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The mathematical framework for our cosmological model has been 
discussed by Hoyle, Burbidge and Narlikar (1995; HBN hereafter), 
and we outline briefly its salient features.  

To begin with, it is a theory that is derived from an action principle 
based on Mach's Principle, and assumes that the inertia of matter 
owes its origin to other matter in the universe. 

This leads to a theoretical framework wider than general relativity as it 
includes terms relating to inertia and creation of matter. 

I - Introduction 



Thus the equations of general relativity are replaced in the theory by

II – The Equations  

With the coupling constant f defined as

Rik – gikR +  λgik = 8 πG1
2

[Tik – f(CiCk – gikCl Cl)]1 
4

f  = 2   
3τ2

[We have taken the speed of light c = 1.]

Here τ = h / mp is the characteristic life time of a Plank particle with 
mass mp =  3 h / 8π G.  The gradient of C with respect to spacetime
coordinates xi (i = 0, 1,2,3) is denoted by Ci

(1)

(2)



II – The Equations  

Although the above equation defines f in terms of the fundamental 
constants it is convenient to keep its identity on the right hand side of 
Einstein's equations since there we can compare the C-field energy 
tensor directly with the matter tensor. 

Note that because of positive f, the C-field has negative kinetic 
energy. Also, the constant λ is negative in this theory. 



The question now arises of why astrophysical observation suggests 
that the creation of matter occurs in some places but not in others. For 
creation to occur at the points A0, B0, …..  it is necessary classically 
that the action should not change (i.e. it should remain stationary) 
with respect to small changes in the spacetime positions of these 
points, which can be shown to require 

III – Creation Condition 

Ci (A0) Ci (A0) = Ci (B0) Ci (B0) = m2
P .                        (3)



This is in general not the case: in general the magnitude of Ci(X)Ci(X)
is much less that m2

P. However, as one approaches closer and closer 
to the surface of a massive compact body Ci(X)Ci(X) is increased by a 
general relativistic time dilatation factor, whereas mP stays fixed. 

This suggests that we should look for regions of strong gravitational 
field such as those near collapsed massive objects. In general 
relativistic astrophysics such objects are none other than black holes, 
formed from gravitational collapse.  

III – Creation Condition



Theorems by Penrose, Hawking and others (see Hawking and Ellis 
1973) have shown that provided certain positive energy conditions 
are met, a compact object undergoes gravitational collapse to a 
spacetime singularity. Such objects become black holes before the 
singularity is reached. However, in the present case, the negative 
energy of the C-field intervenes in such a way as to violate the above 
energy conditions. What happens to such a collapsing object 
containing C-field apart from ordinary matter? 

IV – Collapse and Bounce 



We conjecture that such an object does not become a black hole. 
Instead, the collapse of the object is halted and the object bounces 
back, thanks to the effect of the C-field. We will refer to such an 
object as a compact massive object (CMO) or a near-black hole 
(NBH). In the following section we discuss the problem of 
gravitational collapse of a dust ball with and without the C-field to 
illustrate this difference.

IV – Collapse and Bounce 



Consider how the classical Oppenheimer-Snyder problem of 
gravitational collapse is changed under the influence of the negative 
energy C-field. First we describe the classical problem. We write the 
spacetime metric inside a collapsing dust ball in comoving
coordinates (t, r, θ, ϕ ) as  

V – Dust Ball 

ds2 = dt2 – a2(t) [                + r2(dθ2 + sin2θdϕ2) ] dr2

1 – αr2
(4)

where (t, r, θ, ϕ ) are constant for a typical dust particle and t is its 
proper time. Let the dust ball be limited by r < rb. 



In the original Oppenheimer-Snyder problem we may describe the 
onset of collapse at t = 0 with a(0) = 1 and a(0) =0. The starting 
density ρ0 is related to the constant  α by 

V – Dust Ball 

The field equations (1)  without the C-field then tell us that the 
equation of collapse is given by 

α =  8 πGρ0

3
(5)

and the spacetime singularity is attained a(t)         0 as t tS, 
where  

(6)

tS = π
2   α

(7)

.

a2 = α (            )
1 – a

a
.



Note that we have ignored the  λ - term as it turns out to have a 
negligible effect on objects of size small compared to the 
characteristic size of the universe. 

The collapsing ball enters the event horizon at a time t = tH when  

V – Dust Ball 

where the gravitational mass of the dust ball is given by  

rba(tH) = 2GM, (8)

This is the stage when the ball becomes a black hole. 

M =          r3
bρ0 =  4π

3
α r3

b

2G
(9)



V – Dust Ball 

When we introduce an ambient C -field into this problem, it gets 
modified as follows. In the homogeneous situation under discussion, 
C is a function of t only. Let, as before a(0) = 1a(0) = 0 and let C at    
t = 0, be given by β. Then it can be easily seen that the equation (6) is 
modified to 

where γ = 2πGfβ2 > 0. Also the earlier relation (5) is modified to  

a2 = α(           ) - γ (            )

- γα =  8 πGρ0

3

(10)

(11)

.

a2
1 - a 1 - a

a
.

.



It is immediately clear that in these modified circumstances a(t) cannot 
reach zero, the spacetime singularity is averted and the ball bounces at 
a minimum value amin > 0, of the function a(t). 

Writing λ = γ / α, we see that the second zero of a(t) occurs at amin= λ. 
Thus even for an initially weak C-field, we get a bounce at a finite 
value of a(t). 

V – Dust Ball 

.



But what about the development of a black hole? The gravitational 
mass of the black hole at any epoch t is estimated by its energy
content, i.e., by,  

VI – Black Hole  

M =          r3
b a3(t) {ρ - f C2}  

4π
3

α r3
b

2G

4
3

=       (λ + λ – ).λ 
a

(12)

.



Thus the gravitational mass of the dust ball decreases as it contracts 
and consequently its effective Schwarzschild radius decreases. This 
happens because of the reservoir of negative energy whose intensity 
rises faster than that of dust density. Such a result is markedly 
different from that for a collapsing object with positive energy fields 
only. From (12) we have the ratio  

VI – Black Hole  

F = 2GM(t)
a2

1 + λ 
rba(t) = α r2

b {              – }
a

λ (13)

dF =
a2

2λ 
da {         – (1 + λ) }

a
(14)

α r2
b

Hence



VI – Black Hole  

Hence,

We anticipate that λ << 1, i.e., the ambient C-field energy density is 
much less than the initial density of the collapsing ball. Thus F
increases as a decreases and it reaches its maximum value at  a 2λ

This value is attainable, being larger than amin. 

Denoting this with Fmax, we get  

=~  

(15)=~  
4λ

α r2
bFmax

dF =
a2

2λ 
da {         – (1 + λ) }

a
(14)

α r2
b



In general α r2
b << 1 for most astrophysical objects. 

For the Sun, α r2
b 4 x10-8, while for a white dwarf it is ~ 4 x 10-6. 

We assume that λ, although small compared to unity, exceeds such 
values, thus making Fmax <1. 

In such circumstances black holes do not form.

We consider scenarios in which the object soon after bounce picks up 
high outward velocity. From (10) we see that maximum outward 
velocity is attained at a = 2 λ and it is given by  

VI – Black Hole  

=~  

~~  a2
max 

α

2λ
(16)

.



As λ << 1 we expect amax to attain high values. Likewise the C-field 
gradient (C in this case) will attain high values in such cases. 

Thus, such objects after bouncing at amin will expand and as a(t) increases 
the strength of the C-field falls while for small a(t) a increases rapidly as 
per equation (10). This expansion therefore resembles an explosion. 
Further, the high local value of the C-field gradient will trigger off 
creation of Planck particles.  

VII – A White Hole  

.
.

.



It is worth stressing here that even in classical general relativity, the 
external observer never lives long enough to observe the collapsing 
object enter the horizon. Thus all claims to have observed black holes 
in X-ray sources or galactic nuclei really establish the existence of
compact massive objects, and as such they are consistent with the 
NBH concept.

VII – A White Hole  



The introduction of a negative energy field 

(1) permits creation of matter near dense regions, 

(2) reverses gravitational collapse at finite density, 

and 

(3) can lead to bounce that develops into an explosive situation. 

VIII – Conclusion   


