

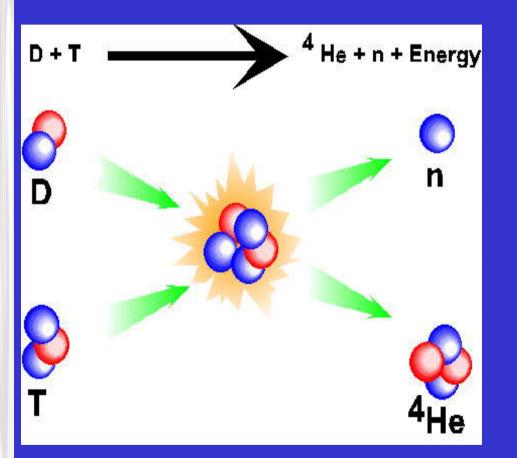
Dr. Maqsood-ul-Hasan Nasim Principal Scientist

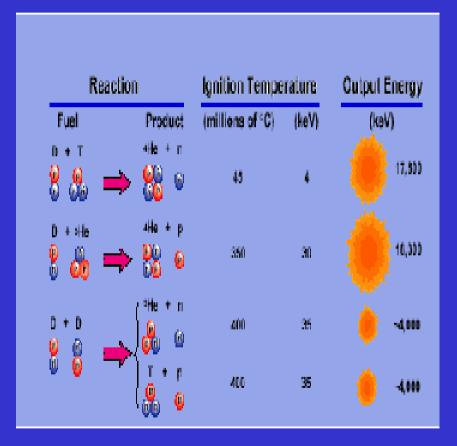
Pakistan Atomic Energy Commission, P. O. Box 3132, Islamabad

# INTRODUCTION



## Fusion

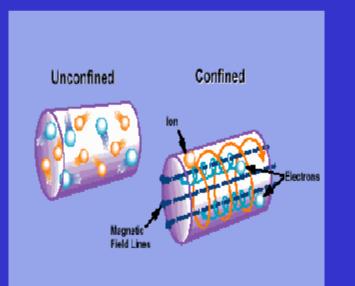






## Magnetic Confinement

#### tokamak



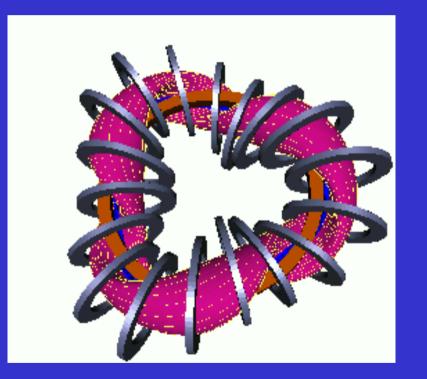


Lawson criteria  $n\tau > 10^{-19}$  s m<sup>-3</sup>

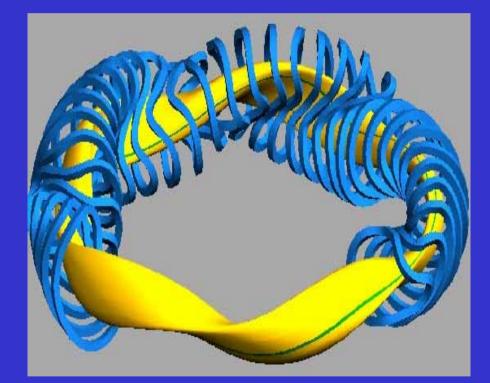


#### Stellarators

# H1-NF



### Wendelstein 7-X



#### 3 Field period

#### 5 Field period



### Layout of the talk

- + Introduction to numerical scheme
- + Magnetic field in 3D geometries
- Calculations of equilibrium quantities mod B, curvature, LMS, ILMS
- + Drift wave model and reduction to eigen value problem
  - i delta, ITG, TEM
- + Boundary conditions and numerical method
- + A few results



#### **Numerical Scheme**

# VMEC Code

#### (Generalized Cylindrical Coordinates)

# Mapper Code

(Boozer Flux Coordinates)

# Drift Code



# The VMEC Code



#### Covariant and contravariant vectors

#### The position vector :

#### Cylindrical coordinates :

The covariant basis vectors :

The contravariant basis vectors :

The jacobean for Boozer coor. :

$$m{r}_p = (R\cos\phi_c,R\sin\phi_c,z).$$

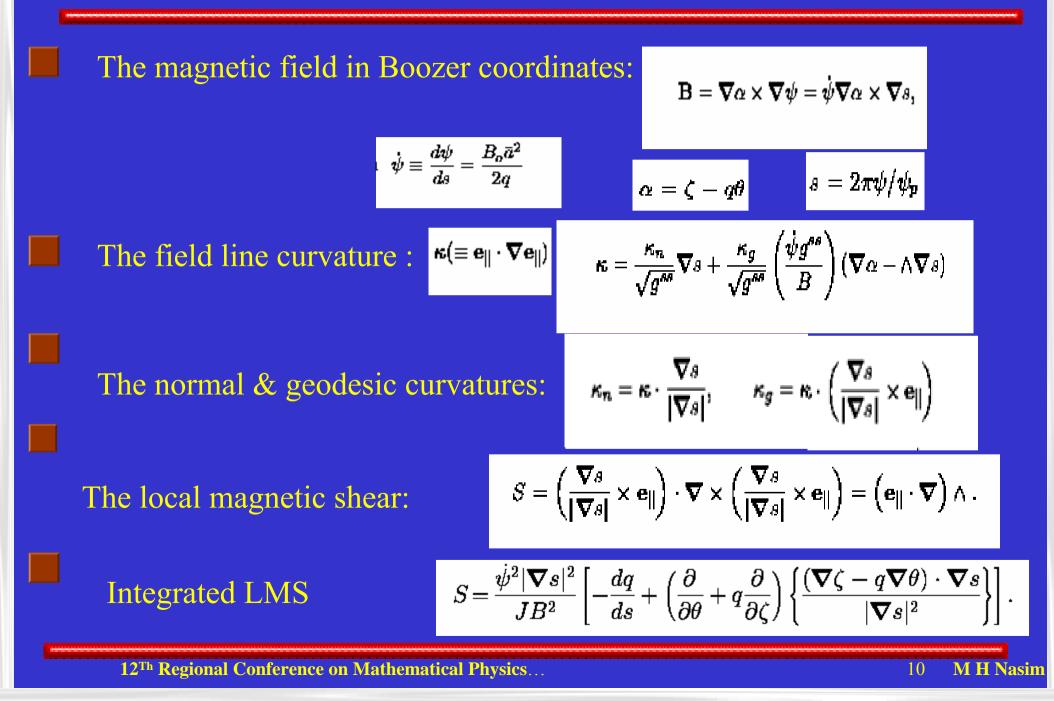
$$\left. egin{aligned} R &= \sum_{m=0}^{n_p} \sum_{n=-n_t}^{n_t} R_{mn}(s) \cos(m heta+nN\zeta) \ \phi_n &= \zeta - rac{2\pi}{N} \sum_{m=0}^{n_p} \sum_{n=-n_t}^{n_t} \phi_{mn}(s) \sin(m heta+nN\zeta) \ z &= \sum_{m=0}^{n_p} \sum_{n=-n_t}^{n_t} z_{mn}(s) \sin(m heta+nN\zeta). \end{aligned} 
ight\}$$

$$\mathbf{e}_s = rac{\partial \mathbf{r}_p}{\partial s}, \qquad \mathbf{e}_{\theta} = rac{\partial \mathbf{r}_p}{\partial heta}, \qquad \mathbf{e}_{\zeta} = rac{\partial \mathbf{r}_p}{\partial \zeta},$$

$$abla s = rac{\mathbf{e}_{ heta} imes \mathbf{e}_{\zeta}}{J}, \qquad oldsymbol{
abla} heta = rac{\mathbf{e}_{\zeta} imes \mathbf{e}_{s}}{J}, \qquad oldsymbol{
abla} \zeta = rac{\mathbf{e}_{s} imes \mathbf{e}_{ heta}}{J}.$$

$$J\equiv {f e}_s\cdot {f e}_ heta imes {f e}_\zeta = {\dot\psi\over B^2}\left(B_ heta+qB_\zeta
ight)\;,$$

### Magnetic field configuration

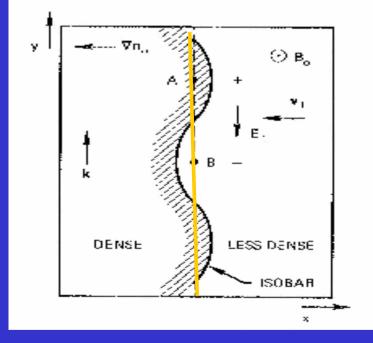


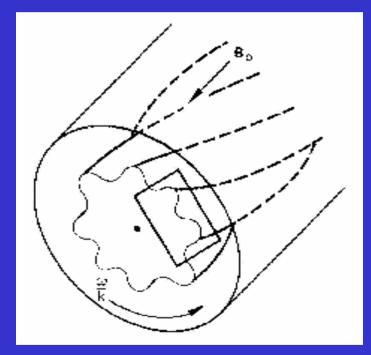


# The Drift Code



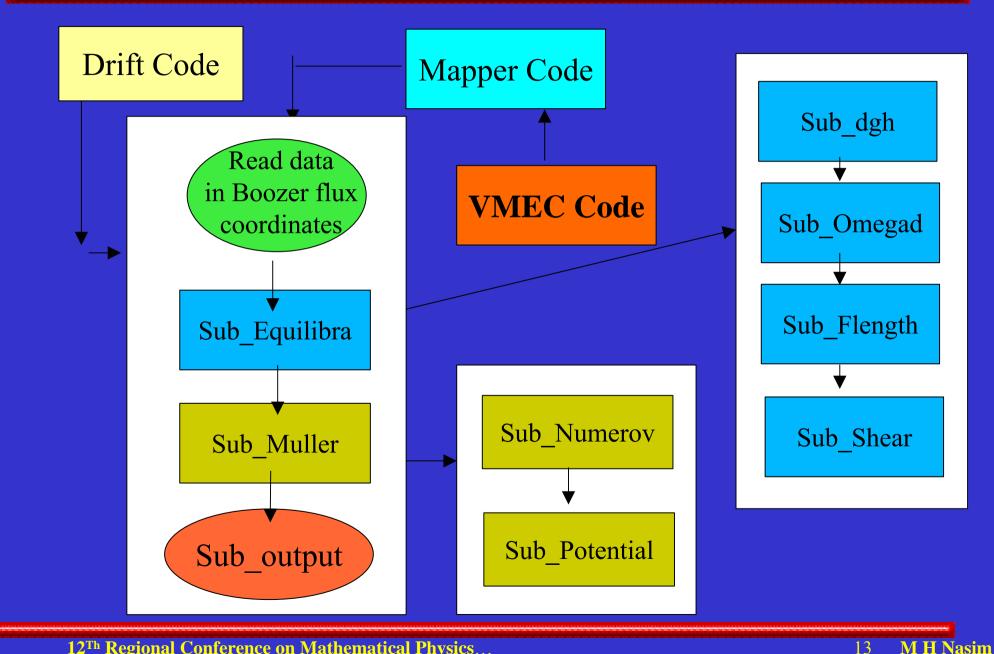
### Simple Picture of Drift Waves







#### Drift code and numerical scheme



### Ballooning formalisim & WKB approx.

$$\hat{\phi}(\mathbf{r}) = \Phi(\psi, \alpha, \zeta) \exp[-i\epsilon^{-1}S(\psi, \alpha, \zeta)]$$

$$\hat{\phi} = \Phi(\zeta) \exp[-i\epsilon^{-1}S(\psi, \alpha)]$$

$$\alpha(\psi, \theta_o, \zeta_o) \to \alpha(\psi, \theta_o + 2\pi, \zeta_o)$$
$$\alpha(\psi, \theta_o, \zeta_o) \to \alpha(\psi, \theta_o, \zeta_o + 2\pi),$$

$$\begin{aligned} \mathbf{k}_{\perp} &= i \boldsymbol{\nabla}_{\perp} \ln \hat{\phi} = \epsilon^{-1} \boldsymbol{\nabla}_{\perp} S = \epsilon^{-1} \left[ \frac{\partial S}{\partial \alpha} \boldsymbol{\nabla} \alpha + \frac{\partial S}{\partial \psi} \boldsymbol{\nabla} \psi \right] \\ &= \epsilon^{-1} \frac{\partial S}{\partial \alpha} \left[ \boldsymbol{\nabla} \zeta - q \boldsymbol{\nabla} \theta - \left\{ \theta \frac{dq}{d\psi} - \frac{\partial S/\partial \psi}{\partial S/\partial \alpha} \right\} \boldsymbol{\nabla} \psi \right] \end{aligned}$$

$$\frac{\partial S/\partial \psi}{\partial S/\partial \alpha} = \left(\theta_o + \theta_k\right) \frac{dq}{d\psi}.$$

$$\zeta - q\theta = \alpha = \zeta_o - q\theta_o$$

**M H Nasim** 

14

$$\mathbf{k}_{\perp} = \epsilon^{-1} \frac{\partial S}{\partial \alpha} \left[ \boldsymbol{\nabla} \boldsymbol{\zeta} - q \boldsymbol{\nabla} \boldsymbol{\theta} - \left( \frac{\boldsymbol{\zeta} - \boldsymbol{\zeta}_o}{q} - \boldsymbol{\theta}_k \right) \frac{dq}{d\psi} \boldsymbol{\nabla} \psi \right].$$

#### Eigen value problem i-delta model

Drift wave equation:

$$\frac{d^2\Phi}{d\zeta^2} + U(\zeta,\omega) = 0$$

Effective potential using i-delta model:

The grad B plus curvature drift
 The diamagnetic drift
 FLR effects
 delta

The parallel gradient operator:

$$oldsymbol{
abla} oldsymbol{
abla} \cdot oldsymbol{
abla}_{\parallel} = \left( rac{\dot{\psi} q}{JB} 
ight)^2 rac{d^2}{d\zeta^2} igg|_{field\,line}.$$

15

M H Nasim

#### Eigen value problem (i-delta model)

$$rac{d^2 \Phi}{d\zeta^2} + U(\zeta,\Omega) \Phi = 0,$$

#### **Effective potential using i-delta model:**

Where

$$U(\zeta,\Omega) = -rac{1}{F}\left(rac{JB}{qar{R}\dot{\psi}}
ight)^2 \left\{ (\Omega_*+F\Omega_d)\chi\Omega - (1+b+i\delta)\,\Omega^2 
ight\};$$

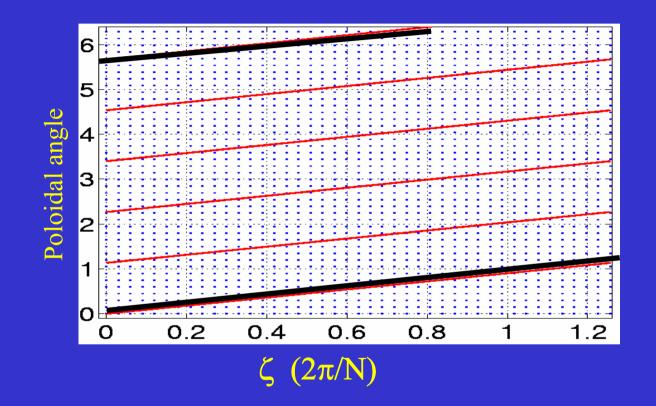
$$\begin{split} F &= 1 + \tau, \qquad \Omega_* = \Omega_*(s) = \frac{2\bar{R}}{\bar{a}L_n}, \qquad L_n^{-1} = \frac{d\ln n_0}{ds}, \qquad \Omega = \frac{\bar{R}\omega}{c_s}, \\ \chi &= \epsilon^{-1} \frac{q\rho_{so}}{\bar{a}} \frac{\partial S}{\partial \alpha}, \qquad \tau = \frac{T_i}{T_e}, \qquad c_s = \sqrt{\frac{T_e}{m_i}}, \qquad b = \frac{B_o^2 \chi^2 |\hat{\mathbf{k}}_{\perp}|^2}{B^2}, \\ \Omega_d &= \Omega_d(s, \alpha, \zeta) = B_o \bar{R} \left(\frac{\mathbf{B} \times (\kappa + \nabla \ln B)}{B^2}\right) \cdot \hat{\mathbf{k}}_{\perp}, \qquad \rho_{so} = \frac{c_s}{eB/m_i} \end{split}$$

12<sup>Th</sup> Regional Conference on Mathematical Physics...

# Numerical Method



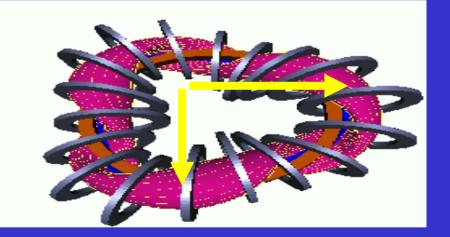
#### Grid points and field line in one field period of W7-X

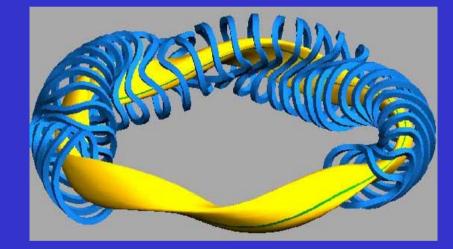


#### Straight line represents the $\alpha$ =0 line

12<sup>Th</sup> Regional Conference on Mathematical Physics...

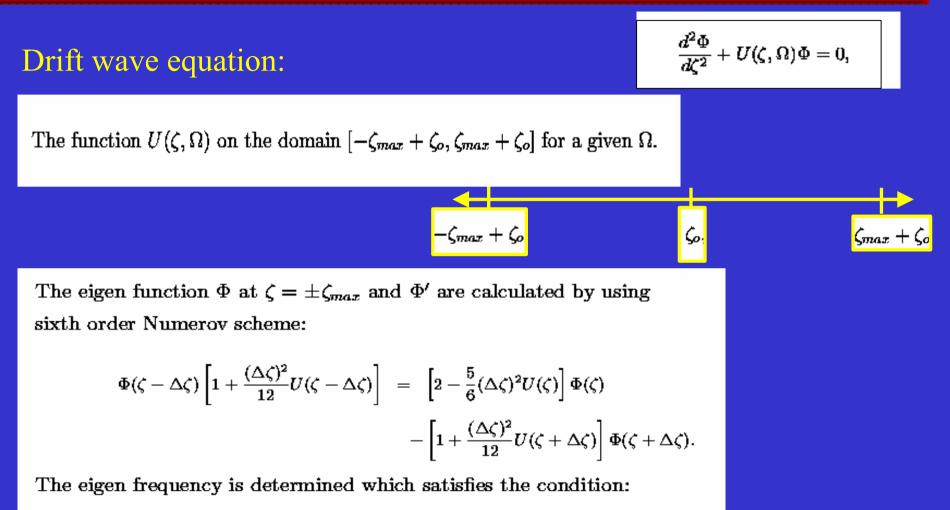
### One Field Period of H1-NF







#### Numerical method



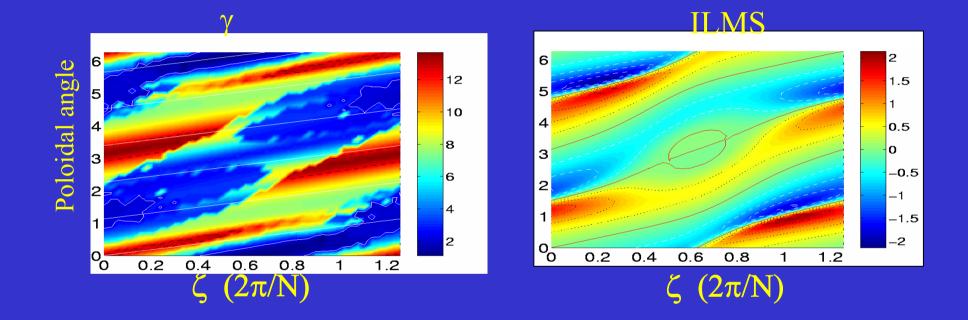
$$f(\Omega) = \frac{\Phi_+'}{\Phi_+} - \frac{\Phi_-'}{\Phi_-} = 0$$

20

MB

on the complex frequency plane.

#### Growth rate in one field period (i-delta) W7-X



The normalized growth rate  $\gamma = (R\gamma/C_s)$  the most unstable modes on the magnetic surface s = 3/4,  $\theta_{\kappa} = 0.\delta = 0.001$ ,  $\varepsilon_n = 0.1$ 

### Eigenvalue problem ITG model

#### Drift wave equation

$$\frac{d^{2}\Phi}{d\zeta^{2}}+U(\zeta,\omega)=0$$

#### The effective potential includes:

The diamagnetic drift
The grad B plus curvature drift
The temperature gradients
The FLR effects
Electrons are Boltzmannian

### **Eigenvalue problem ITG model**

Drift wave equation:

$$rac{d^2 \Phi}{d\zeta^2} + U(\zeta,\Omega) \Phi = 0,$$

Effective potential using ITG model :

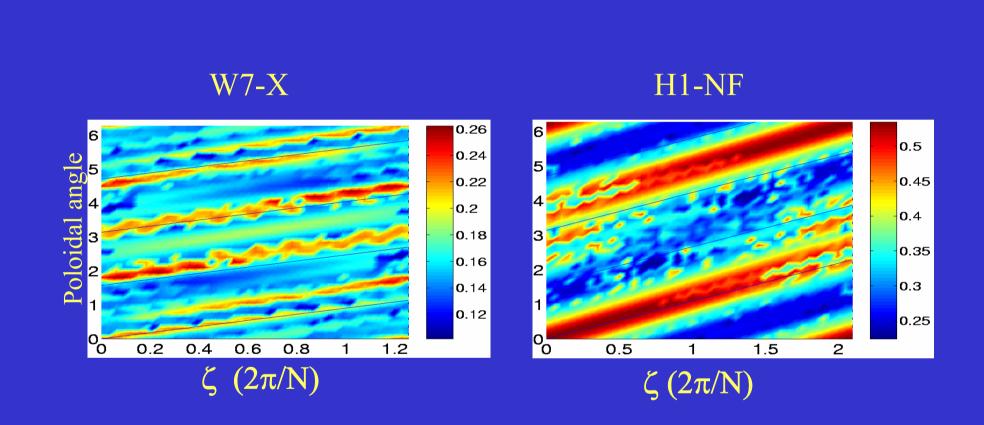
$$\mathbf{U} = -\left(\frac{2\chi_i JB}{\bar{a}\epsilon_n q\bar{R}\dot{\psi}}\right)^2 \left[ (H^{-1} - \frac{\bar{a}\epsilon_n \Omega_d}{2})\Omega - \left\{ H^{-1} + \left(\frac{\chi B_0}{B}\right)^2 \left(\hat{\mathbf{k}}_{\perp} \cdot \hat{\mathbf{k}}_{\perp}\right) \right\} \Omega^2 \right]$$

$$H = 1 + \tau^{-1} + \frac{\tau^{-1} \left[ (2/3) \,\Omega + (\eta_i - (2/3)) \right]}{\Omega + (5/6\tau) \,\overline{a} \epsilon_n \Omega_d},$$

Where

$$\Omega=\omega/\omega_{*\epsilon}, ~~\epsilon_n=L_n/ar{R}~,~\chi=(\epsilonar{a})^{-1}\,q
ho_{s0}\partial S/\partiallpha,$$

### Growth rate (ITG) in one field period

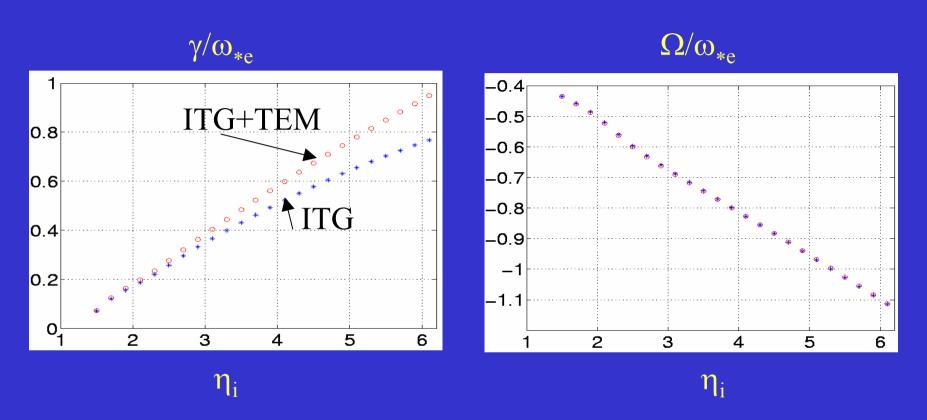


The growth rate  $\gamma = (\gamma/\omega_{*e})$  of the most unstable modes on the magnetic surface s =3/4,  $\theta_{\kappa}=0$ ,  $\tau=1$ ,  $\varepsilon_n=0.1$  and b=0.1.

### **Dissipative Trapped Electrons**

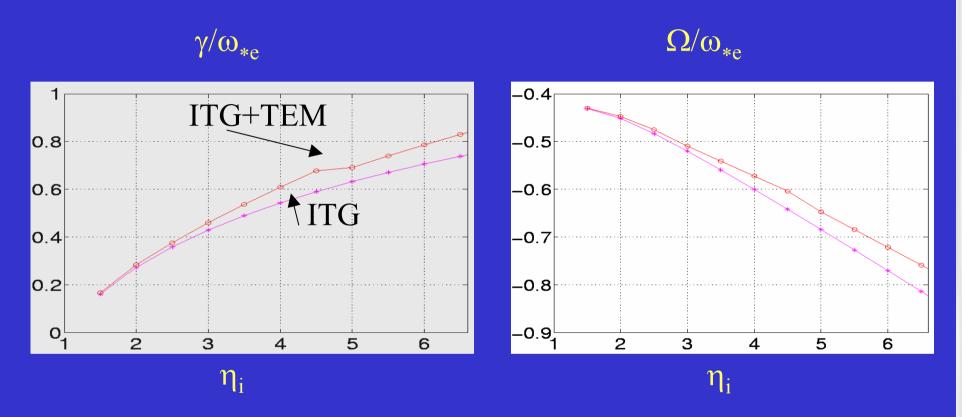


#### Growth rate (ITG+TEM) W7-X



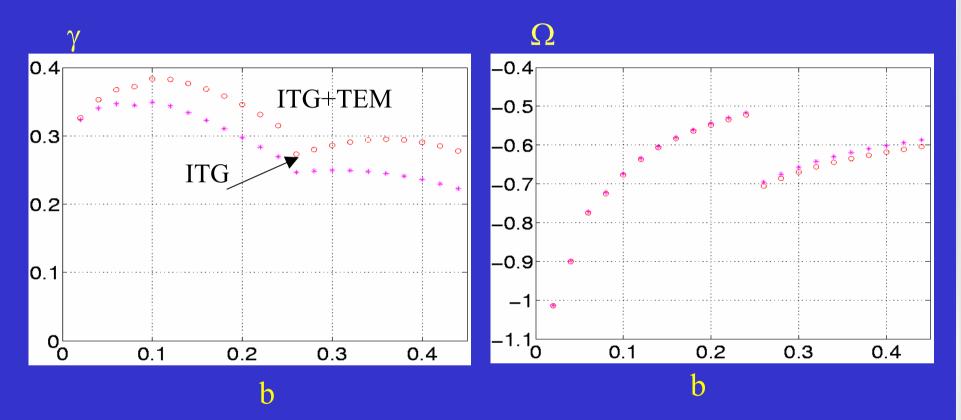
The growth rate  $\gamma = (\gamma/\omega_{*e})$  and the eigen frequency  $\Omega(=\omega/\omega_{*e})$  of the most unstable modes VS  $\eta_i$  on the magnetic surface s =0.7,  $\theta_{\kappa}=0, \tau=1, \epsilon_n=0.1$  and b=0.1.

#### Growth rate (ITG+TEM) H1-NF



The growth rate  $\gamma = (\gamma/\omega_{*e})$  and the eigen frequency  $\Omega(=\omega/\omega_{*e})$  of the most unstable modes VS  $\eta_i$  on the magnetic surface s =0.7,  $\theta_{\kappa}=0, \tau=1, \epsilon_n=0.1$  and b=0.1.

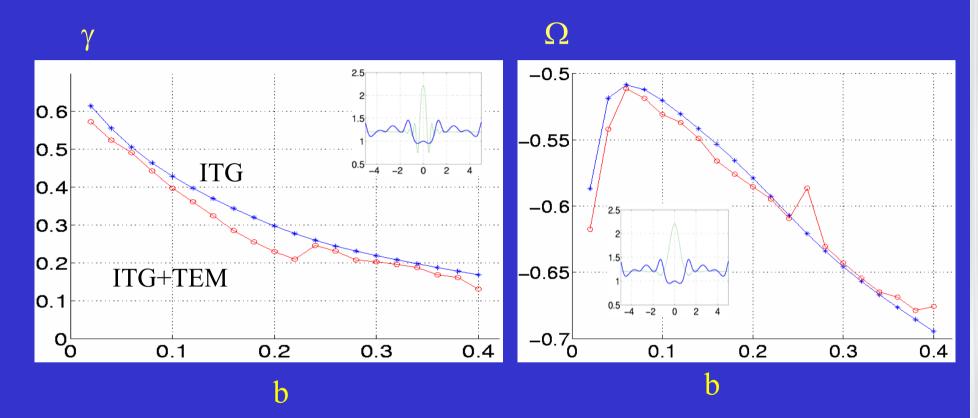




The growth rate  $\gamma (= \gamma/\omega_{*e})$  and the eigen frequency  $\Omega (=\omega/\omega_{*e})$  of the most unstable modes versus b on the magnetic surface s = 0.7,  $\theta_{\kappa} = 0$ ,  $\tau = 1$ ,  $\varepsilon_n = 0.1$  and  $\eta_i = 3$ .

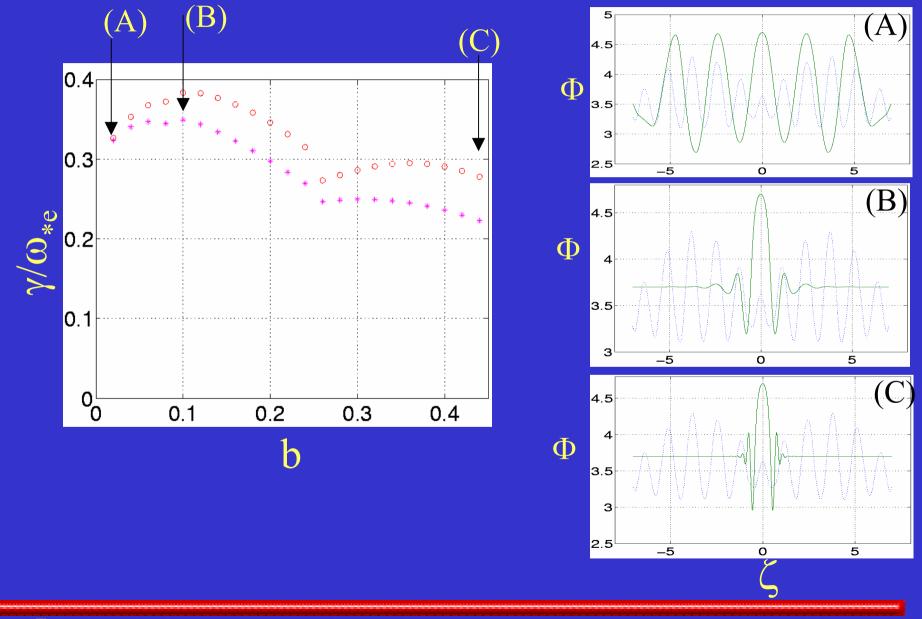
28

#### Growth rate (ITG+TEM) H1-NF



The growth rate  $\gamma (= \gamma/\omega_{*e})$  and the eigen frequency  $\Omega (=\omega/\omega_{*e})$  of the most unstable modes versus b on the magnetic surface s = 0.7,  $\theta_{\kappa} = 0$ ,  $\tau = 1$ ,  $\varepsilon_n = 0.1$  and  $\eta_i = 3$ .

#### Growth rate (ITG+TEM) W7-X



12<sup>Th</sup> Regional Conference on Mathematical Physics...

### Summary

- The VMEC code is used to generate equilibrium data for the nested magnetic surfaces.
- Mapper code is used to transform data into Boozer coordinates.
- Equilibrium quantities are calculated on magnetic surfaces.
- Ballooning formalisim & WKB type BC are used.
- Shooting technique is applied to find the eigen values.
- i-delta, ITG, TEM models are successfully implemented.
- The eigenfunctions are localized within helical wells of B field.
- In W7-X growthrate is smaller than H1-NF.

### **Few Ref of Published Work**

- Geometrical effects on drift wave instability in stellarator plasmas.
   Plasma Physics and Controlled Fusion, 46, 193(2004)
   (M. H. Nasim, T. Rafiq, and M. Persson)
- Dissipative trapped electron modes in a Heliac Physica Scripta, 72, 409-418(2005)
   (M. H. Nasim and M. Persson)
- **Ion temperature gradient driven modes for tokamaks and stellarators** 30th European Physical Society Conference on "Controlled Fusion and Plasma
   Physics", St. Petersburg, July 7-11,2003, Vol. 27A, Paper No. 3.9
   Editted by, R. Koch, S. Lebedev
  - http://epsppd.epfl.ch/StPetersburg/start.html
  - (T. Rafiq, M. H. Nasim and M. Persson)

### Few Ref of Published work

Disstipative trapped electron modes in stellarator plasmas

"14th International Stellarator Workshop" in Greifswald, Germany, September22-26, 2003.

http://www.ipp.mpg.de/eng/for/veranstaltungen/workshops/stellarator\_2003

(M. H. Nasim, T. Rafiq and M. Persson)

Computation of equilibrium & drift waves in realistic 3D toroidal geometries

'IAEA Technical Meeting on Innovative Concepts and Theory of Stellarators", Greifswald, Germany, 29 Sept. to Ist Oct. 2003.

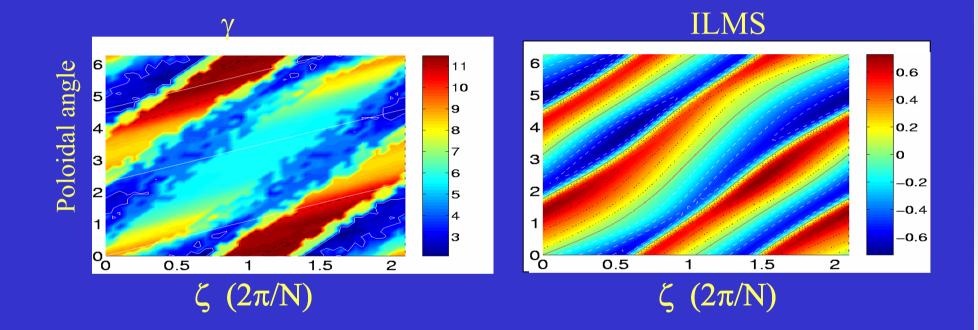
http://www.ipp.mpg.de/eng/for/bereiche/stellarator/TCM2003/tcm.html

(M. H. Nasim, T. Rafiq and M. Persson)

# Thank You



#### Growth rate in one field period (i-delta) H1-NF



The normalized growth rate  $\gamma = (R\gamma/C_s)$  the most unstable modes on the magnetic surface s =3/4,  $\theta_{\kappa} = 0.8 = 0.001$ ,  $\varepsilon_n = 0.1$ 

#### **Boundary conditions**

At large  $\zeta = \zeta_{max}$ 

$$\Phi = \Phi_o exp\left(\varphi(\zeta, \Omega)\right) \tag{c1}$$

For outgoing wave  $\varphi$  satisfies :

 $Im\left(\varphi'(\pm\zeta_{max},\Omega)\right) \leq 0, \ Re\left(\varphi(\pm\zeta_{max},\Omega)\right) \approx 0, \ (c2)$ 

For standing wave  $\varphi$  satisfies :

$$Im(\varphi(\pm\zeta_{max},\Omega)) \approx 0, \ Re(\varphi(\pm\zeta_{max},\Omega)) \leq 0, \ (c3)$$

The eigenvalue equation:

$$\frac{d^2\Phi}{d\zeta^2} + U(\zeta,\Omega)\Phi = 0$$

(*c*4

36

continue

**M H Nasim** 

Using the above Eq.(c1)

$$(\varphi')^2 + \varphi'' + U = 0.$$

#### **Boundary conditions**

The solutions of this nonlinear equation up to the first order in smallness parameter  $\varphi''/\varphi'$  are given by the equations

$$\varphi' = \pm i\sqrt{U} - \frac{1}{4}(\ln(U))'$$

Substituting this in Eq.(c1), one obtains

$$\Phi' = \left[\pm i\sqrt{U} - \frac{1}{4}\left(\ln(U)\right)'\right]\Phi$$

These are the standard WKB boundary conditions in differential form. The solution fulfilling condition (c2,c3) is given by

$$\Phi' = \left[-i|Re\left(\sqrt{U}\right)| + \operatorname{sign}\left(Re\left\{\sqrt{U}\right\}\right) Im\left\{\sqrt{U}\right\} - \frac{1}{4}(\ln(U))'\right] \Phi \text{ at } \zeta = +\zeta_{max}$$
$$= \left[i|Re\left\{\sqrt{U}\right\}| - \operatorname{sign}\left(Re\left\{\sqrt{U}\right\}\right) Im\left\{\sqrt{U}\right\} - \frac{1}{4}(\ln(U))'\right] \Phi \text{ at } \zeta = -\zeta_{max}$$

when  $Re\{\sqrt{U}\}(\pm \zeta_{max}) \approx 0$ ,

$$\Phi' = \left[-|Im\{\sqrt{F}\}| + i \operatorname{sign}\left(Im\{\sqrt{U}\}\right) Re\{\sqrt{U}\} - \frac{1}{4}\left(\ln(U)\right)'\right] \Phi \text{ at } \zeta = +\zeta_{max}$$
$$= \left[|Im\{\sqrt{U}\}| - i \operatorname{sign}\left(Im\{\sqrt{U}\}\right) Re\{\sqrt{U}\} - \frac{1}{4}\left(\ln(U)\right)'\right] \Phi \text{ at } \zeta = -\zeta_{max}$$

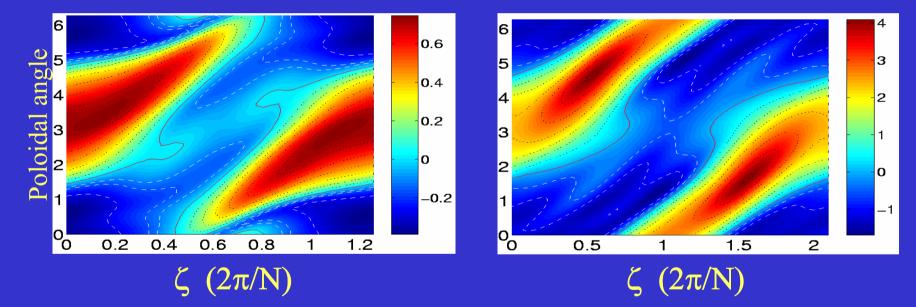
#### Normal curvature in one field period

W7-X



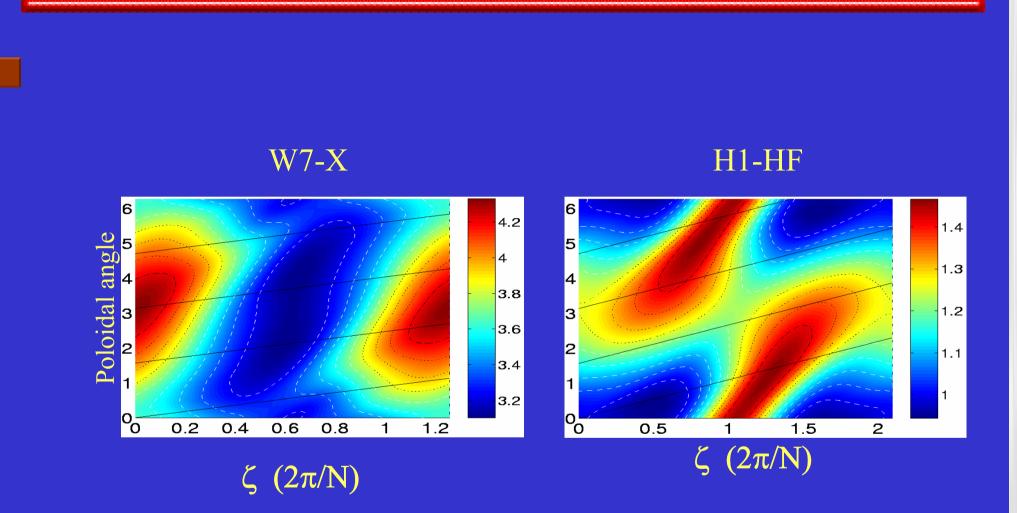
38

**M H Nasim** 



Solid line represents the null value

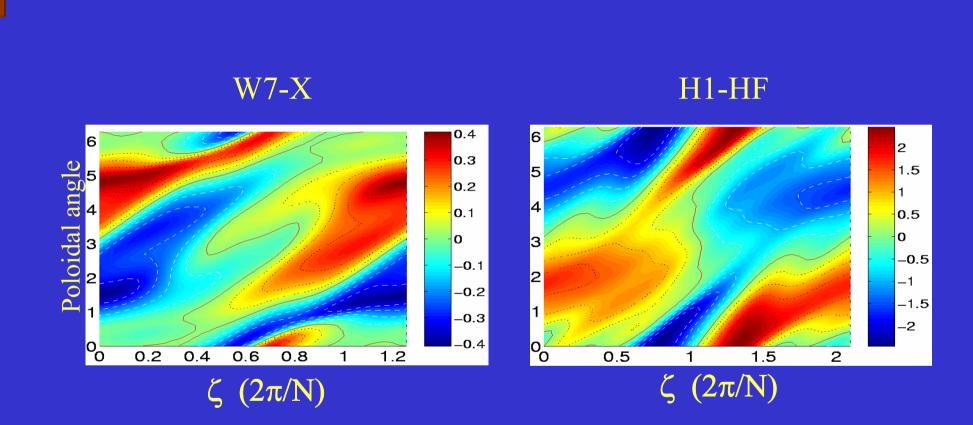
#### mod B in realistic 3D toroidal geometries



#### Striaght line represents the field line label

12<sup>Th</sup> Regional Conference on Mathematical Physics...

#### Geodesic curvature in one field period



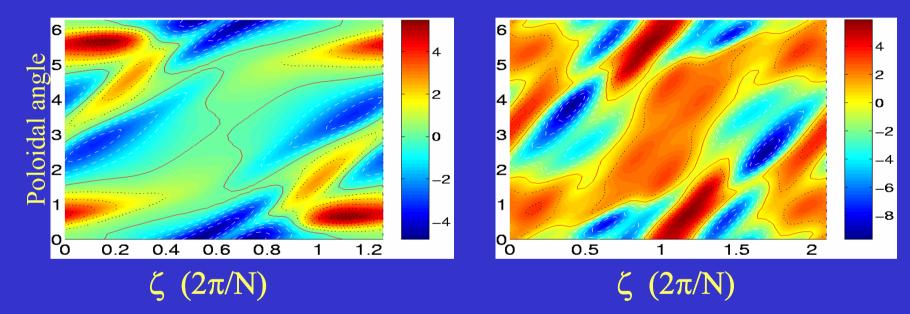
#### Solid line represents the null value

12<sup>Th</sup> Regional Conference on Mathematical Physics...

#### Local Magnetic Shear in one field period

#### W7-X

#### H1-HF



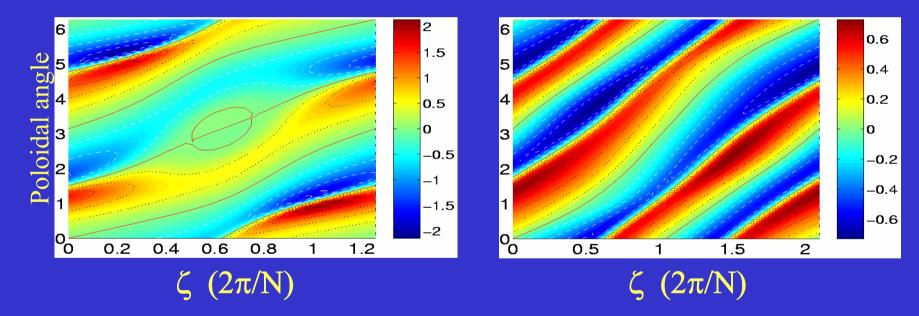
#### Solid line represents the null value

12<sup>Th</sup> Regional Conference on Mathematical Physics...

#### Integrated Local Magnetic Shear in one field period

#### W7-X

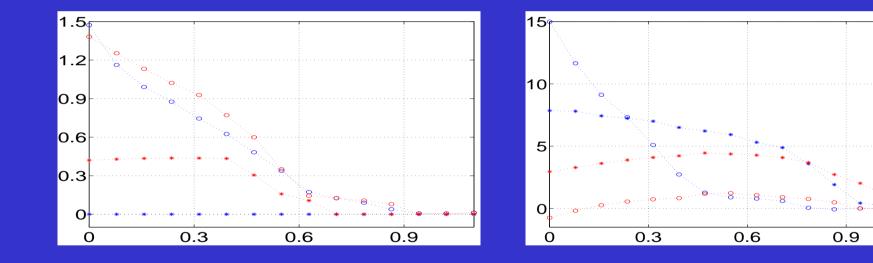




#### Solid line represents the null value

12<sup>Th</sup> Regional Conference on Mathematical Physics...





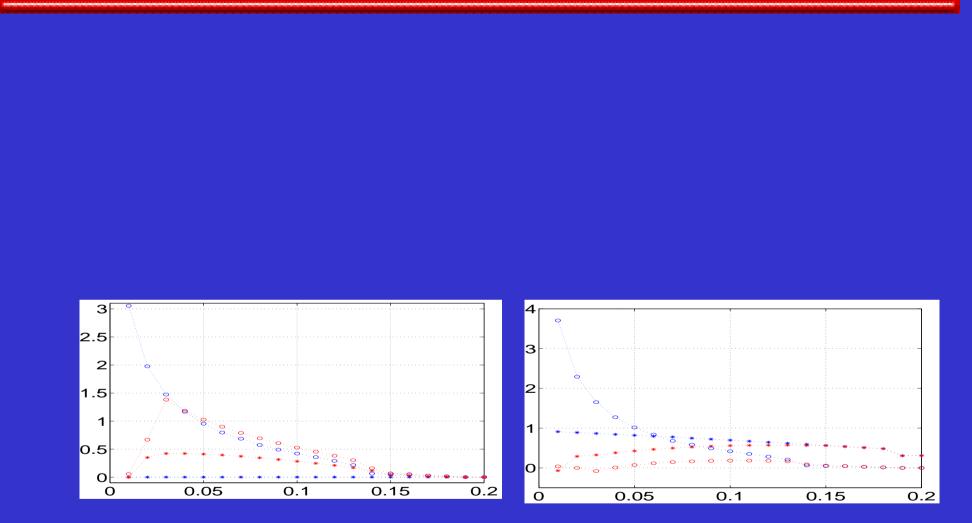




### Growth rate as a function of

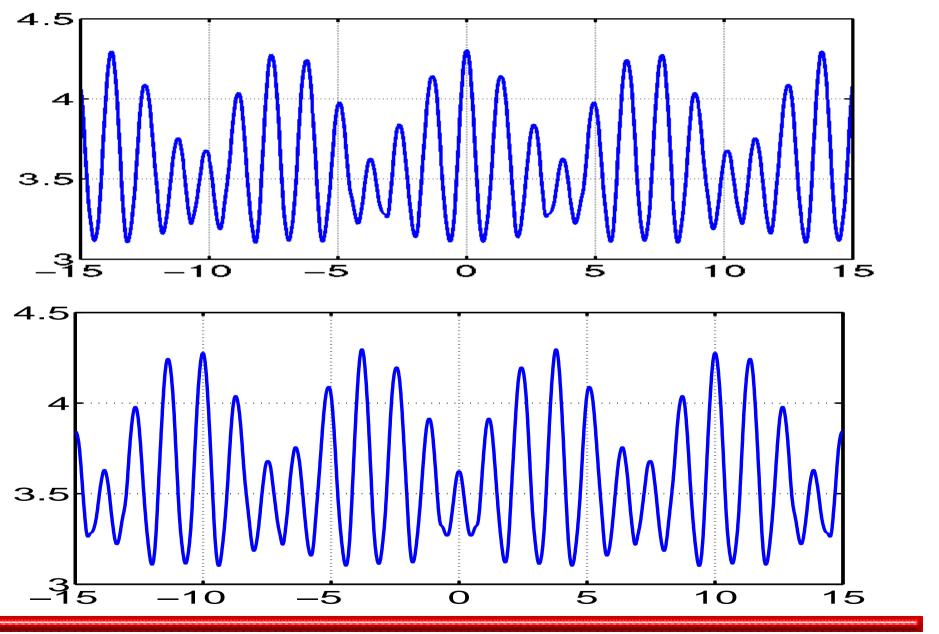
12<sup>Th</sup> Regional Conference on Mathematical Physics...

# Effect of $M_n$



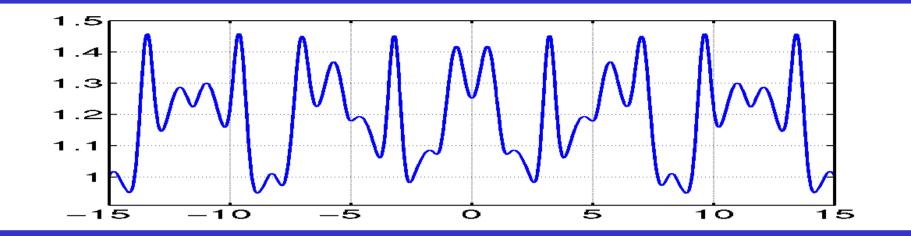
12<sup>Th</sup> Regional Conference on Mathematical Physics...

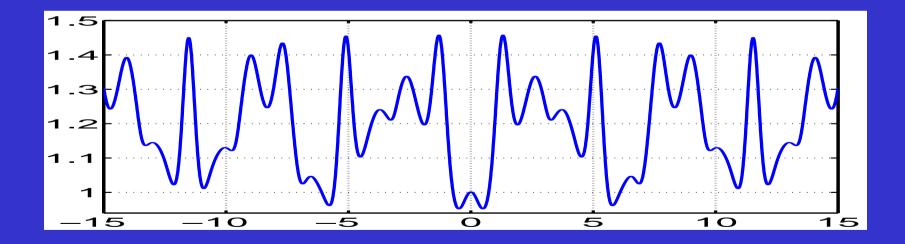
### Magnetic Field along Field-Line in W7-X



12<sup>Th</sup> Regional Conference on Mathematical Physics...

#### Magnetic Field along Field-Line in H1-NF





12<sup>Th</sup> Regional Conference on Mathematical Physics...