Photon gas as a classical medium

N. L. Tsintsadze

12th Regional Conference on Mathematical physics

Analogy between a photon in a plasma and a free material particle

$$\varepsilon = c\sqrt{p^2 + m_0^2 c^2}$$
$$\varepsilon = \frac{m_0 c^2}{\sqrt{1 - \frac{v^2}{c^2}}}$$

or

$$v \leqslant c$$

$$\omega = kc, \qquad v_{\varphi} = \frac{\omega}{k} = \frac{\partial \omega}{\partial k} = c$$

$$\varepsilon_{\gamma} = p.c$$

If $p = 0, \ \varepsilon_{\gamma} = 0 \ (\omega = 0)$

we can say in the vacuum photon exists only in motion. However the light can be stopped in different mediums

$$(\overrightarrow{p} = 0 \overrightarrow{k} = 0 \text{ but } \omega \neq 0, \varepsilon_{\gamma} \neq 0)$$

For a plasma

$$\omega = \sqrt{\omega_p^2 + k^2 c^2}$$

or
$$\varepsilon_{\gamma} = c \sqrt{p^2 + m_{\gamma}^2 c^2}$$

Momentum of the photon $u\gamma = \overline{\partial k}$ is the group velocity.

 $u_{\gamma} = c$

$$\overrightarrow{p_{\gamma}} = \overrightarrow{h k} = \frac{m_{\gamma}}{\sqrt{1 - \frac{u_{\gamma}^2}{c^2}}}.\overrightarrow{u_{\gamma}}$$

Thus the wave packets of light propagate with a group velocity $(u_{\gamma} < c)$ in accordance with the theory of relativity

$$\lambda_c = \frac{2\pi c}{\omega_p} = \frac{2\pi\hbar}{m_\gamma c}$$

takes the simple meaning of the Compton wavelength of a photon in a plasma

In the relativistic theory a coordinate uncertainty in a frame of reference in which the particle is moving with energy

$$\Delta q \sim \frac{c\hbar}{\varepsilon}$$

For Photons

or the characteristic dimensions of the problem should be large in comparison with the wavelength or the Compton length

In the quantum field theory the eigenvalues of the Hamiltonian are

$$E = \sum_{\overrightarrow{k},\sigma} \left(n_{\overrightarrow{k},\sigma} + \frac{1}{2} \right) \hbar \omega(\overline{k})$$

These expressions enables to introduce the concept of photons, i.e. the EM field as an ensemble of particles each with energy $\eta \omega$ and momentum ηk

The occupation numbers $n_{\vec{k},\sigma}$ now-represent the number of photons with given k and Polarization σ

The number of levels of the energy spectrum increase exponentially with the number of photons N and separation between levels are given by number of the 10^{-N}.

State Equation of EM Waves

$$\omega = \omega(k)$$

In the homogeneous and nondisipative plasma, we had already dispersion equations

$$\frac{k^2 c^2}{\omega^2} = 1 - \frac{\omega_p^2}{\omega^2}$$

here $\omega_p = const, \ k = const$

This is case, when amplitude of EM field is constant $E(\overrightarrow{r},t)$ is the geometric approximation

$$\frac{k^2(\overrightarrow{r},t)c^2}{\omega^2} = 1 - \frac{\omega_p^2(\overrightarrow{r},t)}{\gamma(\overrightarrow{r},t).\omega^2}$$

Wigner-Moyal Equation in quantum theory

$$\left[\frac{\partial}{\partial t} + \frac{\overrightarrow{p}}{m}\frac{\partial}{\partial \overline{r}} - \frac{2}{\hbar}\sin\left(\frac{\hbar}{2}\frac{\partial}{\partial \overline{p}}\cdot\frac{\partial}{\partial \overline{r}}\right)\right]V(\overline{r})F(\overline{r},\overline{p},t) = 0$$

Relativistic Kinetic Equation for the Photon Gas For the photon gas

$$\begin{split} \frac{\partial}{\partial t} N(\overline{k},\omega,\overline{r},t) &+ \frac{c^2}{\omega} (\overline{k}.\overline{\nabla}) N(\overline{k},\omega,\overline{r},t) \\ &- \omega_p^2 \sin \frac{1}{2} (\nabla_r . \nabla_{\overline{k}} - \frac{\partial}{\partial t} \frac{\partial}{\omega}) \rho \frac{N}{\omega} = 0 \\ \end{split}$$
 where $\rho &= \frac{n_e}{n_{0e}} \frac{1}{\gamma}, \gamma$ is the relativistic gamma

factor of the electrons

gamma can be expressed as

$$\gamma(\overline{r},t) = \sqrt{1+Q} = \sqrt{1+\beta} \int \frac{d\overline{k}}{(2\pi)^3} \int \frac{d\omega}{2\pi} \frac{N(\overline{k},\omega,\overline{r},t)}{\omega}$$

$$\beta = \frac{2\hbar\omega_p^2}{m_0 n_0 c^2}$$

The total <u>number of Photons</u>

$$N = 2 \int d\overline{r} \int \frac{d\overline{k}}{(2\pi)^3} \int \frac{d\omega}{2\pi} N(\overline{k}, \omega, \overline{r}, t) = const$$

Hence the chemical potential of the photon gas is not zero

In the geometric optics approximation the one-particle Liouville-Vlasov equation with an additional term

$$\frac{\partial N}{\partial t} + \frac{c^2}{\omega} (\overline{k}.\overline{\nabla})N - \frac{\omega_p^2}{2} (\nabla \rho.\nabla_k - \frac{\partial \rho}{\partial t}\frac{\partial}{\omega})\frac{N}{\omega} = 0$$

here there are two forces of direct nature which can change the occupation number of photons

$$\nabla \rho = \nabla \left(\frac{n_e}{n_0} \right) = \frac{1}{\gamma} \left(\nabla \frac{n_e}{n_0} - \frac{1}{\gamma} \frac{n_e}{n_0} \nabla \gamma \right)$$

1st one is just Compton scattering process, 2nd is new type of Compton scattering photon scatter on the wave packet Existence of the longitudinal photons

We have shown that $\frac{\delta n_e}{n_{0e}} << \frac{\delta n_{\gamma}}{n_{0\gamma}}$ $1 + \frac{\omega_p^2}{2\gamma^3} \beta \int \frac{d^3k}{\omega(k)} \left\{ \frac{N_0^{\perp}(\overline{k} + \overline{q}/2)}{\omega(\overline{k} + \overline{q}/2)} - \frac{N_0^{\perp}(\overline{k} - \overline{q}/2)}{\omega(\overline{k} - \overline{q}/2)} \right\} \frac{1}{\frac{\overline{q}\overline{k}c^2}{\omega(k)} - \Omega} = 0$

 Ω and \overline{q} are the frequency and wave vector of the longitudinal photons, well known <u>Bogoliubov energy</u>

<u>spectrum</u>

$$\varepsilon(p) = \sqrt{v^2 \cdot p^2 + \left(\frac{p^2}{2m_{eff}}\right)^2}$$

who developed microscopic theory of the super fluidity

Adiabatic Photon self-capture

 γ is a slowly variation function in <u>space and time</u> Assuming inequality $t > \frac{L}{u_g}$ and the time

derivatives in the kinetic equation, we obtain

$$N\left(\overline{k}, \omega, \overline{r}, t, \omega(k)\right) = Ae^{-\frac{k^2 + k_p^2 \delta\rho}{2\delta_k^2}}$$

and

$$\delta\rho = \frac{\delta n_e 1}{n_0 \gamma} + \frac{n_e}{n_0} \delta\left(\frac{1}{\gamma}\right) \simeq \delta\left(\frac{1}{\gamma}\right) = \frac{1}{\gamma} - \frac{1}{\gamma_0}$$
Where $k_p^2 = \frac{\omega_p^2}{c^2}$

$$\frac{n_\gamma^{trap}}{n_{0\gamma}} = \frac{4}{3\sqrt{\pi}} \left(\frac{k_p}{\sqrt{2\sigma_0}}\right)^3 |\delta\rho|^{3/2}$$

Pauli Equation for the Photon Gas

$$\frac{\partial N(\overline{k},t)}{\partial t} = \sum_{\pm} \int \frac{d^3q}{(2\pi)^3} \left[W \pm (\overline{k} + \overline{q}, \overline{k}) N(\overline{k} + \overline{q}, t) - W \pm (\overline{k}, \overline{k} + \overline{q}) N(\overline{k}, t) \right]$$

where $W \pm (\overline{k}, \overline{q})$ is the scattering rate

Bose-Einstein Condensation in Photon Gas Some times the great scientist can make mistakes

$$n_p = \frac{1}{\exp\left(\frac{\hbar\omega}{T}\right) - 1}$$

$$\overline{k} = 0, \ \omega = 0, \ n_n \to \infty$$

$$N(\overline{p}, \overline{r}) = \frac{1}{\exp\left(\frac{\varepsilon_k - \mu + m_{\gamma}c^2}{T_{\gamma}}\right) - 1}$$
where $\varepsilon_k = c\sqrt{p^2 + m_{\gamma}^2c^2} - m_{\gamma}c^2$

The Photon density

Because
$$n_{\gamma} > 0$$

 $n_{\gamma} = 2 \int \frac{d\overline{p}}{(2\pi\hbar)^3} N(\overline{p}, r)$
in any point of space $m_{\gamma}(\overline{r})c^2 > \mu_{\gamma}$

The <u>critical temperature</u> of the B.E condensation is determined for the fixed points

$$m_{\gamma}(r_f)c^2 = \frac{\hbar\omega_p}{\gamma^{1/2}(r_f)} = \mu_{\gamma}$$

this condition, can be define the critical temperature For non-relativistic temperature

$$T_c \sim n^{2/3}$$

For ultra relativistic case

$$T_c \sim n^{1/3}$$

When the temperature is below critical T_c chemical potential becomes zero, and occupation number would be in the form

$$N(\overline{p},\overline{r}) = \frac{1}{\exp\left(\frac{\varepsilon_k}{T_{\gamma}}\right) - 1} + 4\pi^3 n_{0\gamma} \delta(\overline{p})$$

The problem of **BEC** and evaporation of the Bose-Einstein condensate can be investigated by Fokker-Planck equation, which we shall derive Using Pauli equation, We suppose that

$$\begin{aligned} |\overline{q}| &<< |\overline{k}|, \text{ and } \Omega << \omega \\ V(\overline{k} + \overline{q}, \overline{k}) N(\overline{k} + \overline{q}) &\approx W(k) N(k) \\ &+ \overline{q} \frac{\partial}{\partial \overline{k}} (WN)_{q=0} + \frac{q_i q_j}{2} \frac{\partial^2 WN}{\partial k_i \partial k_j} \end{aligned}$$

$$\frac{\partial N}{\partial t} = a \frac{\partial}{\partial \overline{k}} (\overline{k}N) + \frac{D_0}{2} \nabla_k^2 N$$

where $a = \frac{D_0}{2\sigma_k^2}$ and D_0 are the dynamic friction

and diffusion coefficients, respectively

First we neglect the diffusion term and consider **1D** case, the solution of which is

Second
$$\begin{aligned} N &= \frac{f}{k} - cont \ \mathrm{e}^{at} \\ \frac{\partial N}{\partial t} &= \frac{D_0}{2} \nabla_k^2 N \end{aligned}$$

Assuming that initially all the photons are in ground sate with

$$k = 0$$
, or $N_0 = 4\pi^3 n_0 \delta(\overline{k})$

The solution is $N(k,t) = \frac{n_0 e^{-\frac{k^2}{2D_0 t}}}{(2\pi D_0 t)^{1/2}}$ From here

$$\langle k^2 \rangle = D_0 t$$

We have derived a relation between the diffusion time, t_D and the time of condensation

$$t_p/t_c = k^2 r_0^2$$
, which is always >>1