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String Theory hasn’t been around that long, but it is already considered
‘text-book material’ that special holonomy manifolds are, well, special.

1 Introduction

Special holonomy plays a prominent role in string theory and M-theory primarily be-
cause the simplest vacua preserving some fraction of supersymmetry are compactifica-
tions on manifolds of special holonomy. The case that has received the most intensive
study is Calabi-Yau three-folds (C'Y3), first because heterotic string compactifications
on such manifolds provided the first semi-realistic models of particle phenomenology,
and second because type II strings on (‘-alabi—‘fau three-folds exhibit the seemingly
miraculous property of “mirror symmetry.” Recently, seven-manifolds with G5 holon-
omy have received considerable attention, both because they provide the simplest way
to uunpa,rtlh M-theory to four dimensions with A" = 1 supersymmetry, and because
of some unexpected connections with strongly coupled gauge theory.

Just so we can understand why special holonomy manifolds are distinguished
from the crowd, let’s try and trace the roots of this all important property they
have, of preserving supersymmetry.

And since we have the option of going up to 11 dimensions, why stay in 10?

So for the rest of this talk, we’re going to talk of M-Theory, or 11-dimensional
supergravity, to be more honest!



D =11 Superqravity

The bosonic action of 11-dimensional supergravity is given by
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The bosonic fields are the metric and a three-form gauge potential A
(whose associated field strength we denote by F)

There is, in addition, a single fermionic field -- the gravitino V.



In purely geometric backgrounds, with no field strength flux,
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So the spinor has to be a singlet under the Spin(1,10) subgroup H
generated by RuxiT**. This constrains possible choices of H - the
reduced holonomy group.

H = Spin (7) when d = 8, H=G,whend=7
H = SU(n) when d=2n, H = Sp(n) when d=4n




Neat as this classification scheme is, most of the situations we have to
deal with involve a non-zero field strength flux!

M-Branes are charged, gravitating objects which modify the
background into which they are placed.

Calabi-Yau spaces have supersymmetric cycles. But once an M-brane
IS wrapped on such a cycle, the back-reaction of the brane changes the
geometry such that the manifold no longer remains Calabi-Yau.
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We want to study and hopefully to classify these new,
supersymmetric ‘back-reacted’ geometries.



Requiring Supersymmetry Preservation

Our goal is to look for bosonic supersymmetric solutions to
11-dimensional supergravity.

Since we require the fermions to vanish, it is clear that
dsusy (DOsons) = fermions =0

Hence, to ensure a supersymmetric solution, we need only to impose that
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It turns out that if a metric and field strength satisfy this equation, they also
provide a solution to Einstein’s equations.

(as long as the Bianchi Identity and equations of motion for F are satisfied)




Supergravity Solution for a Planar M5-brane

A flat M5-brane with worldvolume 012345 is a half-BPS object.

It preserves 16 supersymmetries corresponding to the components
of the spinor y which obey the projection
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Since the M5-brane is a charged massive
object, it deforms the flat space in which it is
placed such that the metric is given by

ds? = HY3p,dXtdX" + HY35,5dX*dXP
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The Geometry of an M-Brane Wrapping a
Supersymmetric Cycle
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M5-branes wrapping holomorphic cycles

Holomorphic cycles are known to be supersymmetric.
They are in fact, perhaps the simplest supersymmetric cycles,
so we consider them first.

Based on the isometries expected of the brane configuration,
Fayyazuddin and Smith came up with an ansatz for the metric.

ds® = Hy?n,,dX*dX" + 2GywdzM dzN + Hy?6,3dXdXP

® |n order to preserve translational invariance along the
common directions, H,, H, and the metric G,;5 must be
independent of X"

m We find that supersymmetry preservation requires
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« Find Killing Spinors of the background by solving
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Write these solutions in terms of Fock space states.

= Impose supersymmetry preservation to obtain a set of constraints.

Solve these to express the field strength and functions in the ansatz, in
terms of the metric in the ‘relative transverse’ or embedding space.

This metric is ‘known’ modulo solution of a non-linear differential
equation.

However, even in the absence of an explicit expression for the metric, we
are able to find a constraint which it must obey.

This constraint serves to characterize the manifold — in particular, its
departure from Special Holonomy.



M5-brane wrapping a holomorphic 2-cycle in C?2

Metric: ds® = Hy?nudX"dX" + 2Gypdz"dzN + Hy2603dX “dX "
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Killing spinor y =a + Ca* a=H"123500> where To23n=7

The four-form field 1 ‘
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Special Lagrangian Cycles

If L is a real n-dimensional sub-manifold of C" and wlg =0

L is said to be Lagrangian.

If, in addition, Im Q| = 0, L is known as a Special Lagrangian cycle.

Forsuchacycle, Q|; = Re Q| =Vol(L)

And we say that L is calibrated by e}

More generally, we would say that L was calibrated by Q el if

[C0sO Re Q2+ Sin® Im 1|, = Vol(L)

Let’s make this more concrete by considering a simple example



The defining equations for a
Special Lagrangian cycle are

w|£ = ) Im Qlﬁ = {] Re ng =VDI(£)

We findthat | @=Re2? ImQ=-ImQ ReQ=w

we=0 ImQY=0 ReQ=Vol(L) | mmd| &=Vol(L) Qc=durdlc=0

In order to be Special Lagrangian in z,w a cycle must be holomorphic in u,v



M5-brane wrapping a Special Lagrangian 3-cycle

Based on the isometries expected of the brane configuration, we can
write down an ansatz for the metric.

ds®> = H,*n,,d* udz, + G rrdy'dy’ + H364pdx®dz”

m Once again, translational invariance implies that all
functions in the ansatz are independent of X"

m We find that supersymmetry preservation requires
H = H1_3 = HY
® The Killing Spinor is

e=H """ @ nooo — vsH ™ 2irygysth ® muy
where ¥* = iy31) and tf) IS a constant spinor.



This expression allows us to construct both F and *F

The gauge potential 3

which couplestothe | 4 = - H V24X AdXIAdX2A Re
M5-brane is given by 2

provided | H =G | and dg(2— Q) =0 | where Qis a (3,0) form.

Im Q, a form which is orthogonal to the calibration Re Q, is closed.

For backgrounds in which M-branes wrapped holomorphic cycles,
the geometry was also modified in such a way that a form
orthogonal to the calibration was closed.

Due to the presence of an M5-brane wrapping the Special Lagrangian 3-fold,
In what was once the Calabi-Yau,
but this is sufficient to define the notion of (p,q) tensors.
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We can define a (1,1) form, By = '-“I-m-n.('-'f; €1 —€1¢; )

by lowering an index on the almost complex structure.

B is the analogue of the Kahler form on our almost complex manifold.

B is not closed, and in fact is required by supersymmetry to
obey the following constraints

[HYSB A B] =0 Or[HY?BY,] =0
In addition to the above, supersymmetry also requires that
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d could carry index a or | QA *¢de) = 0 dQ has no (3,1) part!



Conclusions

We study the supergravity backgrounds of M-branes wrapping supersymmetric cycles.

Although we do not write down explicit metrics, we are able to classify the resulting
‘back-reacted’ geometries through a set of constraints on the characteristic differential
forms of the manifolds in question.

An example of one such constraint is that we find the Hodge dual of the calibrating
form is always closed.
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