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Introduction and Summary

Parent action (gjJv = diag(-1,1, 1,1))

S -

J d4
(-~ F F jJv ~ 8jJ A v pa-)m - X 2 jJV + EjJvpa- D F .4g 2

(1)

Treat F as an independent variable without requiring any relation with

the gauge field A. Performing path integral over AD, which is equivalent

to solve the equations of motion for AD in terms of F and replace it

in the action, leads to Abelian gauge theory action

S - -~ !d4 jJV

a - 2 X FjJV F ,4g
(2)

now F = dA. Performing path integral over F, which is equivalent to

solve the equations of motion for F in terms of AD and replace it in

the action, leads to the dual action

3D = - ~! d4xFd'w FDI'v
(3)

where FD = dAD.

Duality transformation is
1

9 --+ -.
9
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Noncommutative space is defined by constant B :

[XIL, XV] = BILv

Duality can be generalized to noncommutative gauge theory:

1
9 -+-.

9

and

BILV -+ {jILV = g2 fILVpfJBpfJ .

yielding noncommutativity of space-time coordinates of the dual one

although the original noncommutativity was between space-space co-

ordinates.

. It is shown that noncommutativity of space-time coordinates re-

sulting from duality does not require any change in Hamiltonian

formalism. Thus we derived Hamiltonian formulation of noncom-

mutative D3-branes and studied some aspects.
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. For supersymmetric U(1) theory parent action was available in

terms of restricted superfields. A version in component fields is

introduced.

. Seiberg-Witten map between ordinary and noncommutative gauge

fields is generalized to supersymmetric gauge theories.

. Different parent actions, thus different dual actions for noncom-

muting supersymmetric U(l) theory are obtained.

. Dual actions for noncommuting theories were given by solving eqs.

of motion. Constrained Hamiltonian methods are used to show

that partition functions of them are equivalent.

. Parent action for nonanticommuting U(l) gauge theory is in-

troduced and dual action is derived. Equivalence of the parti-

tion functions is shown.
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Dual action for non-anticommuting U (1)
theory.
Superstring theory with pure spinors in a graviphoton background gives

rise to a non-anticommutative superspace. It can equivalently be intro-

duced as deformation of 4 dimensional N = 1 superspace by making

the chiral fermionic coordinates Bena = 1,2, non-anticommuting

{BCX,B(3} = ccx(3,

where ccx(3 (Cf1V = ccx(3E(3,(J~,) are constant deformation parameters.

Bcxare intact.

This breaks half of the supersymmetry.

Moyal antibrackets (star products) are used. Thus, instead of opera-

tors, one deals with the usual superspace variables.

In euclidean }R4chiral and antichiral fermions are not related with com-

plex conjugation. Seiberg used the vector superfield of this deformed.

superspace to derive, after a change of variables like Seiberg- Witten

map, the N = ~ supersymmetric Yang-Millstheory action

1

J
4

{
Iv. - 1 2 i v - c- ICI2 - - 2

11/2 = g2 d xTr - 4 Gf1 Gf1v-ZA1fJA+2D - 2Cf1 Gf1v(AA)+g(AA)

Gauge transformations possess the usual form. Although we deal with

euclidean }R4,we use Minkowski space notation.
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We propose the parent action as

Ip = Io[X] + Iz[X, XD]

1

J
4

{
Iv i - i -- 1 2 1 210 = - d x - -FfJ F - -A:/lA - _n/,:/ln/,+ -D + ~D

g2 4 fJV 2 'I' 20/'1'0/ 4 1 4 2

- : CIlV FIlv(>->- + 1(;1(;) }

J
4

{
I A 1 - 1 - 1 --

Iz = d X -EfJV KoFfJv8AADKo + ~Af/JAD + -ADf/JA - -1jJf/JAD2 2 2 2

-~').D~1jJ + i DD(D1 - D2) }
.

2 2

Here FfJv are independent field variables.

The equations of motion with respect to the "dual" fields are

fJVAKo8 F = 0E V AKo ,

f/Jif = f/J). ,
- -

f/J1jJ = f/JA, Dl = D2 = D .

One solves by setting FfJv = 8fJAv - 8vAw When one plugs this and

the solutions of the other equations of motion in terms of A, A, D,

into the parent action, the non-anticommuting N = ~ supersymmetric

U(l) gauge theory action follows:

1

J
4

{
I 2 . - 1 2 i v --

}1=2 d x --(8fJAv-8vAfJ) -ZAf/JA+-D --CfJ (8fJAv-8vAfJ)AA .9 4 2 2
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The equations of motion with respect to the "original" fields are

~ FlLv + ~CILV (5J~ + n/'n/') - ~EILVAK;8 A = 0
2g2 4g2 0/0/ 2 A D", ,

- 2 - - 2-
fjA + ig fjAD= 0 , fj~ - ig fjAD = 0 ,

~A + CILVFlLv).. + ig2~AD= 0 , ~~ + CILVFlLvi/J- ig2~AD = 0 ,

D1+ig2DD=O , D2 - ig2D D = 0 .

We solve the equations of motion for the dual fields and substitute

them in the parent action to obtain the dual theory action:

2/ 4

{
1 - 1 2 i 2 A - -

}ID = 9 d x - 4 Ff!/ FDlLv-iADfjAD+ 2DD+ 49 EILVK;CILVFDAK;ADAD,

where FDlLv = 8ILADv - 8vADw

Observe that the original theory action and its dual possess the same

form and the duality transformation is

1
9 --+-

9

CILV --+ C'; = - 1 g2EILVAK;CAK;= ig2CILV.2
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Equivalence of partition functions
Partition function for the parent action is expected to produce parti-

tion functions of the daughter actions. There are some terms cubic in

fields. Thus, it would be apposite to discuss its partition function in

phase space, where integrations would be simplified due to hamiltonian

constraints.

(PIW, TI~, fha, TI~, TI2a, P1, P2); (Pb, TIn, TIDa, PD)

are the canonical momenta corresponding to

(F~v, AO!)~a, rzPa,ifia, D1, D2); (AD~, ADa, An, DD)'

Each of the canonical momenta resulting from the parent action gives

rise to a primary constraint, which we collectively denote them as

{8a} :

A,Oi= P Oi t"V 0¥'1 - t"V, cpi = pij ~ 0

a -
TIa t"V 0 X

- -
TI- i \ aa O + 1 \ a a o t"V 0

Xl = 1 t"V, 1a = 1a - 2g2/\ aa 2/\D aa t"V ,

X2a TI2a ~ 0, X2 - TI2 - 2;2ifia(jOaa - ~ ~Da(jOaa ~ 0,

<1>1 P1 ~ 0,

CPDl P~ ~ 0,
1 - O

.

Xa = TIa - -1)/'. a- aa t"V 0D - D If/a t"V,2

<1>2 - P2 ~ 0,

cp
i - P i 1 iJ"k F 0D = D - -E "k

t"V

2 2 J t"V ,
- 1

XD ' TID
. + -Aa a O. t"V 0a a 2 aa t"V ,

<1>D PD ~ O.
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Hp =

Canonical hamiltonian associated with the parent action is

:2 [~F;v + ~,\p~ + ; 1(;P1jJ - ~ (Di + D~)+ : CILv FILv(U + 1(;1(;)]

""k 1 ""k 1 - 1 - 1 --

-E~J FOiajAD~ + 2E~J Fija~ADo - 2Xp AD- 2ADP A + 2'ljJP AD
1- - i

+-ADP'ljJ - -DD(D1 - D2).2 2

Extended hamiltonian is obtained by adding the primary constraints

ea with the help of Lagrange multipliers la, to the canonical hamilto-

nlan:

HE = Hp + laea

Consistency of the primary constraints with the equations of motion:

ea = {HE, ea} ~ 0

gives rise to the secondary constraints

1 i

.61 {Hp, PI} = - 2g2Dl - 2DD ~ 0 ,
1 i

.62 {Hp, P2} = -2D2 + -DD ~ 0 ,2g 2
Z

.6D {Hp, PD} = -(D1 - D2) ~ 0 ,2
0 l""k

<PD- {Hp, PD} = -E~J akFij ~ 0 ,2
. 2

rp~i {Hp, POi} = FOi - g2EijkajADk + zg COi(~~ + ifi/J) ~ 0 .2

In path integrals first and second class constraints are treated on

different grounds. Thus, let us first identify the first class constraints:
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cPDlis obviously first class. Moreover, we observe that the linear com-

bination

cPD3- 8icPh2+ <{JD==8iP1 ~ 0,

is also a first class constraint. There are no other first class constraints.

However, the constraints cPD2 contain second class constraints which

we should separate out. This is due to the fact that a vector can be

completely described by giving its divergence and rotation (up to a

boundary condition). We used divergenceof cPb2,so that, there are

still two linearly independent second class constraints followingfrom

the curl of cPD2 :

A,n ==K n A,i - J(ni .. 8j A,k r"'oJ0
If'D4 - i If'D2 - E1,Jk If'D2 r"'oJ ,

where n ==1, 2. J(i are some constants whose explicit forms are not

needed for the purposes of this work. Although all of them are second

class, we would like to separate <{J~iin a similar manner:
.

- Oi Oi Z Oi - - - -

<{J2 == 8i<{Jl==-8iF - 2C 8i(AA + 'ljJ'ljJ) ~ 0,
Inn == Lr:lnOi == rni E.. 8j InOk r"'oJ 0
't'" 3 - 1, 't'" 1 f-, 1,J k y 1 r"'oJ .

(4)

where £nj are some constants. The reason of preferring this set of

constraints will be clear when we perform the path integrals, though

explicit forms of £i play no role in our calculations.
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In phase space, partition function can be written as

z = J II DYi DPYi M eiId3X(YiPYi-llp)
~

M = Ndet(8;)5(8. PD)5(8. AD)5(PDo)5(ADo)sdetM II 5(Sz),
z

where Yi and FYi embrace all of the fields and their momenta. Sz

denotes all second class constraints: Sz = (CPl, CP2,<1>1,<1>2,CPD4'<1>D,

CfJ2,CfJ3,~l, ~2, CfJD,~D, Xl, Xl, X2, X2, XD, XD). We adopted the

gauge fixing (auxiliary) conditions

A Do = 0,

8iADi = 0,

for the first class constraints cPDl and cPD3. N is a normalization con-

stant. The matrix of the generalized Poisson brackets of the second

class constraints M = {S z, Sz'} can be written in the form

M=
A B

CD

so that, its superdeterminant is given by

sdetM = (det D)-l det(A - BD-lC).

Calculations of B, C and D can be shown to yield

(BD-lC) = o.
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Therefore,
detA

sdetM = det D .

Contribution of fermionic constraints is

detD-1 = -(4detg2)2.

Here, det g2, which arise because we deal with constraints of a field the-

ory, should appropriately be regularized. Contribution of the bosonic

constraints has already been calculated:

Jet A = Jet (Eijk8iKi K~)Jet (Eijk8i LiL~) .

These determinants which are multiplication of three linear operators

should be interpreted as multiplication of their eigenvalues.

The integrals over all of the fermionic momenta and PjJ,vcan be

easily performed utilizing the related delta functions, to get

z = !D(All)M exp{ i !d3x [PIDI + PzDz + PZADO+ P1ADi
. 1 o' 1., i-

+PDDD - -F zFOi- -FzJFi, - -AfJA
4g2 4g2 J 2g2

i -- 1 2 2 i O' - - - -

- 2g21jJfJ1jJ+ 4g2(D1+ D2) - 2g2C ZFOi(AA+ 1jJ1jJ)

i ., -- - - "k 1 "k

- 4g2CZJFij(AA + 1jJ1jJ)+ EzJFOi8jADk - 2EZJFij8kADO
1 - 1 - 1 -- 1- - i

] }+-AfJAD + -ADfJA - -1jJfJAD - -ADfJ1jJ+ -DD(D1 - D2) .2 2 2 2 2

Here, M is the same with M except the delta functions which we

utilized above.
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We first would like to integrate over the fields which do not carry the

label "D" : PI, P2 integrals are trivially performed and by integrating

over DI and D2 we get a factor of det g2 and 5(D D). Integrations over

'ljJand A yield

(detfjJj det g2)25(i~ + g25..D)5(i5.. - g25..D).

Thus, we replace ~ with ig25..D and 5..with -ig25..D after integrating

over ~ and 5... Integrations over FfJV yield substitution of FOi with

2 .ok Z 4 0.- -
9 EzJ8jADk + -g C ZADAD,2

Fij with EijkPDk and cancellation of the determinant. Moreover, we

integrate over A ~, P~ and choose the normalization constant N such

that we get

J
- 2 2 2

Z = VADi VAD VPDi VDD VPD (det9 ) det 8i )(detfjJ)

5(DD)5(PD)5(8. PD)5(8. AD)

exp{ i f d3x [PlADi + PDDD - 2~2PDiPb - iCJjPDi)..D)..D
2' 2

9 F ij F Z 2Cij F " . 2,
fjJ

' 9 D 2

] }-4 D Dij - 2g D Dij/\D/\D - zg /\D /\D + 2 D .

In the exponent we distinguish the first order lagrangian of the dual

theory where TIn and TIDa are eliminated from the path integral by

performing their integrations.
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Now, let us integrate over the fields carrying the label "D": PD integral

is trivial. Integration over D D contributes as

(det g2)(j(Dl + D2)(j(D1 - D2).

Integrations of the fermionic variables AD and AD lead to .

(j(-~i/J + ~1jJ)(j(~A - ~1jJ)"

Due to the constraint c.pD = 0 we set

R.. - a.A. - a .A .
'tJ - 't J J 'to

However, this replacement does not diminish the relevant number of

physical phase space variables as it should be the case if the second

class constraint c.pD has been taken properly into account. Therefore,

we adopt the change of variables with the replacement

VFij(j(EklmakFlm)(j(K;JPDi + ~EijkFjk)) -t

-t det(a2)VAi(j(ajAj)(j (K~(PDi + EijkajAk)) "

Expressing ADi and PDi in terms of the fields (Ai, FOi)by making use

of the delta functions (j(KicjJb)(j(LicjJ~i)(j(a"P D)(j(a" AD) contributes

to the measure with

[(det i)2 det( 82) det (Eijk8i Kj K~ ) det (Eijk8i L{ L~) ] -1 .
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Hence, integrations over ADi and PDi can be performed to obtain

z = f V Ai V FaiV).. V>.. V'ljJ vi[; V D 1 V Pl V D2 V P2

(det g2)det(a;) (j(a. A)(j(DI + D2)(j(DI - D2) 8(-1jJij;+ fjJ~)

IS(~>'- ~1/J) IS (OiPOi + ~ OiCOi(XX + 1/!1/!))

exp{ i J d3x [;2 (pOi + ~ COi(U + 1/!1/!))Ai
. . 1 O'

+DIPI + D2P2 - 2F 'lFOi2g
1 . 2 i - i -- 1 2 2-- (a.A. - a.A. ) - -A~A - _?/;~fI/' + - (D + D )

4g2 'l J J 'l 2g2 'I' 2g2 '1'0/ 4g2 I 2

- 2~2 COi FOi().). + i/Ji/J) - 4~pij (oiAj - OJAi)(n + i/Ji/J) ] }

Integrating over D2, P2, ?/;,?/;and renaming DI = D and PI = P yield

z = J VAi VFOiV)., V).. VD VP

(detg2)(deta;)(detfjJ)2(j(P)(j(D)(j(a. A)

Ii (OiPOi + iOiCOi>.>.)exp{ i J d3 [~ (FOi + iCOi,U,) Ai + DP9 .

1 o' 1 2 1 - 1 2
--F 'lFOi- -(aiA. - a.Ai) - -AfjJA +-D

2g2 4g2 J J g2 2g2

- ;zCij(OiAj - OjAi)'U\]},

In terms of the change of variables

g2pi = FOi + COi ~~,

V FOi = (detg2)Vpi,
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we write the partition function as

z = f VAi Vpi VA v5.. VD VP

(det g2) (det a;)( det ~)2 5(D)5(P)5( a . P)5( a . A)

J
2

3 .' . 9 2 0'--

exp{ i d X [P'Ai + D1H - 2(Pi) - iC 'Pi)")"

1 2 i-I 2
--(aiA. - a.Ai) - -A~A +-D

4g2 J J g2 2g2

-~Cij (a'A. - a'A' )~~
] }2g2 Z J J Z .

In the exponent we recognize the first order lagrangian of the original
- -

theory after integrations over I1!, I11a, I12 and I12aare performed in

its path integral.

Let us adopt the normalization to write partition function of non-

anticommutative N = ~ supersymmetric U(1) gauge theory as

ZNA = ! VAi VPi V)" V).. V D VP o(D)o(P) 0(8 . P)o( 8 . A).

!
2

Z 3 .. . 9 2 0'--

exp{ n d x [P'Ai + DP - 2(?i1 - iC 'P;)..)..

1 2 i-I 2
--(aiA. - a.Ai) - -A~A +-D

4g2 J J g2 2g2

-~Cij (a'A' - a'A' ) ~~
] }2g2 Z J J Z .
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Therefore, by the applying the above transformation, partition func-

tion of its dual can be obtained as

Z NAD = f VAi VPi V)" V). VD V P /5(D)/5(P)/5(a . P)/5(a . A).

! 1 . 2
Z 3 ... 2 zg 0.--ex

p{
- d x

[
PZA. + DP - - (P,) - -C zP,AA

n z 2g2 z 2. D z
4 2 2

g
(8 a )

2 . 2
fjJ

- g 2
- - .A. - .A . - Zg A A + - D

4 Z J J Z 2
. 4

- z; CZ(i1iAj - OjAi»->-] }.

Here, we omitted the label "D" of the dual fields.

Comparing the results one concludes that the partition functions of

non-anticommutative N = ~ supersymmetric U(l) gauge theory ZNA

and its dual ZNAD are equivalent:

ZNA = ZNAD.

Therefore, under the strong-weak duality non-anticommutative N = ~

supersymmetric U (1) gauge theory is invariant.
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