12th Regional Conference on Mathematical Physics

Islamabad, 31st March 2006

On Gauss-Bonnet Gravity

(hep-th/0509126)

Naresh Dadhich IUCAA, Pune (<u>nkd@iucaa.ernet.in</u>)

Plan of the Talk

- Universal nature of Gravity
- Classical Motivation for Higher Dimension and Gauss-Bonnet-Lovelock Gravity
- Simple examples
 - > Dynamics of dust collapse
 - > Does GB anticipate QG effects?
 - Is it a Bridge between Classical & Quantum Gravity?

- Everything about it is self-determined
- We can't prescribe anything
- Let us follow / probe Universality

Dynamics

- Universal Linkage: massive, m = 0
- Can be described by Spacetime curvature: *R*_{abcd}
- Bianchi identity

$$R_{ab(cd;e)} = 0$$

$$\mathbf{\nabla} \text{ contraction}$$

$$G^{ab}_{;b} = 0$$

$$G_{ab} = R_{ab} - \frac{1}{2} Rg_{ab}$$

$$R_{ab} = R^{c}_{acb}, R = g^{ab} R_{ab}$$

Integration of Bianchi identity

$$G_{ab} = \kappa T_{ab} - \lambda \ g_{ab} \ , \ T^{ab}_{;b} = 0$$

On the left: Second order differential operator on g_{ab}

- On the right: Source/charge: Universal energy-momentum of matter, conserved
- Λg_{ab} : new constant relative to ";" derivative
- Einstein Equation

Dynamics of Einstein Gravity

Fully determined by Spacetime Curvature

Two constants: $\kappa \& \lambda$

- κ : as for any force determined by experiment : Strength = $-8\pi G/c^2$
- λ : New, why?
- Matter/Energy \rightarrow Gravity $\equiv R_{abcd}$
- Matter = 0 → Spacetime homogeneous & isotropic
 Does it imply flat R_{abcd} = 0 ?
 NO!

- Homogeneity & Isotropy
 - = Constant curvature $R_{abcd} = \kappa (g_{ac} g_{bd} - g_{ad} g_{bc})$ = dS / AdS
 - Matter (Newtonian Gravity) free limit is <u>not</u> flat but dS/AdS

 \triangleright Why Λ ?

- In absence of matter, Spacetime is homogeneous & isotropic, but not necessarily flat.
- Background Spacetime is not fixed but dynamic.
- Derivative is ";"
- Spacetime is not at zero potential.

Dynamic Spacetime means

- It bends / curves \rightarrow micro-structure
- It can't be at zero potential
- λ has thus to be determined by micro-structure of Spacetime \rightarrow Quantum Gravity/Spacetime
- It is a new constant of Nature
- New Physics required!!!

Higher Dimension

Einstein Equation

$$G_{ab} = kT_{ab} - \Lambda g_{ab}, \quad D \ge 2$$

- D = 2,3 not big enough for gravity dynamics
- So we come to 4-D
- Is it big enough to accommodate gravity fully?
- How do we know it doesn't propagate in extra D?

\succ Gravity \equiv Curvature

How do we keep curvature confined in 4-D?

- Does higher D get curved or Not ?
- Higher D embedding 4-D is flat, R_{abcd} = 0 ?
- For an arbitrary 4-D curved 10-D required
- General 4-D Gravity can penetrate down to 10-D

Extra dimension Required...

Gravity is self-interactive

Self interaction means iterations, first, second, …

$$\nabla^2 \phi \neq 0 = -\frac{1}{2} (\nabla \phi)^2$$

- Einstein equation contains first iteration $(\partial^2, (\partial)^2) g_{ab} = 0$
- Can't stop at first...
- Second iteration: Basic Field Entity : R_{abcd}

 $R^2_{abcd} \rightarrow also \ squares \ (\ \partial^2 \)^2$

Self-interaction

- Quasilinear Equation
 - □ Highest order of derivative, ∂^2 to be linear
- Gauss-Bonnet combination

$$R^2 - 4 R_{ab} R^{ab} + R_{abcd} R^{abcd}$$

ensures quasi-linearity, (∂^2)² cancel out

- Sauss-Bonnet is non-trivial in $D \ge 5$
- Thus we have to go to 5-D to physically realize second iteration of self-interaction

Self-interaction

- D = 2, 3: Not big enough for free Gravity
- D = 4: Not big enough for self-interaction
- If matter is confined to 3-space/brane, (this is for matter dynamics to decide) gravity does propagate in extra 5th D

In 5-D there is no Matter

 $G_{AB} = \alpha H_{AB} (R^2)$

- Spacetime is homogeneous & isotropic
- It should be Einstein space

 $G_{AB} \propto g_{AB} \propto H_{AB}$ $\Rightarrow R_{abcd} = \kappa (g_{ac} g_{bd} - g_{ad} g_{bc})$ $\Rightarrow \text{Constant curvature}$

- Gravitational field negative energy density
- Hence 5-D Bulk is AdS

Motivation for Brane-World Gravity

Where does this iteration chain end?

- If matter lives on 3-brane, it ends in 5-D AdS Bulk
 - AdS Bulk has Weyl = 0, No free gravity to go any further
 It is embeddable in 6-D flat Spacetime
- Iteration naturally stops at the second

It is purely classical motivation for Brane-World like model.

Gauss-Bonnet Gravity

Theorem: A 4-D curved Spacetime is isometrically embedded in 5-D Einstein space.

(Campbell, Romero, Tavakol, Dahia)

• If 5-D Einstein space satisfies E-GB equation $G_{AB} = \alpha H_{AB} (R^2)$

It is AdS / dS

 Spacetime of constant curvature is a solution of the Equation

➢ 5-D GB Gravity

Two distinct situations arise:

(a) Einstein-GB Gravity in 5-D without reference to Brane

- $\ \ \, \ \ \, \alpha \rightarrow 0 \ \ \, Einstein \ \ \, limit \ exists$
- Qualitatively similar to GR with GB correction

(b) Gravity leaks from the Brane into Bulk

- No matter in Bulk
- GB term in Bulk sourced by gravity leaked from Brane
- No $\alpha \rightarrow 0$ limit exists

Mass point in E-GB depicts this

Mass point in E-GB

Boulware-Deser solution

$$ds^{2} = f dt^{2} - f^{-1} dr^{2} - r^{2} d\Omega_{3}^{2}$$

$$f = 1 - (r^{2} / 2\alpha) [-1 \pm \{1 + 4\alpha (m^{2}/r^{4} + \Lambda)\}^{\frac{1}{2}}]$$

- Two Solutions ⊕ & ⊙
 - (a) ⊕ Bulk solution BS
 - (b)
 Brane-Bulk solution BBS

As argued earlier, they represent two different physical situations.

Solutions Continued

$$f \xrightarrow[r \to \infty]{} 1 - \frac{m^2}{r^2} - \Lambda r^2 \qquad \text{BS S-dS} \\ 1 + \frac{m^2}{r^2} + (1/\alpha + \Lambda) r^2 \qquad \text{BBS AS-AdS}$$

$$\xrightarrow[r \to 0]{}$$
 1 - (± m/ $\sqrt{\alpha}$) + $r^2/2\alpha$ BS / BBS

No $\alpha \rightarrow 0$ limit for small *r*

Singularity and Horizon

- Horizon: $r_h = \sqrt{(m^2 \alpha)}$ BS
 - BH: $m^2 > \alpha$, NS: $m^2 < \alpha$ α has no effect at large r
- No Horizon, naked singularity: BBS
 α is always non-ignorable
- Singularity is Weak, Metric non-singular $R_{abcd} \sim \rho \sim 1/r^2$ But $\int \rho dv \rightarrow 0$
- Timelike / Null (Maeda & Torii)

Gravitational Force

For large r

 $\Box f' \sim -m^2/r^3, \quad m^2/r^3 - r/\alpha \qquad BS/BBS (S/AS-AdS)$

For small r

 $\Box f' \sim - r/2\alpha \qquad Always AdS$

Change in radial dependence 1/r³ ~ r
 Similar to LQC, ρ : 1/a³ ~ aⁿ, n > 0

Does **GB** anticipate **QG** effects?

Homogeneous Dust Collapse / Cosmology

► In 6-D BBS

- There is No Singularity
- Dust sphere can be
 - Oscillating / Bouncing
 - Stable static
- Friedmann open universe
 - No Big Bang
 - Oscillating Universe

► GB Effects

- Smoothens / Weakens Singularity
- Force changes power law for small and large r
- In 6-D there is no singularity
 - Force turns repulsive \rightarrow Bounce
 - Oscillating sphere / universe

All this resonates well with the LQC results

(Ashtekar, Bojowald, Parampreet, Goswami, Joshi, Tavakol, Maartens, Lidsey, ...)

Lovelock Action

```
• L = L1 (R) + L2 (R^2) + L3 (R^3) + ...
```

Mass point Spacetime:

One solution

- L2 Unique Two Solutions
- □ L3 Unique One solution (?)

Hunches / Conjectures

- Is GB a bridge?
 - > Classical $\leftarrow \rightarrow$ QG
 - String ←→ LQG
 - > $GB \leftarrow \rightarrow LQC$ (Parampreet, Copeland, Lee, Lidsey, Mizuno)
- Intermediatory semi-Classical-Quantum limit.
- Desirable features like
 - Weakened / Smoothed Singularity
 - Bouncing / Oscillating Universe

Could be brought down to 4-D by Dilaton Coupling?

Hunches / Conjectures

- Gravity can't fully remain confined to 4-D
- Physical Spacetime in the large is of constant curvature:
 - > dS/AdS
 - Not Flat Minkowski
 - Must have micro-structure
- Classical Limit to LQG may be dS/AdS ?

Thank You!