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Abstract

Recently, \ve obtained the transition amplitudes for a-general time-dependent linear
harmonic oscillator using standard operator techniques. In this paper, we follow the same
tPcnnir]llf's, to r.~klJl~te the transition amplitudes after adding a linear time-dependent
term to the Hamiltonian. This allows for odd to even and even to odd transitions which
was not allowed when these linear terms were absent.

1. Introduction

Time-dependent harmonic oscillators have been considered by many authors [ 1 -

4]. From the point of view of a physical application, Parker [5] applied the alpha
and beta coefficients of the problem to the cosmological creation of particles in an
expanding universe. Earlier, Kanai [2] had considered a simple form of the time-
dependent linear oscillator. Through this model was criticized by Brittin [6] and
Senitzky [7] for various reasons, Landovitz et aI, ignoring the criticism, proceeded
to calculate the Green's function [8] for the general form of Kanai's model and
used it to calculate the corresponding transition amplitudes [9]. Their calculations
are very difficult to comprehend.

Recently we used standard operators to calculate the transition amplitudes for the
general time-dependent linear harmonic oscillator in a transparent manner [10].
We anticipate that our approach will be relevant to other physical problems
including Senitzky's [7J complex modd for the dissipative quantum mechanical
osci! lator.

In this paper, we have used the same manifest operator techniques to obtain the
transition amplitudes after adding linear time-depende:nt terms to the Hamiltonian
which allow for transitions from odd to even and even' to odd states. These

transitions were not allowed under the even-parity Hamiltonian which did not
include the linear tem1S.

TI1lSpaper is organised as follows. In sectIon 2, \ve inlroduce the modified

Hamiltonian and obtain the transformed operator Xi: (t), P i: (t) in terms of the
non-transformed time-independent operators x and p and the coefficients in the
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"transition matrix". In section 3, we calculate the corresponding transformed
creation and annihilation operators. In section 4, we derive the recursion relations
satisfied by these transition amplitudes. These recursion relations are used in
section 5 to calculate a generating function which gives the transition amplitudes
in terms of the initial one. This initial one is then evaluated using its relationship
with a known identity to complete the calculation.

2. The Transformed Operators x + (t), P + (t)

The Hamiltonian for a time-dependent linear harmonic oscillator with linear time-
dependent terms added is given by

p2 1 2 )

H(t) = f(t) 2m + 2 g(t) mw x- + u(t) p + v(t)x (1)

Note that we have emphasized the t-dependence of the Hamiltonian while we have
suppressed the x and p-dependence. This convention will be used in the sequel for all the
operators.

In the above, the functions f(t), get), u(t) and vet) are all real continuous functions to make
the Hamiltonian hermitian. Also f(t) = get) = 1, u(t) = vet)= 0 gives the usual time-
independent linear harmonic oscillator Hamiltonian whereas putting u(t) = vet) = 0 we
anive at the case previously discussed by us of a time-dependent linear harmonic
oscillator \vithout the linear terms.

The wave-functions at an arbitrary time t are related to the ones at time t = 0 through a
time-dependent unitary transformation Vet) by

:.;(x,t) = Vet) 1(r(x,O) (2)

where

Vet) U+(t) = U+(t.) Vet) = I (3)

The Schrodinger equation

c
in ~1jI (x,t) = H(t)1jI (x,t)ct (4)

and equation (2) give

(}
itl ~ U(x,t) = H(t) U(x,t)

ct
(5)
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which for the time-independent Hamiltonian, results in the obviously unitary "formal"
solution

-i
-HI

U(t) = eft (6)

In general, however, equation (5) cannot be solved analytically.

We define the operators 0:1:(t) corresponding to any operator OCt) (which may have a
manifest time-dependence) by

0:1:(t) = U+(t) OCt)yet), O_(t)= Vet) OCt)U\t) (7)

These operators satisfy the dynamical equations

0 . I 0

atO~(t) = in [O_(t),H+(t)] + (at°L (8a)

0 I 0
-:;- °- (t) = -:;:[H(t), °- (t)],+ (-0 °L
c t 1ft t

(8b)

which have a slight asymmetry. Note that the operator in equation (8b) in the
commutator is H(t) and not H_(t) as may be expected if there were symmetry.

The operators x+(t), p+(t) are related to x and p by

+

x-(t) = U (t) x Vet) = aCt)x + bet) p + Yl (t)

p+(t) = U\t) p Vet) = c(t) x + d(t) p + Y2(t).

(9a)

(9b)

Since

[x+(t), p+(t)] = O+(t) [x, p] Vet) = i~ = [x, p], (10)

aCt)d(t) - bet) c(t) = 1. (11)

Thus the homogeneous part of the transformation in equations (9) is given by a
unimodular matrix and in particular, its determinant is t - independent. Note that the
presence of the functions YI(t), Y2(t)in equations (9) expresses the non-homogenous
nature of the transformation which is resulting from the linear terms in the Hamiltonian.

~ -
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To obtain the differential equations system which detennines the coefficients aCt),bet),
c(t) d(t), Yt(t), Y2(t)in equations (9) w use

() x+ 1 p+(t)
---:;--

t = -:-;:[x+(t),H+ (t)] = f(t)- + u(t)0 1ft m

and the expressions for x+(t), p+(t) in equation (9) to arrive at

. fer)
aCt) x + bet) p + y,(t) = -(e(t)x + del) p + Y2(t»+ u(t)m

which gives

f(t) . f(t)
aCt) = -eel), b(t)= - d(t)m m

fer)
jJ,(t) = -Y2(t)+U(t)m

~,., Similarly from,

c p 1 2
~ = -:-;-Jp-(t), H- (t)] = - g(t)mw x- (t) - vet)c t In

\ve obtain

C(t) = - g(t)m./a(t), d(t) = - g(t)mw2 bet)

:i',t) = - g(t)mw2 Yl(t) - v(t)

We note that from equations (14, 17)

d

dt (a(t)d(t) - b(t) e(t» = 0

which shows that aCt)d(t) - c(t) bet) is independent of time.

Thus

aCt) d(t) - bet) c(t) = a(O) d(O) - b(O) c(O) = 1

Since

a(O)= d(O) = 1, b(O) = c(O) = 0

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

(20)
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The result in equation (19) has already been obtained in equation (11) using a different
argument.

From equations (14) and (17), we may write second order differential equations for the
functions aCt), bet), c(t), d(t) which are for aCt), bet)

Z(t) - f'(t) Z(t) + J(t) get) w2Z(t) = 0
fer)

(21)

and for c(t), d(t)

Z(t) - gl
(
(t) Z(t) + f(t) g(t) w2 Z(t) = 0

g t)
( 22)

Subject to the initial conditions, a(O) = d(O)= 1, b(O) = c(O) = 0, the equations (14,
17) have unique solutions for aCt), bet), c(t), d(t), For the time-independent case
(f(t) = get) = 1), these are explicitly given as

(
1.

(
,

aCt) = d(t) = cos wt, b t) = - sm wt, c t) = - mw sm wt
mw (23)

In the absence of the linear tenns ie when u(t) = vet) = 0, the homogeneous system of
equations (15) and (19) for Yl(t) Y2(t)have the unique trivial solution

Yl(t) = Y2(t) = 0 (24a)

using Yl(0) = Y2(0) = 0 (24b)

This is as expected and can be proved easily using standard theorem from theory of
system of first order ordinary differential equations,

For completeness, we note that Yl(t), Y2(t) satisfy the non-homogeneous second order
differential equations.

f'(t) 2 f'(t) fer)
"'I (t) - -)', (t) + f(t) g(t) W Y1 (t) = ~i(t) - (-u(t) + - vet))
. f(t)' fer) m

-(25a)

,\(t) - gl
(
(t) )'2(t) + f(t)g(t) w2 Y2(t) = v(t) - (g(t)mw2u(t) + g'(t) v(t»)

. - g t) g(t )
-(25b)

Finally, we may use similar techniques to obtain the operation x -(t), p -(t) in the fonn

x_(t) = d(t) x - bet) p - d(t) Yl(t) + bet) Y2(t)
poet) = - c(t) x + aCt) p + c(t) Yl(t) - aCt) Y2(t)

-(26a)
(26b)

I
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Note that the homogeneous part in the above equations is given by the matrix

d(t) -bet) aCt) b(t)
( ) which is unimodular and inverse of the matrix ( ( ) d( ) ) in

-c(t) aCt) c t t

equations (9).

3. Calculation ofJhe transformed creation and annihilation oQerators

The non - Hermition creation and annihilation operators A+ and A are related to
the Hermition operators x and p through.

-[

A~ = -J (p + imwx)2mhw
(27a)

A = i
-J2mtzw(p - imwx)

(27b)

The above equations can be inverted to give

x = ~ n (A+ A»2mc
(28a)

~mtzwp= -i 2 (A- A-)
(28b)

The operators A and A+ satisfy the commutation relation

[A, A+] = 1. (29)

In terms of the energy eigenstates of the Hamiltonian H = H(O) given by

H In>= (n + Y2) ncv In >, (30)

the operators A and A+ have the matrix elements

< mIA[n> = .rn8 /1/11-1 -(31a)

< m! A -111> = J;;+I 8 1I/l1~ 1 (31b)

Next we compute the transformed operators A+(t) and A++(t) in terms of the
function aCt),bet), c(t), d(t), Yl(t), Y2(t) appearing in the transformed operators

~



x+(t) and p+(t) in equation 9. Indeed using equations (7, 27b, 9, 28) in that order,
we have

1

A~ (t) = U+ (t) AU(t) = ~ U+ (t) (p - imwx) U(t)2mnw

1

= .J2mnw (p~ (t)-imwx+ (t))

1

= ~ [(eel) - imwa(t)) x + (d(t) - imwb(t))p + (Yl(t) - imwy (t))
]

nl .v 1

~ ~ [(crt) - imwa(l) ~ Ii (A + AO)2mhw 2mw

+ (d(t) - imw bet)) (-i~m~w (A. A+))

+ .h(t) - imw Yl(t)

= a (t) A + fJ (t) A- + 7 (t) (32)

where

1 "
)aCt) =-(e(t) - imw(a(t) + del»~ - m-w- bet)

2mw
(33a)

f3(t) = ~ (e(t) - imw(a(t)-d(t»+mlw2 bet»~
2mw

(33b)

)mw I
r (t) = -(Yl (t) + - Y2(t».2h mw

(33c)

Similarly,

A_-(t) = U~(t) A_(t) U(t) = fJ '(t) A + a '(t)A+ + y . (34a)

which can also be derived from equation (32) by taking hermitian adjoints of the two
sides. .

Note that using equation (20 and 24b)
a(O) = 1,13(0) = 0, y(O) = 0 (34b)

I



For completeness, we give below the expression for A(t) and A__+(t)

Indeed

A- (t) = a '(t) A - fJ (t) A+ + r ' (t) (35a)

A_+(t) = - fJ '(f) A+a (t) A+ + r" (t) (35b)

where

J mw i i
r'(t) = -[(-:-d(t) + -e(t) Y1 (t) + (b(t) - - Get)Y2(t)]-(36)

2tz mw mw

As in equation (34b)

r'CO)= 0

4. Recursion relations for the transition amplitudes amnill = <mj D(t) In>~

Following the methods of our earlier paper [10]

1

an/II(t) = < mIU(t)ln > = ~ < mjU(t)A-ln- 1>

I
= ,< mIU(t)A- U- (t)U(t)ln - I>

"";11

I
=-<A-

.r;; - U(t)ln - I>

1
= ,<ml(-fJ'(t)A+a(t)A-+y "(t))U(t)I11-1)

"";11

using equation (35b).

I ,. C
= ,[ < 1111-fJ (t)U(t)(U- (t)AU(t))ln - 1>+ a (t) -v*< m- IIU(t)[n-1 >

"";11

+1 "(t),<mIU(t)ln-l>]
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= .rn [< ml- 13 (t) U(t)(a (t) A + 13(t) A+ + r (t) In - 1>

+ a (t) rm < m - 11U(t) In- 1> + y" (t) < mIU(t)1 n - 1>]

using equation (32)

= l[-a (t)fJ'(t)~ < mIU(t)ln - 2> -11312.rn < mIU(t)ln>

+ a (t)rm<m-lIU(t)!n-l> + (-fJ'(t)((t)+ y"(t)<mJU(t)ln-l>] (35b)

Transferring the tenn 1~12<m ID(t) In> to the left hand side and noting that

la 12 -113 12 = 1 -(39)

which can be observed directly from equations (33 a, b) and also from

[A_(t) ,A~(t)] = 1= lal2 - 11312

using equations (32, 33), we arrive at

R- 1 13 '(t)
< mIU(t) In> = - - --:-- < mIU(t)ln - 2)

n a (t)

J¥
l I

+ - ~ < m- lIU(t)ln-l)
n a (t)

, '

1 -fJ'(t)7(t)+( <n~U(t)n-l>.
+ -J;; la 12

-(40)

A similar procedure results in another recursion relation

Pz
l- I 13(t)

< 1IlIU(t)ln> = - ~ < m- 2IU(t)ln>
m a (t)

+ r; ~ < m- lIU(t)ln-l>
Ij-;;; a'(t)

1 13(t)f" (t)+ Y (t) < m- IIU(t)ln>+ -
1
2

..r;;; Ia
-(40b)

~



5. Calculation of the transition amQlitudes

We define coefficients Bmn(t)by means of the equation

(
f3(t)

J

m/2

(
p*(t) f

/2

amll(t) = <mIU(t)ln > = -Jm!n! a°(t) a*(t) Bmll(t)
-(41)

In terms of Bmn(t),the recursion relations in equation (32) become

1

n Bmll(t) = - BI1II1-2(t)+ I/3iBm-III-I(t) + B(t) Bmll-l(t)
-(42a)

1

m Bul1I(t) =. Bm-211(t) + I/3i Bm-III-I (t) + A(t) Bm-III(t)
(42b)

where we have used

A(t) =
a ° (t)

13 (t)

f3(t)/'*(t)+ I (t)

la 12(t)
(43a)

B(t) =
a * (t)

13 (t)

- 13 *(t)! (t)+ I' OCt)

la 12(t)
(43b)

The recursion relations in equation (42) are sufficient to determine all Bmn(t) and hence
the transition amplitudes up to a (in general) complex constant. To determine Bmn(t),we
define a generating function.

£

G(x,y,t) = L BIIIII(t)XI1l y" (44)
111,11=0

where we shall assume that any Bmn(t)with any index taking negative integral value is
zero. Then the recursion relations in equation (42) give

(? 1

fv G(x,y,t) = (- y + If3l(t) x+ B(t» G (x,y,t),
-(45a)

C 1

eX G(x,y,t) = (x + If3l(t) y + A(t) G(x,y,t)
(45b)

..
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which can be easily solved to give

2 2
X -y xy

G(x,y,t) = G(O,O,t) exp( 2 + !PI + A(t) x + B(t) y)
-(46)

The t-dependent function G(O,O,t) is related to aco(t).
Indeed G(O,O,t) = Boo(t) = aoo(t) = < 01U(t) I0 > (47)

Thus,

1
(-l)'(-)k+f X2k+p+q y2f+p+r

G(x,y,t) = aoo(t) I k!~! p! q! r! IfJ II' A(t)q B(tY
-(48)

To obtain Bmn(t) which from equation (44) is the coefficient ofxm I in the above
expansion, we take

m = 2 k+ p + q, n = 2/ + p + r

which fix k and I as

m-p-q n-p-r
k= p=-

2 ' - 2 -(49)

and results in

m-t/-,,-r:
(l\~

t/-I'-': l2)
B (t)= aoo(t) L(-l)~

(
m-p-q

)
,

(

n-p-r

) !P!q!r!lfJl' I11111 1'.".1" .
22

I'

A(t)q B(tr

where the summations over p, q, r are restricted by the argument of any factorial present
in equation (50) to be a non-negative integer. For example, ifm is an even integer, then
p + q have to be even and m - p - q?: O. We note, in particular, that when m = n = 0, p
= q = y = 0 and Boo(t) = aoo(t) which is consistent with equation (47).

From equations 4 and 50, we have
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anl1l(t)= aoo(t)-Jm!n! (/3.(t) )

m/2

(
/3 .(t)

)
n/2 *

a (t) a.(t)

p,q,r

m.n-q-ry - p

( ~) 2 A(t)q B(tr

(m - ; - q) !(n- ~ - r) ! p! q!r 1/3IP

(51)

n-p-r

.,. L(-1)~

which gives amn(t) up to a function <1{)o(t).To detennine this function, we use the
standard nonnalization

x: x:

1= < 0[0> = L< °IU(t)!n> < n[U+(t)IO> = Llaon(t)12.
Il~O n~ 0

(52)

But from equation (51)

ao"(t) = aoo(t) .In! (
/3:(t)

)
lli2 "

a (t) ~

n-r

m-ry

(

1

)

2

(-1)~ 2" B.(tr

(

n - r

)T!r!

(53)

From the above equations,

-1

( 1

)

,,_11;12

(

[/3 [in B(t)'1 B.(trz

la,.(I)I' = I ,,~, ,-"2 ~J I,! 1, ! ( II ;1,H ";'') !

-(54)

where the expression in the bracket is obviously non-negative. Also the summation over

n through infinite is convergent as la [= ~1 + 1/312or 0 <Jtl < 1.
[a [

We can choose the phase such that aoo(t)= (a(t) / a(t)*)1/2. I<1{)o(t)I. This reduces to the
case of linear hannonic oscillator: when f(t) = get)= 1, u(t) = vet) = O.
For the case when the linear tenns are absent, A(t) = B(t) = 0 and the summations over q
and r contain only the tenn with q = r = O. Then p takes either odd or even integral
values depending upon whether m and n are both odd or even. Thus in this case
transitions from odd to even or from even to odd states are not allowed. However, in the
presence of the linear tenns, whether time-dependent or time-independent, transitions
from odd or even or from even to odd states are now allowed as the corresponding amn(t)
may not vanish.

~
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