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Analogy between a photon in a plasma and a
free material particle
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we can say In the vacuum photon exists only in motion.
However the light can be stopped in different mediums
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For a plasma
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Momentum of the photon 7 = @k s the group velocity
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Thus the wave packets of light propagate with a
group velocity(uy < ¢) inaccordance with the

theory of relativity
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Skin depth
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takes the simple meaning of the Compton
wavelength of a photon in a plasma

INn the relativistic theory a coordinate
uncertainty in a frame of reference In
which the particle is moving with energy
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For Photons
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or the characteristic dimensions of the

problem should be large in comparison with
the wavelength or the Compton length

INn the guantum field theory the eigenvalues
of the Hamiltonian are
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& These expressions enables to introduce the
concept of photons, i.e. the EM field as an
ensemble of particles each with energy nw

and momentum nk

& The occupation numbers n—k> Jnow_repres.ent
the number of photons with dgiven k
and Polarization¢y

& The number of levels of the energy spectrum
Increase exponentially with the number of
photons N and separation between levels are
given by number of the 10N,



State Equation of EM Waves
w = w(k)

INn the homogeneous and nondisipative plasma,
we had already dispersion equations
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here w, = const. k = consl
This iIs case, when amplitude of EM field is constant
F( 7 .t) is the geometric approximation
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Wigner-Moval Equation In quantum theory
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Relativistic Kinetic Equation for the Photon Gas
For the photon gas
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factor of the electrons



gamma can be expressed as
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The total number of Photons
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Hence the chemical potential of the photon
gas Is not zero




INn the geometric optics approximation
the one-particle Liouville-Vlasov equation
with an additional term
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here there are two forces of direct nature which
can change the occupation number of photons
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1st one is just Compton scattering process, 2" is

new type of Compton scattering photon scatter
on the wave packet



Existence of the longitudinal photons
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() and § are the frequency and wave vector of the

longitudinal photons, well known Bogoliubov enerqgy
spectrum
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who developed microscopic theory of
the super fluidity



Adiabatic Photon self-capture

7/ is a slowly variation function in space and time

Assuming inequality > % & neglecting the time
g
derivatives in the kinetic equation, we obtain
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Pauli Equation for the Photon Gas
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where W & (k.7) is the scattering rate

Bose-Einstein Condensation in Photon Gas
Some times the great scientist can make mistakes
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The Photon density
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The critical temperature of the B.E condensation iIs
determined for the fixed points
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this condition, can be define the critical temperature
For non-relativistic temperature

T, ~ 1“3

For ultra relativistic case
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When the temperature iIs below critical T, chemical
potential becomes zero, and occupation number
would be in the form
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The problem of BEC and evaporation of the
Bose-Einstein condensate can be investigated by

, which we shall derive
Using Pauli equation, We suppose that
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where H_% and [y are the
i

and diffusion coefficients, respectively

First we neglect the diffusion term and consider
1D case, the solution of which is
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Assuming that initially all the photons are in
ground sate with

k=0, or Ng= 473npd (k)
The solution is B A-'E
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From here
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We have derived a relation between the diffusion
time, ty and the time of condensation

tn/te = = k*rg. which is always >>1



	Photon gas as a classical medium

