

QUATERNIONIC AND OCTONIONIC STRUCTURES OF

EXCEPTIONAL LIE ALGEBRAS

Mehmet Koca

Sultan Qaboos University, College of Sciene Physics Department, P.O.Box 36, 123 Al-Khoud, Muscat

e-mail: kocam@squ.edu.om

÷.

Outline

- Division Algebras with Cayley-Dickson Procedure
- Quaternionic Root Systems and F_4
- Magic Square and Root Systems
- E_{s} with Icosians and H_{4}
- Octonionic Root System of $E_{_{8}}$
- Automorphism Group of Octonionic Root System of E_{γ}
- Quaternions and Polyhedra

Division Algebras with Cayley-Dickson Procedure

Let p,q,r,s denote the elements of division algebra other than the octonions. Then the pairs (p,q) and (r,s) with the multiplication rule

Then the pairs (p,q) and (r,s) with the multiplication rule

 $(p,q)(r,s) = (pr - s\overline{q}, rq + \overline{p}s)$

constitute the elements of a division algebra in higher dimension.

The Hurwitz's theorem

There are only four division algebras

• real numbers

$$a,b,c,d\in R$$

- complex numbers $\alpha = (a,b) = a+ib$, $\beta = (c,d) = c+id$, $i^2 = -1$ $\alpha, \beta \in C$
- quaternions

$$\begin{aligned} q &= (\alpha, \beta) = \alpha + \beta j, r = (\gamma, \delta) = \gamma + \delta j, \\ ij &= k, i^2 = j^2 = k^2 = ijk = -1 \\ q, r \in H \end{aligned}$$

The Hurwitz's theorem

• octonions

Let
$$e_1 = i, e_2 = j, e_3 = k$$

$$p = (q,r) = q + e_{\gamma}r = \sum_{i=0}^{\gamma} p_i e_i$$

$$e_{i}e_{j} = -\delta_{ij} + \phi_{ijk}e_{k}, \quad i, j, k = 1, 2, ..., 7$$

$$\phi_{123} = \phi_{246} = \phi_{435} = \phi_{367} = \phi_{651} = \phi_{572} = \phi_{714} = 1$$

Quaternionic Root Systems and F_4

$$SU(2): \pm 1,0 ; \pm \frac{1}{2}$$

SO(4): $(\pm 1,0) = \pm 1$; $(0,\pm 1) = \pm e_1$

SO(5):
$$(\pm \frac{1}{2}, \pm \frac{1}{2}) = \frac{1}{2}(\pm 1 \pm e_1), \{\pm 1, \pm e_1\}$$

Roots of SO(8):

$$SO(8): (SO(5), SO(5)) \Rightarrow$$

$$T = \{\pm 1, \pm e_1, \pm e_2, \pm e_3, \frac{1}{2}(\pm 1 \pm e_1 \pm e_2 \pm e_3)\}: \text{Binary tedrahedral group}$$

Quaternionic Root Systems and F_4

Define
$$T = V_0 \oplus V_* \oplus V_-: 24$$
-cell {3,4,3}
 $V_0 = \{\pm 1, \pm e_1, \pm e_2, \pm e_3\}$: quaternion group
 V_0 : hyperoctahedron
 $V_* = \frac{1}{2}(\pm 1 \pm e_1 \pm e_2 \pm e_3)$: even $\#(+)$ sign, $V_- = \overline{V}_*$,
 $V_* \oplus V_-:$ hypercube

Quaternionic Root Systems and F_4

Weights of 8-dimensional representations of SO(8):

$$V_{1} = \{\frac{1}{2}(\pm 1 \pm e_{1}), \frac{1}{2}(\pm e_{2} \pm e_{3})\}$$

$$V_{2} = \{\frac{1}{2}(\pm 1 \pm e_{2}), \frac{1}{2}(\pm e_{3} \pm e_{1})\}$$

$$V_{3} = \{\frac{1}{2}(\pm 1 \pm e_{3}), \frac{1}{2}(\pm e_{1} \pm e_{2})\}$$

$$T' = \sqrt{2}(V_{1} \oplus V_{2} \oplus V_{3}) : \text{Dual of } T$$

$$O = T \oplus T': \text{ Binary octahedral group}$$

Roots of $F_4 = T \oplus T' / \sqrt{2}$

Define the transformations: $[p,q]: r \rightarrow r' = prq; p,q$ unit quaternions $p\overline{p} = q\overline{q} = 1$ $[p,q]^*: r \rightarrow r' = p\overline{r}q$ $[p,q] \in SO(4), [p,q]^* \in O(4) / SO(4)$ The Weyl group $W(F_4)$ of order 1152 : $[T,T] \oplus [T',T'] \oplus [T,T]^* \oplus [T',T']^*$

The group $Aut(F_4)$

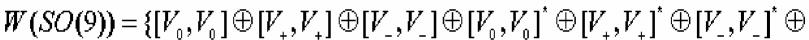
Graph automorphism of F_4 can be obtained by the generator γ :

$$1 \leftrightarrow \frac{1}{\sqrt{2}} (1 + e_1) \quad , e_1 \leftrightarrow \frac{1}{\sqrt{2}} (1 - e_1)$$
$$e_2 \leftrightarrow \frac{1}{\sqrt{2}} (e_2 - e_3), \quad e_3 \leftrightarrow \frac{1}{\sqrt{2}} (e_2 + e_3),$$
$$V_0 \leftrightarrow V_1$$

 $Aut(F_4) \approx W(F_4): \gamma$, (: semi-direct product)

 $Aut(F_{4}) = \{[O, O] \oplus ([O, O]^{*}\} \text{ of order } 2304\}$

$[V_1, V_1] \oplus [V_2, V_3] \oplus [V_3, V_2] \oplus [V_1, V_1]^{\dagger} \oplus [V_2, V_3]^{\dagger} \oplus [V_3, V_2]^{\dagger} \}$ $W(SO(8)) = \{ [V_0, V_0] \oplus [V_1, V_1] \oplus [V_1, V_2] \} \oplus [V_0, V_0]^* \oplus [V_1, V_1]^* \oplus [V_1, V_2]^* \}$



The group $Aut(F_4)$

Embedding W(SO(9)) in $Aut(F_4)$

- |W(SO(9)) can be embedded in W(F₄) triply symmetric way by permuting e₁, e₂, e₃ by cyclic permutation.
- W(SO(9)) is the automorphism group of the hyperoctahedron in 4-dimensions of order 384.
- W(SO(9)) can be embedded in Aut (F₄) six different ways by a cyclic symmetry C₆ represented by coset element
 [V₊, V₁]⁶ = [V₀, V₀]. In each, one of the hyperoctahedra
 V_i, i = 0,+,-,1,2,3 is left invariant.
- The $Aut(F_4)$ is the largest crystallographic group in 4-dimensions and has many interesting non-parabolic subgroups.

•
$$O/V_0 \approx S_3$$

Embedding W(SO(9)) in $Aut(F_4)$

	V_0	V_{+}	V_	V_1	V_2	V ₃
V_0	V_0	V_{+}	V_	V_1	V_2	V_3
V_{+}	V_{+}	V_{-}	V_0	V_3	V_1	V_2
V_	V_{-}	V_0	V_{+}	V_2	V_3	V_1
V_1	V_1	V_2	V_3	V_0	V_{+}	V_
V_2	V_2	V_3	V_1	V_{-}	V_0	V_{+}
V_3	V_3	V_1	V_2	V_{+}	V_{\perp}	V_0

Table 1. Multiplication table of the binary octahedral group

Magic Square

	A_2	C_3	F_4
A_2	$A_2 \oplus A_2$	A_5	E_6
C_3	A_5	D_6	E_7
F_4	E_6	E_{7}	E ₈

Table 2. The Magic Square

Construction of E_{s} root system with quaternions

Define the pairing $\{F_4, F_4\}$: $\{T, 0\} = T, \{0, T\} = \sigma T$; $\sigma = \frac{1 - \sqrt{5}}{2}, \tau = \frac{1 + \sqrt{5}}{2}$ $\{V_1, V_2\} = V_1 + \sigma V_2$ $\{V_2, V_3\} = V_2 + \sigma V_3$ $\{V_3, V_1\} = V_3 + \sigma V_1$

The above quaternions represent roots of E_{s} provided the scalar product

 $(p,q)_{\varrho} = \frac{1}{2}(p\bar{q} + q\bar{p}) = a + \sigma b$ replaced by $(p,q)_{z} = a$ $\phi(E_{z}) = I + \sigma I$ *I*: Binary icosahedral group representing the root system of H_{4} . $W(H_{4}) = \{[I,I] \oplus [I,I]^{*}\}$

$W(H_{\scriptscriptstyle 4}) \subset W(E_{\scriptscriptstyle 8}),$	$ W(H_4) = 14400$
$W(H_3) \subset W(D_6)$,	$ W(H_3) = 120$
$W(H_2) \subset W(A_5),$	$ W(H_2) = 10$

Coxeter Element of $W(H_4) \subset W(E_8)$

$$|\lambda I - M| = \lambda^3 + \lambda^7 - \lambda^5 - \lambda^4 - \lambda^3 + \lambda^2 + 1 = p(\lambda)q(\lambda) = 0$$

$$p(\lambda) = \lambda^4 + \tau \lambda^3 + \tau \lambda^2 + \tau \lambda + 1 = 0 \rightarrow \exp(im\frac{2\pi}{30})$$

$$m = 7,13,17,23$$

$$p(\lambda) = \lambda^4 + \sigma \lambda^3 + \sigma \lambda^2 + \sigma \lambda + 1 = 0 \rightarrow \exp(im\frac{2\pi}{30})$$

m = 1,11,19,29 (Coxeter exponents of W(H₄))

Maximal Subgroups of $W(H_4)$:

- 1. $Aut(A_2 \oplus A_2)$ of order 144
- 2. $Aut(H_2 \oplus H_2)$ of order 400
- 3. $W(H_3 \oplus A_1)$ of order 240
- 4. $Aut(A_4)$ of order 240
- 5. $W(SO(8)): C_3$ of order 576

 $W(H_3)$ is the symmetry of the molecule C_{60} and the quasicrystals possessing five-fold and three-fold symmetries.

More on this when we discuss polyhedra obtained from 120cell and 600-cell invariant under $W(H_4)$.

Octonionic Root System of E_{*}

Cayley-Dickson procedure with (F_4, F_4) Magic Square \Rightarrow

(T,0) = T, $(0,T) = e_{\gamma}T$

 $(V_1, V_1) = V_1 + e_\gamma V_1, \quad (V_2, V_3) = V_2 + e_\gamma V_3, \quad (V_3, V_2) = V_3 + e_\gamma V_2$

240=24+24+64+64+64

240 octonionic roots of E_s are closed under multiplication

Imaginary elements of these sets constitute the 126 roots of E_{τ}

Automorphism group of 126 roots of E_7 is the Chevalley group $G_2(2)$ of order 12096

Octonionic Root System of E_{s}

Any octonion $s = H + e_{\gamma}H'$ has a symmetry which preserves the quaternionic decomposition $s \to t = pH\overline{p} + e_{\gamma}pH'q$ where [p,q]An element of $SO(4) \subset G_2$.

The finite subgroup of SO(4) leaving E_7 root system is a group of order 192(17): $[T, V_0] \oplus [T', V_1] = [V_0, V_0] \oplus [V_1, V_0] \oplus [V_1, V_1] \oplus [V_2, V_1] \oplus [V_3, V_1]$

One can prove that such a structure can be obtained 63 different ways so that the order of the automorphism group is 192x63=12096.

Maximal subgroups of $G_2(2)$ of orders 432,336 and 192(14) are the automorphism groups of the root systems of the maximal subalgebras E_6 , SU(8) and $SO(12) \oplus SU(2)$ respectively.

The Group Z_2^3 . *PSL*₂(7) of order 1344

Automorphism group of the set quaternions

 $A = \{\pm e_1, \pm e_2, \pm e_3, \pm e_4, \pm e_5, \pm e_6, \pm e_7\} = \operatorname{Im} V_0 + e_7 V_0$

Remember $W(SO(9)) \subset O(4)$ leaves one of the set V_i invariant. The subgroup of $W(SO(9)) / Z_2$ in SO(4) of order 192 leaving the structure $\operatorname{Im} V_0 + e_2 V_0$ invariant:

 $W(SO(9))/Z_2 = \{ [V_0, V_0] \oplus [V_+, V_-] \oplus [V_+, V_-] \oplus [V_1, V_1] \oplus [V_2, V_2] \oplus [V_3, V_3] \}$

The set $\text{Im } V_0 = \{\pm e_1, \pm e_2, \pm e_3\}$ can be chosen 7 different ways from the set *A*. Therefore the group leaving the octonions *A* is of order 7x192=1344.

It is the non-split extension of the elementary abelian group Z_2^{3} by the Klein's group $PSL_2(7)$ of order 168.

- The group 192(13); Rep. 7=3+4
- The group 192(14); Rep. 7=1+6
- The group $Z_2^3: Z_3: Z_7$ of order 168 Rep. 7=7

The unit quaternions $q\overline{q} = 1$ define the unit sphere S^3 .

When cut by the hyperplane $q_0 = const$ one obtains the sphere S^2 described by $q_1^2 + q_2^2 + q_3^2 = 1 - q_0^2$ preserved by $O(3) \approx Z_2 \times SO(3)$.

The group elements : $[p,\pm \overline{p}], p \in S^3$

The polytope in 4-dimension $\{3,4,3\} = T$, Dual of *T* is $T' = \{3,4,3\}$. The polytope 600-cell is described by the quaternions of

binary icosahedral group $I = \{3,3,5\}$ with 120 vertices.

The conjugacy classes of O = T + T' and the *I* describe the ployhedra in 3- dimension.

- For O the group [p,±p] is the octahedral group with inversion, p∈O.
- For *I* the group [*p*,±*p*] is the icosahedral group with inversion isomorphic to the Coxeter group *H*₃.
- The dual of {3,3,5} is a polytope called 120-cell with 600 vertices described by unit quaternions. The orbits of H₃ in 120-cell define the polyhedra in 3-dimensions.

I. Orbits of octahedral group in
$$O = T + T'$$

 $q_0 = \pm \frac{1}{2}$, the vertices $\frac{1}{2}(\pm 1 \pm 1 \pm 1)$ form a cube
 $q_0 = \pm \frac{1}{\sqrt{2}}$, the vertices $\{\pm \frac{1}{\sqrt{2}}, \pm \frac{1}{\sqrt{2}}, \pm \frac{1}{\sqrt{2}}\}$ form a octahedron
 $q_0 = 0$, the vertices $\{\pm 1, \pm 1, \pm 1\}$ form a octahedron
 $q_0 = 0$, the vertices $\frac{1}{\sqrt{2}}(\pm 1, \pm 1, 0), \frac{1}{\sqrt{2}}(\pm 1, 0, \pm 1), \frac{1}{\sqrt{2}}(0, \pm 1, \pm 1)$
form a truncated octahedron.

II. Orbits of H_3 in the polytope $I = \{3,3,5\}$

$$q_{0} = \pm \frac{\tau}{2}, \text{ the vertices } \frac{1}{2}(\pm 1, 0, \pm \sigma), \frac{1}{2}(0, \pm \sigma, \pm 1), \frac{1}{2}(\pm \sigma, \pm 1, 0)$$

form a icosahedron.
$$q_{0} = \pm \frac{\sigma}{2}, \text{ the vertices } \frac{1}{2}(\pm 1, \pm \tau, 0), \frac{1}{2}(0, \pm 1, \pm \tau), \frac{1}{2}(\pm \tau, 0, \pm 1)$$

form a icosahedron.
$$q_{0} = \pm \frac{1}{2}, \text{ the vertices } \frac{1}{2}(\pm 1, \pm 1, \pm 1),$$

$$\frac{1}{2}(\pm \tau, \pm \sigma, 0), \frac{1}{2}(0, \pm \tau, \pm \sigma), \frac{1}{2}(\pm \sigma, 0, \pm \tau) \text{ form a dodecahedron.}$$

$$q_{0} = 0 \quad \text{, the vertices } \{\pm 1, \pm, \pm, \frac{1}{2}(\pm \sigma, \pm \tau, \pm),$$

$$\frac{1}{2}(\pm 1, \pm \sigma, \pm \tau), \frac{1}{2}(\pm \tau, \pm 1, \pm \sigma)\} \text{ form a icosidodecahedron with 30 vertices.}$$

III.120-cell {5,3,3} with 600 vertices

The vertices of $\{5,3,3\}$ can be constructed from the 24 vertices of T' by

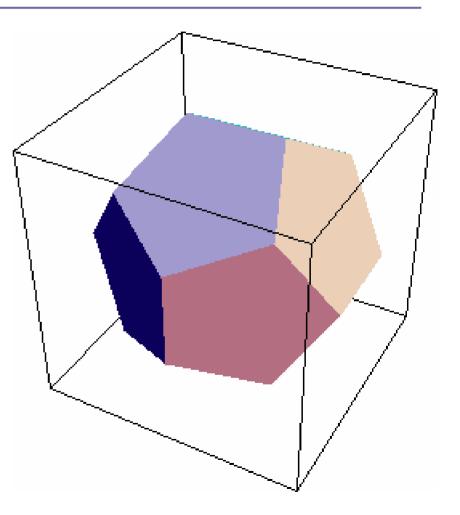
$$\{5,3,3\} = \sum_{i=0}^{4} \sum_{j=0}^{4} \oplus p^{i}T'\overline{p}^{j}, p \subset I, p^{s} = \pm 1,$$

24x25=600

 H_3 has 15 orbits in {5,3,3}

1.
$$q_0 = \pm \frac{\tau^2}{2\sqrt{2}}$$
,
 $\frac{1}{2\sqrt{2}}(0,\pm 1,\pm \sigma^2) + cyclic perm.,$
 $\frac{\sigma}{2\sqrt{2}}(\pm 1,\pm 1,\pm 1)$

Dodecahedron with 20 vertices:



2.
$$q_0 = \pm \frac{\sigma^2}{2\sqrt{2}}$$
,

$$\frac{1}{2\sqrt{2}}(0,\pm 1,\pm \tau^{2}) + cyclicperm., \frac{\tau}{2\sqrt{2}}(\pm 1,\pm 1,\pm 1)$$

Another dodecahedron

 \sim

$$3. q_0 = \pm \frac{\tau - \sigma}{2\sqrt{2}},$$

$$\frac{1}{2\sqrt{2}}(0,\pm\tau,\pm\sigma^2)$$
 + cyclic perm., $\frac{1}{2\sqrt{2}}(\pm 1,\pm 1,\pm 1)$

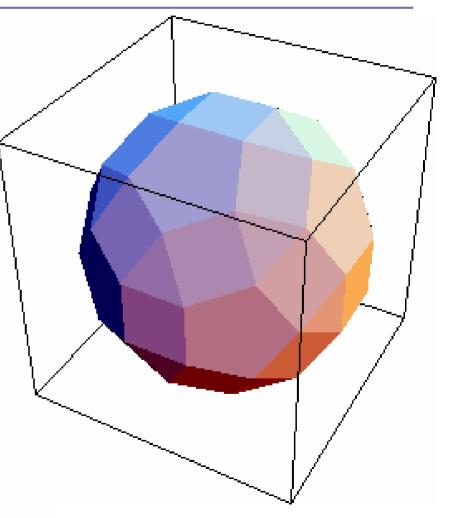
Another dodecahedron

4.
$$q_0 = \pm \frac{\sigma}{2\sqrt{2}}$$
; Small Rhombicosidodecahedron

$$\frac{1}{2\sqrt{2}}(0,\pm(\tau-\sigma),\pm\tau)$$
+ cyclic perm. ; 12 vertices

$$\frac{1}{2\sqrt{2}}(\pm 2,\pm 1,\pm \tau)$$
 + cyclic perm. ; 24 vertices

 $\frac{1}{2\sqrt{2}}(\pm\sigma,\pm\sigma,\pm\tau^2) + \text{cyclic perm.} \quad ; 24 \text{ vertices}$

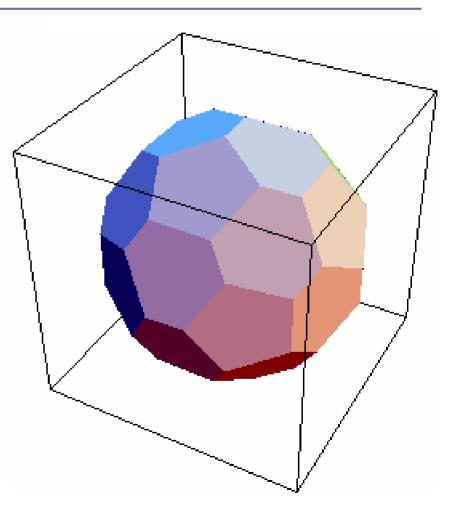


5. $q_0 = \pm \frac{1}{2\sqrt{2}}$, $\frac{1}{2\sqrt{2}}(0, \pm \sigma^2, \pm \tau^2) + \text{ cyclic perm.}$; 12 vertices

 $\frac{1}{2\sqrt{2}}(\pm 1,\pm 1,\pm (\tau-\sigma))$ + cyclic perm. ; 24 vertices

 $\frac{1}{2\sqrt{2}}(\pm\sigma,\pm2,\pm\tau) + \text{cyclic perm.} \quad ; 24 \text{ vertices}$

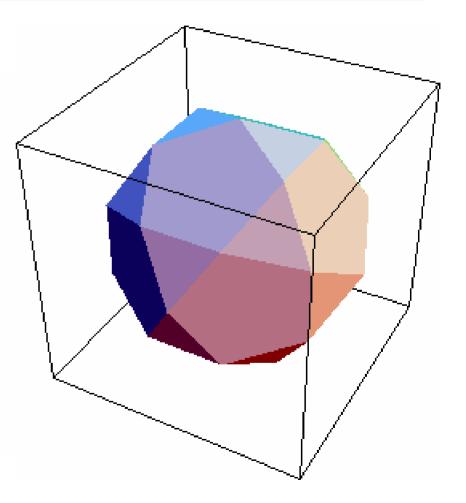
 C_{60} ??



6.
$$q_0 = \pm \frac{\tau}{2\sqrt{2}}$$
, Icosidodecahedron

$$\frac{1}{\sqrt{2}}(\pm 1,0,0), \quad \frac{1}{\sqrt{2}}(0,\pm 1,0), \frac{1}{\sqrt{2}}(0,0,\pm 1):6$$

$$\frac{1}{2\sqrt{2}}(\pm 1, \pm \sigma, \pm \tau) + \text{ cyclic perm.} \qquad : 24$$

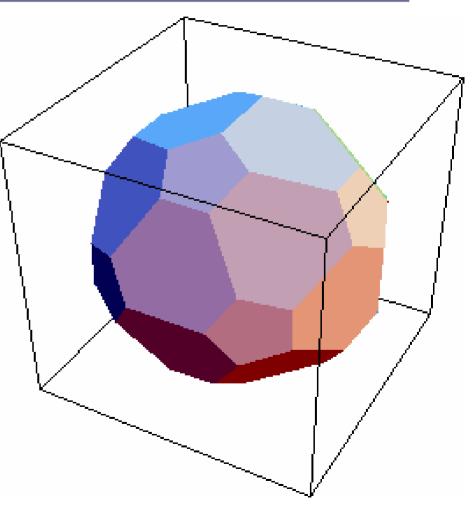


7.
$$q_0 = \pm \frac{\tau}{2\sqrt{2}},$$

 $\frac{1}{2\sqrt{2}}(0, \pm \sigma, \pm (\tau - \sigma)) + \text{cyclic perm.: 12}$

$$\frac{1}{2\sqrt{2}}(\pm 1,\pm 2,\pm \sigma)$$
 + cyclic perm. : 24

 $\frac{1}{2\sqrt{2}}(\pm\tau,\pm\tau,\pm\sigma^2) + \text{cyclic perm.: } 24$



8.

$$q_0 = 0,$$

 $\frac{1}{2\sqrt{2}}(0,\pm 1,\pm 1) + \text{ cyclic perm.}$

$$\frac{1}{2\sqrt{2}}(\pm 1,\pm\tau^2,\pm\sigma^2) + \text{cyclic perm.} : 24$$

 $\frac{1}{2\sqrt{2}}(\pm(\tau-\sigma),\pm\sigma,\pm\tau)+$ cyclic perm.: 24

