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1. Introduction

Development of anisotropic large scale structures, such
as convective cells, zonal flows and jets, is a problem
which has attracted a great deal of interest both in plas-
mas [Hasegawa, Maclennan, and Kodama, 1979] and in
geophysical fluid dynamics [Busse and Rhines, 1994].
Recently it has been realized that zonal flows play a cru-
cial role in the regulation of the anomalous transport in
a tokamak [Diamond, Itoh and Hahm, 2005]. It is be-
lieved that the nonlinear energy transfer from small to
large length scale component (inverse cascade) is a cause
of spontaneous generation and sustainment of coherent
large structures, e.g., zonal flows in atmospheres, ocean
and plasmas.

Both ground-based and satellite observations clearly
show that, at different layers of the ionosphere, there
are large scale flow band structures (zonal flows) with
nonuniform velocities along the meridians [Gershman,
1974; Gossard, 1975; Kamide, 1988]. It is known [e.g.,
Petviashvili and Pokhotelov, 1992] that in the presence
of velocity shear in the zonal flow, the nonlinear effects
start to play a role in their dynamics. It is thus of inter-
est to take into account the interaction of the planetary
waves propagating in the ionosphere with the shear flows.
It this way, the ionospheric medium builds up conditions
which are favorable to the formation of nonlinear sta-
tionary solitary wave structures [Pokhotelov et al., 1996,
2001]. In reality, several planetary ionospheres can sup-
port both propagating waves and zonal flows and they
thus constitute dynamic systems which exhibit complex
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nonlinear interactions. It should be noted that zonal
flows vary on time scales slower than those of the finite-
frequency waves.

The generation of zonal flows is still not fully clari-
fied. Recently, there has been renewed interest in exam-
ining the nonlinear coupling between coherent and inco-
herent drift waves and zonal flows (or convective cells)
in nonuniform magnetoplasmas [e.g., Smolyakov et al.,
2000; Manfredi et al., 2001; Shukla and Stenflo, 2002].
It has been found that pseudo-three-dimensional drift
waves strongly couple with zonal flows whose dynam-
ics is governed by the drift wave stresses driven Navier-
Stokes equation. The latter is nonlinearly coupled with
the Hasegawa-Mima equation in the drift wave-zonal flow
theory. As there is a well-known analogy between drift
waves and Rossby waves [e.g., Nezlin and Chernikov,
1995] the idea of generation of zonal flows by Rossby
waves was put forward by Shukla and Stenflo [2003].
Their theory was further developed by Onishchenko et
al. [2004]. In these papers it was shown that zonal
flows in a nonuniform rotating neutral atmosphere can
be excited by finite amplitude Rossby waves. The driv-
ing mechanism of this instability is due to the Reynolds
stresses which are inevitably inherent for finite ampli-
tude small scale Rossby waves. Hence, these investiga-
tions provided an essential nonlinear mechanism for the
transfer of spectral energy from small scale Rossby waves
to large-scale enhanced zonal flows in the Earth’s neu-
tral atmosphere. In addition the zonal flow generation
was considered within a simple model for Rossby-wave
turbulence, using the classical nonlinear two-dimensional
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Charney equation to describe the dynamics of solitary
vortex structures of the dipole type, i.e. a cyclone-anticyclone
pair. This means that the wavelengths of the considered
Rossby waves were small as compared with the Rossby
radius rR and the nonlinearity is therefore only due to the
so-called vector, or Poisson bracket, nonlinearity. Hence,
it corresponds to the quasi-geostrophic approximation in
geophysical hydrodynamics for which structures are con-
sidered as purely two-dimensional, and the perturbations
of the free surface of the liquid motion are considered as
either absent or negligibly small.

In the present paper we will focus our attention at
the Earth’s ionosphere. A large amount of observational
data has been stored up till now. These data verify
the permanent existence of ULF (ultra-low frequency)
planetary-scale perturbations in the E- and F -regions of
the ionosphere [e.g., Lawrence and Jarvis, 2003]. Among
them, special attention must be paid to large-scale Rossby
type perturbations propagating at a fixed latitude along
the parallels around the Earth. Unlike the neutral atmo-
sphere the ionospheric E- and F -layers consist of neutrals
and charge particles whose existence makes the iono-
sphere conductive. Therefore, the interaction of induc-
tive currents with the inhomogeneous geomagnetic field
(varying along the meridians) should be taken into ac-
count. Recently Kaladze and Tsamalashvili [1997], Kaladze
[1998, 1999] and Kaladze et al. [2003] showed that the
so-called magnetized Rossby waves can propagate in the
E-layer of the ionosphere without perturbing the geo-
magnetic field. They have typically wavelengths larger
than the Rossby radius rR. For the ionosphere we have
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rR ≈ 1000 − 3000 km. As shown by Kaladze et al.
[2004], magnetized Rossby wave turbulence should then
be described by a more complex equation, namely the so-
called generalized Charney equation which includes an
additional scalar, Korteweg-de Vries (KDV) type, non-
linearity. This equation corresponds to the intermediate
geostrophic approximation in geophysical hydrodynam-
ics, for which the perturbation of the free surface of the
atmosphere is taken into account.

2. Linear magnetized Rossby waves in the iono-
spheric E-layer

Let us consider a weakly ionized E-layer that consists
of electrons, ions and neutral particles. Due to the strong
collisional coupling between the ionized particles and the
neutrals the behavior of such a gas is mainly determined
by its massive neutral component. The E-layer satisfies
the condition n/N � 1, where n and N are the equilib-
rium number densities of the charged particles and the
neutrals, respectively. The presence of charged particles
makes the medium electrically conducting. For a typical
ionization fraction in the E-layer, the Lorentz force is
comparable to the Coriolis force. Hence we must take
into account the effects of the spatially inhomogeneous
geomagnetic field B and the vertical component of the
Earth’s rotation Ω.

Magnetized Rossby waves [e.g., Kaladze and Tsamalashvili,
1997; Kaladze, 1998, 1999] represent the ionospheric gen-
eralization of tropospheric Rossby waves in the rotating
atmosphere with a spatially inhomogeneous geomagnetic
field. The theory of magnetized Rossby waves was de-
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veloped by Kaladze et al. [2004]. We introduce a local
Cartesian coordinate system with the x-axis directed to
the east, the y-axis to the north, and the z-axis in the
local vertical direction. Magnetized Rossby waves prop-
agate in the middle-latitude E-layer of the ionosphere
and their frequency is [Kaladze et al., 2004]

ωk = −kx(α + β)r2
R

1 + k2
⊥r2

R

=
kxvR

1 + k2
⊥r2

R

. (1)

Here ωk is the wave frequency, k the wave vector, and
k⊥ = (k2

x + k2
y)

1/2 where kx and ky are the x and y com-
ponents of the wave vector. The Rossby velocity vR and
the Rossby radius rR are defined as

vR = −(α + β)r2
R = −r2

R

∂

∂y
(f + γ), (2)

and

rR =
(gH0)

1/2

|f + γ|
, (3)

where H0 stands for the atmospheric reduced height, g

is the gravitational acceleration, and f is the Coriolis
parameter which depends on latitude λ, i.e.

f = 2Ω0z = 2Ω0 sin λ = f0 + βy. (4)

with

f0 = 2Ω0 sin λ0 > 0 and β =
∂f

∂y
=

1

R

∂f

∂λ
=

2Ω0 cos λ0

R
> 0.

(5)
Analogously, considering the inhomogeneous dipole geo-
magnetic field we write the geomagnetic field parameter
as

γ =
en

ρ
B0z = −2en

ρ
Beq sin λ = γ0 + αy, (6)
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with

γ0 = −2en

ρ
Beq sin λ0 < 0 and

α =
∂γ

∂y
=

en

ρ

∂B0z

∂y
= −2enBeq

ρR
cos λ0 < 0. (7)

In (4)-(7) the quantities α, β, f0 and γ0 are related to
the latitude λ0, e is the magnitude of the electron charge,
Beq is the equatorial value of the geomagnetic field at a
distance R from the Earth’s center, and ρ = Nm is the
neutral gas mass density. The factor (α + β) in Eq. (2)
represents the generalized Rossby parameter, where α

corresponds to the contribution from the Lorentz force.
The parameters α and β are comparable in magnitude
(β ' −α ' 10−11 m−1s−1) in the ionospheric E-layer,
and α depends on the ratio n/N . This ionization frac-
tion is distinctly different at the nightside and dayside
of the Earth. Thus, unlike the Rossby waves in a neu-
tral atmosphere, the magnetized Rossby waves in the
ionospheric E-layer can propagate both westwards and
eastwards at a fixed latitude along the parallels.

The magnetized Rossby waves do not significantly per-
turb the geomagnetic field. They are induced by the lat-
itudinal inhomogeneity of the Earth’s angular velocity
as well as of the geomagnetic field, determined by β and
α, respectively. They are excited by the ionospheric dy-
namo electric field when the Hall effect due to the inter-
action with the ionized ionospheric component in the E-
layer is included. The dynamics of propagation depends
on the generalized Rossby parameter (α + β) and the
modified Rossby radius. The Lorentz force counteracts
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the Coriolis force vorticity and partial or full compensa-
tion of the Coriolis deviation by that of the magnetic is
therefore possible. Correspondingly, the phase velocities
of the linear waves also decrease. The period of these
waves is of the order of several days. A magnetized
Rossby wave belongs to the ultra-low frequency range
(10−6 − 10−5) s−1, its wavelength is 1000 km or larger,
and its phase velocity is of the order of the velocity of
the local winds, i.e. ∼ (1 − 100) m/s. Such waves cor-
respond to longitudinal mode numbers less than 8− 10.
It has been established that the inhomogeneity (latitude
variation) of the geomagnetic field and the Earth’s ro-
tation generates magnetized Rossby waves, which prop-
agate along the parallels to the east as well as to the
west. These large-scale waves are weakly damped. The
features and the parameters of the theoretically investi-
gated electromagnetic wave structures agree with those
of the large-scale ULF mid-latitude long-period oscilla-
tions and the ionospheric wave perturbations observed
in the ionosphere.

3. Nonlinear interactions of magnetized Rossby
waves and zonal flows in the E-layer

Considering large-scale structures with sizes a ≥ rR, it
was shown [e.g., Kaladze et al., 2004] that the magnetized
Rossby waves turbulence in the ionospheric E-layer could
be described by the generalized Charney equation

∂

∂t
(h−r2

R∇2
⊥h)+vR

∂h

∂x
+vRh

∂h

∂x
−(f+γ)r4

RJ(h,∇2
⊥h) = 0.

(8)
Within this model, the ionosphere is treated as an in-
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compressible shallow water fluid of depth H = H0(1+h),
where H0 is the unperturbed constant depth and h stands
for a dimensionless wave amplitude. The Poisson bracket
operator J(a, b) = ∂xa∂yb− ∂ya∂xb represents the vector
nonlinearity. The new term in the generalized Eq. (8)
is the scalar nonlinearity of the KdV type ∼ h∂xh. We
estimate from Eq. (8) that the vector nonlinearity can
compensate the scalar nonlinearity only when the size a

of the structure is less than rig, or

a < rig = (r2
RR)1/3, (9)

where we have introduced the so-called intermediate geostrophic
radius rig. Here rR is the Rossby radius defined by (3),
and R is the Earth’s radius which is the scale of inho-
mogeneity of both the Earth’s angular velocity and the
geomagnetic field. In the problems considered by Shukla
and Stenflo [2003] and Onishchenko et al. [2004] only
the vector nonlinearity was kept. This means that only
small size structures, satisfying the inequality (9), were
considered in these papers. Below we will consider the
generalized Eq. (8), i.e. we will study structures of arbi-
trary size.

The generalized Charney equation (8) for magnetized
Rossby waves contains thus both scalar and vector non-
linearities and it can describe solitary vortex structures
of arbitrary size. This equation corresponds to the so-
called intermediate geostrophic approximation in geo-
physical hydrodynamics, where a perturbation of the
free surface of the liquid plays a role (accordingly the
two-dimensional divergence of the velocity differs from
zero). The mechanism for self-organization of solitary

9







structures is associated with the compensation of wave
dispersion by both the scalar and vector nonlinearities.
As a result, a solitary structure is in general intrinsically
anisotropic and contains a circular vortex superimposed
on a dipole perturbation. The degree of anisotropy in-
creases sharply as the size of the vortex approaches the
intermediate geostrophic size (9). The generalized Char-
ney equation (8) for Rossby waves with α = γ = 0 was
first derived by Petviashvili [1980].

Owing to the presence of the scalar nonlinearity, Eq.
(8) breaks the cyclone-anticyclone symmetry and pre-
dicts the existence of solitary waves (solitons) with monopole
structures, and defined signs; i.e. either cyclones or an-
ticyclones. Such solitary structures were first found in
laboratory modeling of solitary Rossby vortices by An-
tipov et al. [1982]. A large-scale dipole vortex splits into
two monopoles ( a cyclone and an anticyclone), where
a vortex of one polarity is long-lived whereas the vortex
of the opposite polarity disperses. In case of magne-
tized Rossby waves, only those anticyclones survive that
propagate faster then the maximum velocity of the cor-
responding linear waves. Thus, we emphasize that the
presence of the scalar nonlinearity plays an additional
role, similar to an instability, in forming new structures
from former dipole structures.

Since the zonal flow varies on a much larger time scale
than the comparatively small-scale magnetized Rossby
waves, one can use a multi-scale expansion, assuming
that there is a sufficient spectral gap separating the large-
and small-scale motions. Following the standard pro-
cedure to describe the evolution of the coupled system
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(magnetized Rossby waves plus zonal flows), we decom-
pose the perturbation of the dimensionless ionospheric
depth h into its low- and high-frequency parts, that is

h = ĥ + h̃, (10)

where ĥ(y, t) refers to the large-scale zonal flow and h̃(r, t)
to the small-scale magnetized Rossby wave. Averaging
Eq. (8) over the small spatial scales, we obtain the evo-
lution equation for the mean flow

∂

∂t
(ĥ− r2

R∇2
⊥ĥ) = (f + γ)r4

R〈J(h̃,∇2
⊥h̃)〉, (11)

where the angular bracket denotes the averaging process.
In Eq. (11) the term on the right-hand side describes the
Reynolds stresses induced by the small-scale magnetized
Rossby waves.

The nonlinear coupling of the magnetized Rossby waves
with the zonal flow is governed by

∂

∂t
(h̃− r2

R∇2
⊥h̃) + vR

∂h̃

∂x
+ vRĥ

∂h̃

∂x

−(f + γ)r4
R[J(ĥ,∇2

⊥h̃) + J(h̃,∇2
⊥ĥ)] = 0. (12)

The magnetized Rossby waves are considered as a su-
perposition of a pump wave and two sidebands, that is

h̃ = h0 + h̃+ + h̃−, (13)

where for the pump wave we have

h0 = hk exp(i(k ·r−ωkt))+h∗k exp(−i(k · r−ωkt)) (14)

with the frequency ωk given by Eq. (1).
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The change in the zonal flow amplitude is given by

ĥ = hq exp(i(q · r−Ωt)) + h∗q exp(−i(q · r−Ωt)), (15)

with q = qŷ where ŷ is the unit vector along the latitude.
For the magnetized Rossby side-bands we have

h̃± = hk± exp(i(k± ·r−ωk±t))+h∗k± exp(−i(k± ·r−ωk±t)),
(16)

where
ωk± = ωk ± Ω (17)

and
k± = k± q (18)

are the frequencies and wave vectors of the magnetized
Rossby sidebands.

Substituting h0, ĥ and h̃± into Eq. (11), we obtain

Ωhq = −i
(f + γ)r4

R

1 + q2r2
R

kxq [(k2
+−k2)hk+

h∗k−(k2
−−k2)hkh

∗
k−],

(19)
where the expressions for the Fourier amplitudes hk+

and
h∗k−, found from Eq. (12), are

hk+
= −i(f + γ)r4

Rkxq(k
2 − q2)− kxvR

(Ω + δω+)(1 + k2
+r2

R)
hqhk, (20)

and

h∗k− =
i(f + γ)r4

Rkxq(k
2 − q2)− kxvR

(Ω− δω−)(1 + k2
−r2

R)
hqh

∗
k, (21)

where

δω± ≡ ωk −
kxvR

1 + k2
±r2

R

. (22)
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Substituting (20) and (21) into Eq. (19) we obtain

Ω = i
(f + γ)r4

Rkxq

1 + q2r2
R

[i(f + γ)r4
Rkxq(k

2− q2)− kxvR] | h0 |2

×[
k2

+ − k2

(Ω + δω+)(1 + k2
+r2

R)
+

k2
− − k2

(Ω− δω−)(1 + k2
−r2

R)
]. (23)

The dispersion relation (23) is in general too cumber-
some for analysis, and it can thus only be solved nu-
merically. In order to simplify it we consider the most
interesting case, namely q � k, when the typical scales
of the zonal flows are much larger then the scales of the
magnetized Rossby waves. In this limiting case we can
adopt the expansions

δω± ' ∓qvg −
q2v

′

g

2
, (24)

 k2
+ − k2

(Ω + δω+)(1 + k2
+r2

R)
+

k2
− − k2

(Ω− δω−)(1 + k2
−r2

R)



' −
q2Ωv

′

g

ωkr2
R

1[
(Ω− qvg)2 − (q2v′g/2)2

] , (25)

where

v
′

g ≡
∂vg

∂ky
=

∂2ωk

∂k2
y

= −2ωkr
2
R

1 + k2
xr

2
R − 3k2

yr
2
R

(1 + k2r2
R)2 . (26)

Here

vg ≡
∂ωk

∂ky
= −2kyr

2
R

ωk

1 + k2r2
R

(27)
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is the latitudinal (y-component) of the Rossby group ve-
locity. We note that both vg and v

′

g can change sign
when

kx = ±(3k2
yr

2
R − 1)/r2

R)1/2. (28)

This occurs on the Rossby wave caustics. Substituting
(24) and (25) into Eq. (23), one finds

Ω± ' qvg±

−i
(f + γ)r2

Rk2
xq

3

1 + q2r2
R

v
′

g

ωk
|h0|2[i(f + γ)r4

Rqk2 − vR] + (
q2

2
v
′

g)
2

1/2

.

(29)
Let us now investigate two special cases.
In the case of small-scale turbulence, when a < rig, we

obtain from (29)

Ω± ' qvg ±
(f + γ)2r6

Rk2
xq

4v
′

gk
2|h0|2

(1 + q2r2
R)ωk

+ (
q2

2
v
′

g)
2

1/2

.

(30)
It is thus obvious that a necessary condition for instabil-
ity is v

′

g/ωk < 0. This condition is similar to the Lighthill
criterion for modulation instability in nonlinear optics
[Lighthill, 1965]. According to (26)

v
′

g

ωk
= −2r2

R

1 + k2
xr

2
R − 3k2

yr
2
R

(1 + k2r2
R)2 , (31)

which in the small wavelength limit case (krR � 1) re-
duces to

v
′

g

ωk
= −2

k2
x − 3k2

y

k4 , (32)
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i.e.

Ω± ' qvg±
−2(k2

x − 3k2
y)(f + γ)2r6

Rk2
xq

4|h0|2

k2(1 + q2r2
R)

+ (
q2

2
v
′

g)
2

1/2

.

(33)
Instability occurs when k2

x− 3k2
y > 0, and the instability

condition thus applies to magnetized Rossby pump waves
with wave vectors in the cone

− kx√
3

< ky <
kx√
3
. (34)

The maximum growth is attained at the axis of the cone
when ky = 0. In this case the mode is purely growing
with the growth rate

γ = −iΩ+ =

2(f + γ)2r6
Rk2q4|h0|2

1 + q2r2
R

− q4ω2
k

k4

1/2

. (35)

Expression (35) describes the initial (linear) stage of zonal
flow growth due to the parametric instability of small-
scale magnetized Rossby waves.

For the Rossby regime f +γ � ωk the last term in the
parenthesis of (35) is small. For qrR ∼ 1 and krR � 1
we can then estimate the growth rate to

γ ≈| f + γ | (krR)|h0|. (36)

This estimation shows that γ increases as k in the small
wavelength limit (krR � 1). Physically, this instability
is the manifestation of an inverse cascade. It shows that
the spectral energy of the small-scale magnetized Rossby
wave turbulence is transferred into the large scales of the
zonal flows, i.e. the magnetized Rossby wave energy is
converted into the energy of slow zonal motions. For
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the typical parameters of the Earth’s atmosphere (f +
γ) ≈ 10−4 s−1, krR ' 10 and h0 ' 10−2 we obtain
γ ' 10−5 s−1. This estimate is consistent with existing
observations. Thus, it is possible that the parametric
instability of magnetized Rossby waves is responsible for
the generation of mean flows in the ionosphere of our
rotating Earth.

Onishchenko et al. [2004] investigated the special case
qrR >> 1 to obtain the expression for the maximum
growth rate and to define the optimal parameters of the
zonal flow. Here we will however consider the opposite
case when qrR << 1. We then obtain

γ =
q2

k2

√
2(f + γ)2(krR)6|h0|2 − ω2

k. (37)

In the Rossby regime f +γ � ωk and for the case krR �
1 we thus have

γ ≈ q2

k2 | f + γ | (krR)3|h0|. (38)

In spite of the fact that the expression (38) contains a
small factor q2/k2, owing to the high value of (krR)3 �
1 the growth rate is however significant. As we have
mentioned above, the presence of the geomagnetic field
causes reduction of the value of (f + γ). Thus, the ob-
tained growth rate (38) increases as (f + γ)−2.

Let us now investigate the new term in Eq. (29) com-
ing from the contribution of the scalar (KdV) nonlinear-
ity. In this case of large-scale turbulence with krR ∼ 1,
we estimate that when q/k ∼ 10−1

vR ∼ (f + γ)r4
Rqk2 ∼ (f + γ)rR

q

k
. (39)
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Thus using the main term we get

Ω± ' qvg ± qkxrR|h0|
√√√√i(f + γ)qvR

v′g
ωk

. (40)

This instability exists for any sign of v
′

g/ωk unlike the in-
stability considered above. Substituting the expressions
(2) and (31) into (40) one finds

Ω± ' qvg±
q|h0|kxr

3
R

1 + k2r2
R

√
2i(f + γ)q(1 + k2

xr
2
R − 3k2

yr
2
R)(α + β).

(41)
Maximum growth rate is here attained again when ky =
0, i.e.

γ = q|h0|kr3
R

√√√√2(f + γ)q
α + β

1 + k2r2
R

. (42)

An estimate of this growth rate when krR ∼ 1 gives

γ ∼
(

q

k

)3/2
r

1/2
R (f + γ)1/2 (α + β)1/2|h0|. (43)

For the typical parameters f + γ ∼ 10−4 s−1, α + β ∼
10−11 m−1s−1, rR ∼ 106 m, |h0| ∼ 10−2 and q/k ∼ 10−1

of the Earth’s ionosphere, we obtain γ ∼ 10−6 s−1. Thus,
this growth rate is ten times less than that obtained in
the small-scale turbulence case (see (36)).

4. Discussion and Conclusions

A novel mechanism for the generation of large-scale
zonal flows by small-scale Rossby waves in the Earth’s
ionospheric E-layer is considered. The generation mech-
anism is based on the parametric excitation of convective
cells by finite amplitude magnetized Rossby waves. To
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describe this process a generalized Charney equation con-
taining both vector and scalar (Korteweg-de Vries type)
nonlinearities is used. The magnetized Rossby waves are
supposed to have arbitrary wavelengths (as compared
with the Rossby radius). A set of coupled equations de-
scribing the nonlinear interaction of magnetized Rossby
waves and zonal flows is obtained. The generation of
zonal flows is due to the Reynolds stresses produced by
finite amplitude magnetized Rossby waves. It is found
that the wave vector of the fastest growing mode is per-
pendicular to that of the magnetized Rossby pump wave.
Explicit expression for the maximum growth rate as well
as for the optimal spatial dimensions of the zonal flows
are obtained. A comparison with existing results is car-
ried out. The present theory can be used for the inter-
pretation of the observations of Rossby type waves in the
Earth’s ionosphere.

In the present study we have demonstrated how zonal
flows in the shallow rotating ionospheric E-layer can be
excited by finite amplitude magnetized Rossby waves.
The driving mechanism of this instability is due to the
Reynolds stresses which are inevitably inherent for finite
amplitude small-scale magnetized Rossby waves. Hence,
our investigation provides an essential nonlinear mecha-
nism for the transfer of spectral energy from small-scale
magnetized Rossby waves to large-scale enhanced zonal
flows in the Earth’s ionosphere. We have used the gen-
eralized Charney equation describing the turbulence of
magnetized Rossby waves of arbitrary size. In the case
of small-scale turbulence, when krR � 1, only the vector
nonlinearity is responsible for the parametric instability
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giving the most important growth rate. The peculiar fea-
ture of this instability is that it appears solely for magne-
tized Rossby waves that are localized in a cone bounded
by the caustics for which v

′

g = 0. This can lead to the
formation of a so-called caustic shadow in the spectrum
of the magnetized Rossby waves. A typical value of the
obtained growth rate is 10−5−10−4 s−1. But the presence
of the geomagnetic field (causing a contribution opposite
to that of the Earth’s angular velocity rotation) can in-
crease the growth rate by one order.

In the case of large-scale turbulence, when krR ≤ 1,
the KdV type scalar nonlinearity gives the main contri-
bution in forming the turbulence structures. The corre-
sponding growth rate is positive for the arbitrary sign
of v

′

g/ωk, but is one order less than in the case of the
small-scale turbulence.
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