component of the gauge field A_{κ} it is tempting to impose the gauge condition $A_{\kappa} = 0 = \phi$. However, this is not possible since Wilson loops along the fibres of $M_{(g,p)} \rightarrow \Sigma_g$ are gauge invariant and non-trivial.

► Having singled out a particular component of the gauge field A_{κ} it is tempting to impose the gauge condition $A_{\kappa} = 0 = \phi$. However, this is not possible since Wilson loops along the fibres of $M_{(g,p)} \rightarrow \Sigma_g$ are gauge invariant and non-trivial.

Instead we impose, the allowed condition,

$$L_{K}A_{\kappa} = 0 \Leftrightarrow L_{K}\phi = \iota_{K} d \phi = 0 \ .$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- ► Having singled out a particular component of the gauge field A_{κ} it is tempting to impose the gauge condition $A_{\kappa} = 0 = \phi$. However, this is not possible since Wilson loops along the fibres of $M_{(g,p)} \rightarrow \Sigma_g$ are gauge invariant and non-trivial.
- Instead we impose, the allowed condition,

$$L_K A_\kappa = 0 \Leftrightarrow L_K \phi = \iota_K d \phi = 0$$
.

 This gauge condition, L_Kφ = 0, tells us that φ is a U(1)-invariant section of E. Equivalently, it can therefore be regarded as a section of the (trivial) adjoint bundle V over Σ_g.

- ► Having singled out a particular component of the gauge field A_{κ} it is tempting to impose the gauge condition $A_{\kappa} = 0 = \phi$. However, this is not possible since Wilson loops along the fibres of $M_{(g,p)} \rightarrow \Sigma_g$ are gauge invariant and non-trivial.
- Instead we impose, the allowed condition,

$$L_K A_\kappa = 0 \Leftrightarrow L_K \phi = \iota_K d \phi = 0$$
.

 This gauge condition, L_Kφ = 0, tells us that φ is a U(1)-invariant section of E. Equivalently, it can therefore be regarded as a section of the (trivial) adjoint bundle V over Σ_g.

Diagonalization

Let T be some maximal torus of G and t the corresponding Cartan subalgebra, with g = t ⊕ t.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Diagonalization

- Let T be some maximal torus of G and t the corresponding Cartan subalgebra, with g = t ⊕ t.
- There are still S^1 independent gauge transformations $L_K \Lambda = 0$,

 $\delta\phi = [\phi,\Lambda]$

and one checks that $L_K \delta \phi = 0$ so the partial gauge is maintained.

Diagonalization

- Let T be some maximal torus of G and t the corresponding Cartan subalgebra, with g = t ⊕ t.
- There are still S^1 independent gauge transformations $L_K \Lambda = 0$,

$$\delta\phi = [\phi, \Lambda]$$

and one checks that $L_K \delta \phi = 0$ so the partial gauge is maintained.

Use the residual conjugation symmetry to impose

$$\phi^{\mathfrak{k}}=\mathsf{0}.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Diagonalization

- Let T be some maximal torus of G and t the corresponding Cartan subalgebra, with g = t ⊕ t.
- There are still S^1 independent gauge transformations $L_K \Lambda = 0$,

$$\delta\phi = [\phi, \Lambda]$$

and one checks that $L_K \delta \phi = 0$ so the partial gauge is maintained.

Use the residual conjugation symmetry to impose

$$\phi^{\mathfrak{k}} = \mathbf{0}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

So φ is in the Cartan sub-algebra (i.e. chargeless w.r.t the U(1)'s) and we are almost done, or are we?

No the diagonal gauge, φ^ℓ = 0, is junk. Here is the standard counter example.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● ○ ○ ○ ○

- No the diagonal gauge, φ^ℓ = 0, is junk. Here is the standard counter example.
- Set $\Sigma_g = S^2$, G = SU(2) so that $\mathfrak{g} = \mathbb{R}^3$ and pick ϕ so that $\phi^2 = 1$ Then $\phi: S^2 \to S^2$ as the identity map. This map then has winding number one. If we could smoothly conjugate this ϕ into diagonal form we would find that we would have smoothly deformed ϕ to $\tilde{\phi} = \sigma_3$ which is a map $\tilde{\phi}: S^2 \to pt = (0, 0, 1)$. Since $\tilde{\phi}$ has winding number zero this is clearly impossible.

Gauge Invariant Winding Number and Singular Gauge Transformations

A gauge invariant winding number is

$$n(\phi, A, \Sigma_g) = -\int_{\Sigma_g} \operatorname{Tr}\left(\frac{1}{2\pi}\phi \wedge F_A + \frac{1}{16\pi}\phi \, d\phi \wedge d\phi\right)$$

with $n(\phi, 0, \Sigma_g) = \int_{\Sigma_g} \phi^*(\omega)$ the winding number of the map and $n(\phi^h, A^h, \Sigma_g) = n(\phi, A, \Sigma_g)$ its gauge invariance.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Gauge Invariant Winding Number and Singular Gauge Transformations

A gauge invariant winding number is

$$n(\phi, A, \Sigma_g) = -\int_{\Sigma_g} \operatorname{Tr}\left(\frac{1}{2\pi}\phi \wedge F_A + \frac{1}{16\pi}\phi \, d\phi \wedge d\phi\right)$$

with $n(\phi, 0, \Sigma_g) = \int_{\Sigma_g} \phi^*(\omega)$ the winding number of the map and $n(\phi^h, A^h, \Sigma_g) = n(\phi, A, \Sigma_g)$ its gauge invariance.

Applying this to our favourite map,

winding
$$\# = n(\phi, 0, \Sigma_g) = n(\sigma_3, 0^h, \Sigma_g) = \frac{1}{2\pi} \int_{\Sigma_g} da = c_1(L)$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

with $a = -\operatorname{Tr} \sigma_3 h^{-1} dh$.

Moral of the story is that if we insist on imposing the diagonal gauge then one must do so using singular gauge transformations and then in turn we produce non-trivial U(1) bundles. If the map has winding number t we will get a U(1) bundle with first Chern class t (we have split su(2) → L ⊕ L⁻¹). Consequently we should sum over all U(1)

su(2) \rightarrow L \oplus L $\$). Consequently we should sum over all O(1) bundles on Σ_g !

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- ▶ Moral of the story is that if we insist on imposing the diagonal gauge then one must do so using singular gauge transformations and then in turn we produce non-trivial U(1) bundles. If the map has winding number t we will get a U(1) bundle with first Chern class t (we have split $su(2) \rightarrow L \oplus L^{-1}$). Consequently we should sum over all U(1) bundles on Σ_{σ} !
- From the 3-dimensional perspective over all *T*-bundles that one gets by pull back from Σ_g. Since the pull-back π^{*}M_(g,p) of the U(1)-bundle M_(g,p) → Σ_g to the total space M_(g,p) is (tautologically) trivial, π^{*}M_(g,p) = M_(g,p) × U(1), the pull-back of the *p*-th power of any line bundle on Σ_g to M_(g,p) is trivial. Thus the pull-backs of line bundles from Σ_g to M_(g,p) are of finite order. All torsion (finite order *p*) bundles on M_(g,p) arise in this way, so that it is precisely these bundles that we should sum over in the path integral.

- ► Moral of the story is that if we insist on imposing the diagonal gauge then one must do so using singular gauge transformations and then in turn we produce non-trivial U(1) bundles. If the map has winding number t we will get a U(1) bundle with first Chern class t (we have split $su(2) \rightarrow L \oplus L^{-1}$). Consequently we should sum over all U(1) bundles on Σ_{σ} !
- From the 3-dimensional perspective over all *T*-bundles that one gets by pull back from Σ_g. Since the pull-back π^{*}M_(g,p) of the U(1)-bundle M_(g,p) ^π→ Σ_g to the total space M_(g,p) is (tautologically) trivial, π^{*}M_(g,p) = M_(g,p) × U(1), the pull-back of the *p*-th power of any line bundle on Σ_g to M_(g,p) is trivial. Thus the pull-backs of line bundles from Σ_g to M_(g,p) are of finite order. All torsion (finite order *p*) bundles on M_(g,p) arise in this way, so that it is precisely these bundles that we should sum over in the path integral.

Sum over all line bundles *L* of finite order $L^{\otimes p} = M_{(g,p)} \otimes \mathbb{C}$.

Torsion Bundles

Consider G = SU(2) and T = U(1): a line bundle L on Σ_g has first Chern class c₁(L) = r[ω], so that π*(L) has first Chern class

$$c_1(\pi^*(L)) = r\left[\pi^*(\omega)\right] = \frac{r}{p}\left[d\kappa\right] \; .$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Torsion Bundles

Consider G = SU(2) and T = U(1): a line bundle L on Σ_g has first Chern class c₁(L) = r[ω], so that π^{*}(L) has first Chern class

$$c_1(\pi^*(L)) = r\left[\pi^*(\omega)\right] = \frac{r}{p}\left[d\kappa\right] \; .$$

Thus the pull-back connection may be taken to be

$$\mathsf{A} = 2\pi \frac{r}{p} \kappa \;\; .$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Torsion Bundles

Consider G = SU(2) and T = U(1): a line bundle L on Σ_g has first Chern class c₁(L) = r[ω], so that π*(L) has first Chern class

$$c_1(\pi^*(L)) = r\left[\pi^*(\omega)\right] = \frac{r}{p}\left[d\kappa\right]$$

Thus the pull-back connection may be taken to be

$$\mathsf{A} = 2\pi \frac{r}{p} \kappa$$

▶ This connection has holonomy in the S^1 direction of $M_{(g,p)}$,

$$\exp{(i\oint \mathsf{A})} = \exp{(2\pi i\frac{r}{p})} \in \mathbb{Z}_p$$

and captures the torsion.

• The curvature 2-form F_H becomes

$$F_H = dA_H + dA = dA_H + 2\pi \frac{r}{p} d\kappa$$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● ○ ○ ○ ○

and the path integral should include a summation over $r = 0, \ldots, p - 1$.

The curvature 2-form F_H becomes

$$F_H = dA_H + dA = dA_H + 2\pi \frac{r}{p} d\kappa$$

and the path integral should include a summation over $r = 0, \ldots, p - 1$.

This argument generalises to higher rank. Normalising the component fields by expanding φ and A_H in a basis of simple roots,

$$\phi = \sum_{i=1}^{\mathsf{rk}} \phi^i \, \alpha_i, \quad \mathcal{A}_H = \sum_{i=1}^{\mathsf{rk}} \mathcal{A}^i \, \alpha_i \;\;,$$

 F_H is

$$F_H = \sum_{i=1}^{\mathsf{rk}} \left(dA_H^i + 2\pi \, rac{r^i}{p} \, d\kappa
ight) \, lpha_i \; \; .$$

► The action is now

$$\int_{\mathcal{M}} \mathsf{Tr} \left(\mathcal{A}_{\mathcal{H}}^{\mathfrak{t}} \wedge d\mathcal{A}_{\mathcal{H}}^{\mathfrak{t}} + \mathcal{A}_{\mathcal{H}}^{\mathfrak{k}} \wedge \kappa \wedge \mathcal{L}_{\phi} \mathcal{A}_{\mathcal{H}}^{\mathfrak{k}} + 2\phi \, \kappa \wedge \mathcal{F}_{\mathcal{H}}^{\mathfrak{t}} + \phi^{2} \, \kappa \wedge d\kappa \right)$$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● ○ ○ ○ ○

The action is now

$$\int_{\mathcal{M}} \mathsf{Tr} \left(A_{\mathcal{H}}^{\mathfrak{t}} \wedge dA_{\mathcal{H}}^{\mathfrak{t}} + A_{\mathcal{H}}^{\mathfrak{k}} \wedge \kappa \wedge \mathcal{L}_{\phi} A_{\mathcal{H}}^{\mathfrak{k}} + 2\phi \, \kappa \wedge F_{\mathcal{H}}^{\mathfrak{t}} + \phi^{2} \, \kappa \wedge d\kappa \right)$$

 The charged gauge fields enter only through a Gaussian integration and so we can perform the path integral to get a determinant

$$\left(\mathsf{Det}\left(*\kappa\wedge\ i\mathcal{L}_{\phi}
ight)_{\Omega^{1}_{\mathcal{H}}\left(M,\mathfrak{k}
ight)}
ight)^{-1/2}$$

The action is now

$$\int_{\mathcal{M}} \mathsf{Tr}\left(A_{H}^{\mathfrak{t}} \wedge dA_{H}^{\mathfrak{t}} + A_{H}^{\mathfrak{k}} \wedge \kappa \wedge \mathcal{L}_{\phi}A_{H}^{\mathfrak{k}} + 2\phi \,\kappa \wedge F_{H}^{\mathfrak{t}} + \phi^{2} \,\kappa \wedge d\kappa\right)$$

 The charged gauge fields enter only through a Gaussian integration and so we can perform the path integral to get a determinant

$$\left(\mathsf{Det}\left(\ast\kappa\wedge\ i\mathcal{L}_{\phi}
ight)_{\Omega^{1}_{\mathcal{H}}\left(\mathcal{M},\mathfrak{k}
ight)}
ight)^{-1/2}$$

▶ There is also a (charged) ghost contribution which is

 $\operatorname{Det}(i\mathcal{L}_{\phi})_{\Omega^{0}(M,\mathfrak{t})}$

The action is now

$$\int_{\mathcal{M}} \mathsf{Tr} \left(A_{\mathcal{H}}^{\mathfrak{t}} \wedge dA_{\mathcal{H}}^{\mathfrak{t}} + A_{\mathcal{H}}^{\mathfrak{k}} \wedge \kappa \wedge \mathcal{L}_{\phi} A_{\mathcal{H}}^{\mathfrak{k}} + 2\phi \, \kappa \wedge F_{\mathcal{H}}^{\mathfrak{t}} + \phi^{2} \, \kappa \wedge d\kappa \right)$$

 The charged gauge fields enter only through a Gaussian integration and so we can perform the path integral to get a determinant

$$\left(\mathsf{Det}\left(\ast\kappa\wedge\ i\mathcal{L}_{\phi}
ight)_{\Omega^{1}_{\mathcal{H}}\left(\mathcal{M},\mathfrak{k}
ight)}
ight)^{-1/2}$$

There is also a (charged) ghost contribution which is

$$\operatorname{Det}(i\mathcal{L}_{\phi})_{\Omega^{0}(M,\mathfrak{t})}$$

 This ratio of determinants, though almost unity, gives us three things

1. (The absolute value) The Ray-Singer torsion of S^1 (with respect to the flat connection $2\pi i\phi d\theta$), raised to one half of the Euler characteristic of Σ_g , $T_{S^1}(\phi)^{\chi(\Sigma_g)/2}$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

1. (The absolute value) The Ray-Singer torsion of S^1 (with respect to the flat connection $2\pi i\phi d\theta$), raised to one half of the Euler characteristic of Σ_g , $T_{S^1}(\phi)^{\chi(\Sigma_g)/2}$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

2. (The phase) The famous shift $k \rightarrow k + c_g$

1. (The absolute value) The Ray-Singer torsion of S^1 (with respect to the flat connection $2\pi i\phi d\theta$), raised to one half of the Euler characteristic of Σ_g , $T_{S^1}(\phi)^{\chi(\Sigma_g)/2}$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- 2. (The phase) The famous shift $k \rightarrow k + c_{\mathfrak{g}}$
- 3. (The phase) The phase $\Phi_0 = \frac{1}{48} \dim G$

- 1. (The absolute value) The Ray-Singer torsion of S^1 (with respect to the flat connection $2\pi i\phi d\theta$), raised to one half of the Euler characteristic of Σ_g , $T_{S^1}(\phi)^{\chi(\Sigma_g)/2}$.
- 2. (The phase) The famous shift $k \rightarrow k + c_g$
- 3. (The phase) The phase $\Phi_0 = \frac{1}{48} \dim G$
- Only those A^t_H that are not constant on the S¹, L_KA^t_H ≠ 0, appear in the first term of the action (and they appear no where else). Integrating these out gives rise to a determinant which is precisely cancelled by a similar (chargeless) ghost determinant.

Two Dimensional Theory

Having integrated out all the t-valued fields as well as all the t-valued modes which are not U(1) invariant, the Chern-Simons path integral essentially reduces to the path integral of an Abelian 2-dimensional gauge theory on Σ_g,

$$Z_{k}[M_{(g,p)},G] \sim e^{4\pi i p \Phi_{0}} \int D\phi DA_{H}^{t} T_{S^{1}}(\phi)^{\chi(\Sigma_{g})/2}$$
$$\cdot \exp\left(i \frac{k + c_{\mathfrak{g}}}{4\pi} S_{M}\right) .$$

The action is

$$S_{M} = \int_{M} \operatorname{Tr} \left(2\phi \, \kappa \wedge F_{H} + \phi^{2} \, \kappa \wedge d\kappa \right),$$

 Since the path integral is only over invariant modes, we can push the action S_M down to Σ_g,

$$S_M \to S_{\Sigma}[A_H, \phi] = rac{k + c_g}{4\pi} \int_{\Sigma_g} \operatorname{Tr} \left(2\phi F_H + p \phi^2 \omega \right) \;,$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

where $A_H = A_H^{\mathfrak{t}}$ and $\phi = \phi^{\mathfrak{t}}$.

 Since the path integral is only over invariant modes, we can push the action S_M down to Σ_g,

$$S_M \to S_{\Sigma}[A_H, \phi] = rac{k + c_g}{4\pi} \int_{\Sigma_g} \operatorname{Tr} \left(2\phi F_H + p \phi^2 \omega \right) \;,$$

where $A_H = A_H^{\mathfrak{t}}$ and $\phi = \phi^{\mathfrak{t}}$.

▶ We must sum over all torus on *M*. We should therefore sum over all allowed values of $r^i = 0, ..., p - 1$. But how does the path integral know that $r^i = 0$ is the same as $r^i = p$? Shifting the r^i by multiples of p, $r^i \rightarrow r^i + p\gamma^i$, $\gamma^i \in \mathbb{Z}$ is tantamount to shifting F_H by an element $2\pi\gamma = 2\pi\gamma^i\alpha_i$ of the integral lattice $I = 2\pi\mathbb{Z}[\alpha_i]$ of *G* and happily the transformation

$$F_H \to F_H + 2\pi \, d\kappa \, \gamma \qquad \phi \to \phi - 2\pi \gamma$$

(日) (同) (三) (三) (三) (○) (○)

is a symmetry of the theory.

Reduction to Finite Dimensional Integrals

The path integral over A^t_H imposes a (delta function) condition on φ, namely

$$\iota_K d(\kappa \, \phi) = 0$$
 .

This delta function constraint on ϕ together with the gauge condition imply that ϕ is actually constant,

$$d\phi = 0.$$

Reduction to Finite Dimensional Integrals

The path integral over A^t_H imposes a (delta function) condition on φ, namely

$$\iota_K d(\kappa \, \phi) = 0$$
 .

This delta function constraint on ϕ together with the gauge condition imply that ϕ is actually constant,

$$d\phi = 0.$$

• With ϕ constant we have that

$$\int_{M} \operatorname{Tr} \kappa \wedge d\kappa \, \phi^{2} = p \, \operatorname{Tr} \phi^{2}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

$$Z_{k}[M_{(g,p)},G] \sim e^{4\pi i p \Phi_{0}} \sum_{r \in \mathbb{Z}_{p}^{\mathsf{rk}}} \int_{\mathfrak{t}} T_{S^{1}}(\phi)^{\chi(\Sigma_{g})/2}.$$

$$\cdot \exp i \frac{k+c_{\mathfrak{g}}}{4\pi} \operatorname{Tr}\left(p \, \phi^{2} + 4\pi r \, \phi\right)$$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● ○ ○ ○ ○

$$Z_{k}[M_{(g,p)},G] \sim e^{4\pi i p \Phi_{0}} \sum_{r \in \mathbb{Z}_{p}^{\mathsf{k}}} \int_{\mathfrak{t}} \mathcal{T}_{S^{1}}(\phi)^{\chi(\Sigma_{g})/2} .$$

$$\cdot \exp i \frac{k + c_{\mathfrak{g}}}{4\pi} \operatorname{Tr}\left(p \, \phi^{2} + 4\pi r \, \phi\right)$$

(ロ)、(型)、(E)、(E)、 E、 の(の)

Fix the remaining real normalisation constant, Λ, by comparison with the known normalisation for p = 0.

$$Z_{k}[M_{(g,p)},G] \sim e^{4\pi i p \Phi_{0}} \sum_{r \in \mathbb{Z}_{p}^{\mathsf{k}}} \int_{\mathfrak{t}} \mathcal{T}_{S^{1}}(\phi)^{\chi(\Sigma_{g})/2} .$$

$$\cdot \exp i \frac{k + c_{\mathfrak{g}}}{4\pi} \operatorname{Tr}\left(p \, \phi^{2} + 4\pi r \, \phi\right)$$

- Fix the remaining real normalisation constant, Λ, by comparison with the known normalisation for p = 0.
- The formulae above are invariant under the action of the Weyl group W which is part of the original gauge group. We thus need to divide by the "volume" (or mod out by the action) of W.

$$Z_{k}[M_{(g,p)},G] \sim e^{4\pi i p \Phi_{0}} \sum_{r \in \mathbb{Z}_{p}^{\mathsf{k}}} \int_{\mathfrak{t}} \mathcal{T}_{S^{1}}(\phi)^{\chi(\Sigma_{g})/2} .$$

$$\cdot \exp i \frac{k + c_{\mathfrak{g}}}{4\pi} \operatorname{Tr}\left(p \, \phi^{2} + 4\pi r \, \phi\right)$$

- Fix the remaining real normalisation constant, Λ, by comparison with the known normalisation for p = 0.
- The formulae above are invariant under the action of the Weyl group W which is part of the original gauge group. We thus need to divide by the "volume" (or mod out by the action) of W.
- The Ray-Singer torsion has zeros at the boundary of the Weyl chamber, which means that for genus g > 1 the integrals diverge. The way around this is to regularise by giving a small mass term to the connection, while preserving the residual U(1)^{rk} invariance.

Acknowledgements

I would like to thank the organizers of this meeting for the possibility to be here. My thanks especially to Faheem Hussain and Riazuddin.

▲□▶▲□▶▲□▶▲□▶ □ のQ@