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Abstract

The matter collineations of plane symmetric spacetimes are studied
according to the degenerate energy-momentum tensor. We have found
many cases where the energy-momentum tensor is degenerate but the
group of matter collineations is finite. Further we obtain different
constraint equations on the energy-momentum tensor. Solving these
constraints may provide some new exact solutions of Einstein field
equations.
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1 Introduction

General Theory of Relativity (GR), which is a field theory of gravitation and
is described in terms of geometry, is highly non-linear. Because of this non-
linearity, it becomes very difficult to solve the gravitational field equations
unless certain symmetry restrictions are imposed on the spacetime metric.
These symmetry restrictions are expressed in terms of isometries possessed
by spacetimes. These isometries, which are also called Killing Vectors (KVs),
give rise to conservation laws [1,2]. In GR, the Einstein tensor Gab plays a
significant role, since it relates the geometry of spacetime to its source. The
GR theory, however, does not prescribe the various forms of matter, and
takes over the energy-momentum tensor Tab from other branches of physics.
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Einstein’s field equations (EFEs) are given by

Gab ≡ Rab − 1

2
Rgab = κTab, (a, b = 0, 1, 2, 3), (1)

where Gab are the components of the Einstein tensor, Rab those of the Ricci
and Tab of the matter (energy-momentum) tensor. Also, R = gabRab is the
Ricci scalar, κ is the gravitational constant and for simplicity, we take Λ = 0.

Let (M, g) be a spacetime, i.e., M is a four-dimensional, Hausdorff,
smooth manifold, and g is smooth Lorentz metric of signature (+ - - -)
defined on M . The manifold M and the metric g are assumed smooth (C∞).
We shall use the usual component notation in local charts, and a covariant
derivative with respect to the symmetric connection Γ associated with the
metric g will be denoted by a semicolon and a partial derivative by a comma.

We define collineations as geometrical symmetries which are given by a
relation of the form £ξA = B, where £ is the Lie derivative operator, ξa is the
symmetry or collineation vector, A is any of the quantities gab,Γ

a
bc, Rab, R

a
bcd

and geometric objects constructed by them and B is a tensor with the same
index symmetries as A. One can find all the well-known collineations by
requiring the particular forms of the quantities A and B. For example if
we take Aab = gab and Bab = 2ψgab, this defines a Conformal Killing vector
(CKV) and it specializes to a Special Conformal Killing vector (SCKAV)
when ψ;ab = 0, to a Homothetic vector (HV) field when ψ = constant and to
a Killing vector (KV) when ψ = 0. If we take Φab = Rab and Bab = 2ψRab

the symmetry vector ξa is called a Ricci Inheritance collineation (RIC) and
reduces to a Ricci collineation (RC) for Bab = 0. When Aab = Tab and
Bab = 2ψTab, where Tab is the energy-momentum tensor, the vector ξa is
called a Matter Inheritance collineation (MIC) and it reduces to a Matter
collineation (MC) for Bab = 0. In the case of CKVs, the function is called
the conformal factor and in the case of inheriting collineations the inheriting
factor.

We shall define MCs to be proper which is not a KV or a HV otherwise
it is improper. The MC equation can be written as

£ξTab = 0 ⇔ £ξGab = 0, (2)

or in component form

Tab,cξ
c + Tacξ

c
,b + Tcbξ

c
,a = 0. (3)
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A vector field ξ satisfying Eq.(2) or (3) on M is called a matter collineatioin.
There is a recent growing interest in the study of MCs [3-8]. Carot, et al.

[4] have discussed MCs from the point of view of the Lie algebra of vector
fields generating them and, in particular, they discussed spacetimes with a
degenerate Tab. Hall, et al. [5], in the discussion of RC and MC, have argued
that the symmetries of the energy-momentum tensor may also provide some
extra understanding of the the subject which has not been provided by Killing
vectors, Ricci and Curvature collineations.

This paper has been meant to study the problem of calculating MCs for
plane symmetric spacetimes when the energy-momentum tensor is degenerate
only. A complete solution of the MC equations for the plane symmetric
spacetimes will be reported elsewhere [9]. The paper has been organised as
follows. In the next section we write down MC equations for plane symmetric
spacetimes. In section three, we shall solve these MC equations when the
energy-momentum tensor is degenerate only. We shall conclude the results
at the end.

2 Matter Collineation Equations

This section contains the MC equations for plane symmetric spacetimes. The
most general plane symmetric metric is given [10] as

ds2 = eν(t,x)dt2 − eλ(t,x)dx2 − eµ(t,x)(dy2 + dz2). (4)

The non-zero components of the energy-momentum tensor are T00, T01, T11,
T22, T3 given in Appendix A. MC Eqs.(3) for plane symmetric spacetime can
be written as

T0,0ξ
0 + T0,1ξ

1 + 2T0ξ
0
,0 = 0, (5)

T0ξ
0
,1 + T1ξ

1
,0 = 0, (6)

T0ξ
0
,2 + T2ξ

2
,0 = 0, (7)

T0ξ
0
,3 + T2ξ

3
,0 = 0, (8)

T1,0ξ
0 + T1,1ξ

1 + 2T1ξ
1
,1 = 0, (9)

T1ξ
1
,2 + T2ξ

2
,1 = 0, (10)

T1ξ
1
,3 + T2ξ

3
,1 = 0, (11)

T2,0ξ
0 + T2,1ξ

1 + 2T2ξ
2
,2 = 0, (12)
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T2(ξ2
,3 + ξ3

,2) = 0, (13)

T2,0ξ
0 + T2,1ξ

1 + 2T2ξ
3
,3 = 0, (14)

where T3 = T2. It is to be noticed that we are using the notation Taa = Ta.
Further, we have written these equations for higher symmetries under the
assumption T01 = 0 which implies that either µ = constant or µ = µ(x), λ =
λ(x). We shall solve these equations for the degenerate case only.

3 Solution of Matter Collineation Equations

In this section we solve MC equations (5)-(14) when the determinant of the
energy-momentum is zero, i.e., det(Tab) = 0. This means that we would
require at least one of Ta = 0. First, we consider the trivial case, where
Ta = 0. In this case, Eqs.(5)-(14) are identically satisfied and thus every
direction is a MC.

The other possibilities can be classified in three main cases:

(1) when only one of Ta 6= 0,
(2) when two of Ta 6= 0,
(3) when three of Ta 6= 0.

However, we shall report only the case for which MCs are finite. This is
the third case when three of Ta 6= 0. In this case, there could be only two
possibilities, i.e., either

(3a) T0 = 0, Ti 6= 0, (i = 1, 2, 3)

(3b) T1 = 0, Tj 6= 0 (j = 0, 2, 3).

We restrict ourselves to discuss the finite MCs of the first case only.
Case (3a): In this case, Eq.(5) is identically satisfied and Eqs.(6)-(8) re-
spectively give ξi = ξi(x, y, z). The remaining equations will become

T1,0ξ
0 + T1,1ξ

1 + 2T1ξ
1
,1 = 0, (15)

T1ξ
1
,2 + T2ξ

2
,1 = 0, (16)

T1ξ
1
,3 + T2ξ

3
,1 = 0, (17)

T2,0ξ
0 + T2,1ξ

1 + 2T2ξ
2
,2 = 0, (18)

ξ2
,3 + ξ3

,2 = 0, (19)

T2,0ξ
0 + T2,1ξ

1 + 2T2ξ
3
,3 = 0. (20)
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From these equations, we have the following sixteen possibilities:

(i) T1 = constant 6= 0, T2 = constant 6= 0,

(ii) T1,0 6= 0, T1,1 = 0, T2 = constant 6= 0,

(iii) T1,0 = 0, T1,1 6= 0, T2 = constant 6= 0,

(iv) T1 = constant 6= 0, T2,0 6= 0, T2,1 = 0,

(v) T1 = constant 6= 0, T2,0 = 0, T2,1 6= 0,

(vi) T1 = constant 6= 0, T2,0 6= 0, T2,1 6= 0,

(vii) T1,0 6= 0, T1,1 6= 0, T2 = constant 6= 0,

(viii) T1,0 6= 0, T1,1 = 0, T2,0 6= 0, T2,1 = 0,

(ix) T1,0 6= 0, T1,1 = 0, T2,0 = 0, T2,1 6= 0,

(x) T1,0 = 0, T1,1 6= 0, T2,0 6= 0, T2,1 = 0,

(xi) T1,0 = 0, T1,1 6= 0, T2,0 = 0, T2,1 6= 0,

(xii) T1,0 6= 0, T1,1 6= 0, T2,0 6= 0, T2,1 = 0,

(xiii) T1,0 6= 0, T1,1 = 0, T2,0 6= 0, T2,1 6= 0,

(xiv) T1,0 = 0, T1,1 6= 0, T2,0 6= 0, T2,1 6= 0,

(xv) T1,0 6= 0, T1,1 6= 0, T2,0 = 0, T2,1 6= 0,

(xvi) T1,0 6= 0, T1,1 6= 0, T2,0 6= 0, T2,1 6= 0.

We list here only the finite cases.
Case(3aiv): Solving MC equations simultaneously, we obtain the following
MCs

ξ0 = 0,

ξ1 = c1y + c2z + c3,

ξ2 = −T1

T2

c1x+ c4z + c5,

ξ3 = −T1

T2

c2x− c4y + c6. (21)
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This gives six MCs out of which three are the usual KVs and three are the
proper MCs.
Case(3avi): Solving MC equations under the constraints of this case, we
obtain the following solution

ξ0 = −T2,1

T2,0

[c1y + c2z + c3],

ξ1 = c1y + c2z + c3,

ξ2 = −c1

∫ T1

T2

dx+ c4z + c5,

ξ3 = −c2

∫ T1

T2

dx− c4y + c6 (22)

giving rise to six MCs.
Case(3aviii): This gives the same results as the case (3aiv) and hence we
obtain six MCs.
Case(3aix): Solving MC equations, after some algebraic manipulation, we
obtain the following solution

ξ` = 0, (` = 0, 1),

ξ2 = c1z + c2,

ξ3 = −c1y + c3. (23)

In this case MCs turn out to be the usual three KVs.
Case(3ax): Proceeding in a similar way as above, it follows that MCs are

ξ0 = 0,

ξ1 =
1√
T1

[c1y + c2z + c3],

ξ2 = − c1

T2

∫ √
T1dx+ c4,

ξ3 = − c2

T2

∫ √
T1dx+ c5. (24)

Here we get five MCs out of which two are proper.
Case(3axii): This case turns out to be similar to the case (3ax).
Case(3axiii): Here after some algebra, we have the following constraint

A′i(x)

Ai(x)
=
T1,0T2,1

2T1T2,0

= α,
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where α is a separation constant. This gives rise to the following two possi-
bilities:

(∗) α = 0, (∗∗) α 6= 0.

Case(3axiii*): For α = 0, MCs are

ξ0 = 0,

ξ1 = c1y + c2z + c3,

ξ2 = −T1

∫ c1

T2

dx+ c4z + c5,

ξ3 = −T1

∫ c2

T2

dx− c4y + c6. (25)

It follows that we have six MCs.
Case(3axiii**): For α 6= 0, MCs are

ξ0 = −T2,1

T2,0

eαx[c1y + c2z + c3],

ξ1 = eαx[c1y + c2z + c3],

ξ2 = −c1

∫ T1

T2

eαxdx+ c4z + c5,

ξ3 = −c2

∫ T1

T2

eαxdx− c4y + c6 (26)

giving six MCs.
Case(3axiv): Using the same procedure as above, after some algebra, we
obtain the following MCs

ξ0 = − T2,1

T2,0

√
T1

[c1y + c2z + c3],

ξ1 =
1√
T1

[c1y + c2z + c3],

ξ2 = −c1

∫ √T1

T2

dx+ c4z + c5,

ξ3 = −c2

∫ √T1

T2

dx− c4y + c6. (27)

Here again we obtain three proper MCs.
Case(3axvi): In this case, we further have the following constraint

α =
1

2T1

[T1,0T2,1 − T1,1T2,0]
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giving the following two options

(∗) α = 0, (∗∗) α 6= 0.

Case(3axvi*): This gives exactly the same results as the case (3avi).
Case(3axvi**): It gives the results similar to the case (3axiii**).

4 Discussion

In the classification of plane symmetric spacetimes according to the nature
of the energy-momentum tensor, we find that when the energy-momentum
tensor is degenerate, then there are many cases of MCs with infinite degrees
of freedom. However, we have restricted to find the finite MCs only. It is
very interesting to note that we have found many cases where the energy-
momentum tensor is degenerate but the group of MCs are finite dimensional.
We obtain three, five and six MCs out of which three are the usual KVs of
the non-static plane symmetric spacetimes and rest are the proper MCs. In
the cases (1)-(3), we summarize some results in the following:

1. In this case, the rank of Tab being 1, it is found that all the possi-
bilities yield infinite dimensional MCs.

2. In all subcases of this case, the rank of Tab being 2.

3. In all subcases of this case, the rank of Tab is 3. The worth men-
tioning point in this case are the subcases where we have finite dimen-
sionality of the group of MCs even if the energy-momentum tensor is
degenerate. We obtain three, five and six MCs.

We have obtained number of constraint equations. If these constraint
equations could be solved, then one can expect to find new interesting exact
solutions. A complete classification of the degenerate and non-degenerate
energy-momentum tensor will be reported somewhere else [9].
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Appendix A

The surviving components of the Ricci tensor are

R00 =
1

4
(4ν̈ + 2µ̇2 − ν̇λ̇+ 2λ̈+ λ̇2 − 2µ̇ν̇)

+
1

4
eν−λ(2ν ′′ + ν ′2 + 2ν ′µ′ − ν ′λ′),

R01 = −1

2
(2µ̇′ + µ̇µ′ − µ̇ν ′ − λ̇µ′),

R11 =
1

4
eλ−ν(2λ̈+ λ̇2 − ν̇λ̇+ 2λ̇µ̇)

− 1

4
(2ν ′′ + ν ′2 + 4µ′′ − ν ′λ′ + 2µ′2 − 2µ′λ′),

R22 =
1

4
eµ−λ(2µ̈+ 2µ̇2 − ν̇µ̇+ λ̇µ̇)

− 1

4
eµ−λ(2µ′′ + 2µ′2 − ν ′λ′ + µ′ν ′),

R33 = R22. (A1)

The Ricci scalar is given by

R = −1

2
e−ν(2λ̈+ λ̇2 − ν̇λ̇− 2ν̇µ̇+ 2µ̇λ̇+ 3µ̇2 + 4µ̈)

+
1

2
e−λ(2ν ′′ + ν ′2 − ν ′λ′ + 2ν ′µ′ − 2µ′λ′ + 3µ′2 + 4µ′′). (A2)

Using Einstein field equations (1), the non-vanishing components of energy-
momentum tensor Tab are

T00 =
1

4
(µ̇2 + 2µ̇λ̇)− 1

4
eν−λ(4µ′′ + 3µ′2 − 2µ′λ′),

T01 = R01,

T11 = −1

4
eλ−ν(4µ̈+ 3µ̇2 − 2µ̇ν)− 1

4
(µ′2 + 2µ′ν ′),

T22 = −1

4
eµ−ν(2µ̈+ 2λ̈+ µ̇2 − µ̇ν̇ + µ̇λ̇− ν̇λ̇+ λ̇2),

+
1

4
eµ−ν(2µ′′ + 2ν ′′ + µ′2 − µ′λ′ + µ′ν ′ − λ′ν ′ + ν ′2),

T33 = T22 sin2 θ. (A3)
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