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Çanakkale, Turkey

12th Regional Conference on Mathematical Physics

March 27 - April 1, 2006



1. INTRODUCTION 1

A one-parameter group of conformal motions generated by a conformal Killing vector (CKV)

ξ is defined by [1]

£ξgab = 2ψgab ⇐⇒ gab,cξ
c + gacξ

c
,b + gcbξ

c
,a = 2ψgab, (1)

where £ξ is the Lie derivative operator along the vector field ξ, and a, b, c, ... = 0, 1, 2, 3;

ψ = ψ(xa) is a conformal factor. If ψ;ab 6= 0, the CKV is said to be proper.

ψ;ab = 0 ⇐⇒ ξ special conformal Killing vector(SCKV)

ψ, a = 0 ⇐⇒ ξ homothetic vector(HV)

ψ = 0 ⇐⇒ ξ Killing vector(KV)

In most situations of physical interest, we have spacetime symmetries which further reduce

the number of unknown functions [2].

The Einstein field equations (EFEs), which are a set of coupled non-linear partial differential

equations,

(Gab ≡)Rab − 1

2
Rgab = κTab, (2)

ten unknown functions gab when Rab = 0 +

{ the mass-energy density ρ, pressure p , ... } when Tab 6= 0
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1. INTRODUCTION 2

The well-known symmetry of the Ricci tensor is called as the Ricci collineation (RC) defined by

[1],

£XRab = 0 ⇐⇒ Rab,cX
c + RacX

c
,b + RcbX

c
,a = 0, (3)

where X = Xa ∂
∂xa is the vector field generating the RC symmetry.

Recently, much interest has been shown in the study of Matter collineations (MCs) defined by

£YTab = 0 ⇐⇒ Tab,cY
c + TacY

c
,b + TcbY

c
,a = 0. (4)

When we assume the EFEs, the vector field Y generates an Einstein collineation if

£YGab = 0 ⇐⇒ £YTab = 0

The MCs and the RCs of the FRW metric have been studied by Camci and Barnes [3].

Tsamparlis and Apostolopoulos [4] have determined the RCs of Bianchi I space-time in the

case of non-degenerate Ricci tensor.
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1. INTRODUCTION 3

Camci and his collaborators[5], [6] have classified the RCs of Kantowski-Sachs, Bianchi I and

III spacetimes. A family of RCs of Bianchi II, VIII, and IX spacetimes have been discussed by

Yavuz and Camci [7]. The RCs and MCs of locally rotationally symmetric spacetimes are

presented in [8]. Recently, we have classified the RCs in perfect fluid Bianchi V spacetime [9].

Here we provide a complete RC classification of the Bianchi II spacetime according to the

nature of the Ricci tensor Rab.

Some important results about the Lie algebra of RCs[11]:

a. The set of all RCs on manifold M is a vector space, but it may be infinite dimensional

and may not be a Lie algebra. If Rab is non-degenerate, i.e. det(Rab) 6= 0, the Lie algebra

of RCs is finite dimensional. If Rab is degenerate, i.e. det(Rab) = 0, we cannot guarantee

the finite dimensionality of the RCs.

b. If Rab is everywhere of rank 4 then it may be regarded as a metric on manifold. Then, it

comes out as a standard result that the family of RCs is, in fact, a Lie algebra of smooth

vector fields on manifold M of finite dimension ≤ 10 (and 6= 9).
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2. Spacetime and Ricci Collineation Equations 4

The line element for the spatially homogeneous Bianchi II spacetime is of the form [2],[12]

ds2 = −dt2 + A2dx2 + B2 [dy − xdz]2 + C2dz2, (5)

where A = A(t), B = B(t), and C = C(t).

This spacetime admits a group of isometries G3, acting on spacelike hypersurfaces, generated

by the spacelike KVs

ξ(1) = ∂y, ξ(2) = ∂z, ξ(3) = ∂x + z∂y. (6)

The Lie algebra has the following non-diagonal commutators:

[
ξ(1), ξ(2)

]
= 0,

[
ξ(1), ξ(3)

]
= 0,

[
ξ(2), ξ(3)

]
= ξ(1). (7)

The non-vanishing components of the Rab are given by

R00 ≡ R0 = −
(

Ä

A
+

B̈

B
+

C̈

C

)
, (8)

R11 ≡ R1, R22 ≡ R2, (9)

R23 = −xR2, R33 ≡ x2R2 + f, (10)
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2. Spacetime and Ricci Collineation Equations 5

where R1(t), R2(t) and f(t) are defined as

R1 = A2

(
Ä

A
+

ȦḂ

AB
+

ȦĊ

AC
− B2

2A2C2

)
, (11)

R2 = B2

(
B̈

B
+

ȦḂ

AB
+

ḂĊ

BC
+

B2

2A2C2

)
, (12)

f = C2

(
C̈

C
+

ȦĊ

AC
+

ḂĊ

BC
− B2

2A2C2

)
, (13)

where the dot denotes derivative with respect to t. Then, we find the scalar curvature R as

R = 2

(
Ä

A
+

B̈

B
+

C̈

C

)
+ 2

(
ȦḂ

AB
+

ȦĊ

AC
+

ḂĊ

BC

)
− B2

2A2C2
. (14)

The Ricci tensor metric for Bianchi II spacetime is given by

ds2
Ric = R0 dt2 + R1 dx2 + R2 [dy − xdz]2 + f dz2 (15)

where R0, R1, R2, and f are given the above. Here it is obviously seen that this metric has

the original Bianchi II form given by (5). Thus, the signature of the Ricci tensor metric

depends on the signs of R0, R1, R2, f , and is Lorentzian if R0 and the others R1, R2, f have

opposite signs and is positive or negative definite if they have same sign.
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2. Spacetime and Ricci Collineation Equations 6

For the Bianchi II spacetime (5), using the non-zero Ricci tensor components (8)-(10), we can

write the RC equations (3), generated by an arbitrary vector field Xa(t, x, y, z), in terms of

Ra(t) as follows:

Ṙ0X
0 + 2R0X

0
,t = 0, (16)

Ṙ1X
0 + 2R1X

1
,x = 0, (17)

Ṙ2X
0 + 2R2F,y = 0, (18)(

x2Ṙ2 + ḟ
)

X0 + 2xR2

(
X1 − F,z

)
+ 2f X3

,z = 0, (19)

xṘ2X
0 + R2

(
X1 − F,z + xF,y

)− f X3
,y = 0, (20)

R0X
0
,x + R1X

1
,t = 0, (21)

R0X
0
,y + R2F,t = 0, (22)

R0X
0
,z − xR2F,t + f X3

,t = 0, (23)

R1X
1
,y + R2

(
F,x + X3

)
= 0, (24)

R1X
1
,z − xR2

(
F,x + X3

)
+ f X3

,x = 0, (25)

where we have defined F as F ≡ X2 − xX3. Then we find that det(Rab) = R0 R1 R2 f .

Therefore, we will study the RCs according to whether det(Rab) = 0 (degenerate case) or

det(Rab) 6= 0 (non-degenerate case).
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2. Spacetime and Ricci Collineation Equations 7

If Rab is non-degenerate, the standard results on KVs to deduce that the

maximal dimension of the group of RCs in a pseudo-Riemannian

manifold of dimension n is n(n + 1)/2 are valid, and this occurs if and

only if the Ricci tensor metric has constant curvature.

Thus, the maximal dimensions of the group of RCs for spacetimes are 10.

Therefore, the possible number of proper RCs for Bianchi type II

spacetime are only 1 , 2 , 3 , 4 and 7 .

Furthermore, in this study we will take the proper RCs to denote an RC

which is not a KV, or HV, or SCKV.
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3. Ricci Collineations for Degenerate Ricci Tensor Cases 8

For the degenerate Rab of Bianchi II spacetime, we have the following possibilities:

(D0) all of the R`, (` = 0, 1, 2)) are zero;

(D1)-(D4) one of the R` and f are nonzero;

(D5)-(D10) two of the R` and f are nonzero;

(D11)-(D14) three of the R` and f are nonzero.

Case (D0) corresponds to the vacuum case in which every vector is a RC. Now, the solutions

of the RC equations for Cases (D8), (D11) and (D14) are given the following.

The remaining degenerate cases are summarized in Table 1.

Case (D8). Ri 6= 0, R0 = 0 = f (i = 1, 2). In this case, we have

X = − 2R1

αṘ1

F,y∂t + (xF,y + F,z)∂x +

[
F − xF,x − x

c1

R1−α
1 (xF,yy + F,yz)

]
∂y

−
[
F,x +

1

c1

R1−α
1 (xF,yy + F,yz)

]
∂z (26)

where Ṙ1 6= 0, R2 = c1R
α
1 (α 6= 0) and F = F (x, y, z), and the following equations must be

satisfied

x2F,yy + F,zz + 2xF,yz = 0, (27)

F,xz + xF,xy +
(α− 1)

α
F,y = 0. (28)
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3. Ricci Collineations for Degenerate Ricci Tensor Cases 9

If R1 and R2 are arbitrary functions, then the RC vector is found as

X = [A1 + A1,x] ξ(1) − A1,xξ(2) + a0ξ(3) (29)

where a0 is a constant, A1 = A1(x), and ξ(i)’s (i=1,2,3) are given in (6). When R1 is arbitrary

and R2 = c2 (constant), the following RC is obtained,

X = −2R1

Ṙ1

A0,x∂t + A0∂x + [zA0 + A1 − x(zA0,x + A1,x)] ∂y − (zA0,x + A1,x) ∂z,(30)

where A0 = A0(x), A1 = A1(x), and Ṙ1 6= 0.

Thus, we see that all subcases of this case give infinitely many RCs.
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3. Ricci Collineations for Degenerate Ricci Tensor Cases 10

Table 1: The RCs of Bianchi II spacetimes in degenerate Ricci tensor cases. In this table c1, c2, c3 are

non-zero constants related with the components of Ricci tensor, a0, a1, a2, a3 are constants, and we have

used the transformation dτ =
√

R0 dt in some cases.

Case Constraint(s) X

D1 R0 6= 0, Ri = 0 = f , c√
R0

∂t + X i(xa)∂xi , (i = 1, 2)

D2 R1 6= 0, Rj = 0 = f, −2R1

Ṙ1
g(x),x∂t + g(x)∂x + Xγ(xa)∂xγ , (γ = 2, 3)

Ṙ1 6= 0, (j = 0, 2)

D3 R2 6= 0, Rk = 0 = f, −2R2

Ṙ2
h,y∂t + (xh,y + h,z) ∂x + (h− xh,x)∂y − h,x∂z

Ṙ2 6= 0, (k = 0, 1) where h = h(x, y, z).

D4 f 6= 0, R` = 0, −2f

ḟ
g(z),z∂t + g(z)∂z + X i(xa)∂xi , (i = 1, 2)

ḟ 6= 0, (` = 0, 1, 2)

D5 Rk 6= 0, R2 = 0 = f (a0x + a1)∂τ +
[
a0

(
e−βτ

βc1
− β

4
x2

)
− β

2
xa1 + a2

]
∂x + Xγ(xa)∂xγ

R1 = c1e
βτ where β is a constant.

D6 Rj 6= 0, R1 = 0 = f a0∂τ +
(
U0,z − β

2
a0x

)
∂x +

(
U0 − xU0,x − β

2
a0y

)
∂y − U0,x∂z

R2 = c2e
βτ where U0 = U0(x, z).

If R0, R2 are arbitrary, then a0 = 0.
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3. Ricci Collineations for Degenerate Ricci Tensor Cases 11

Case Constraint(s) X

D7 R0 6= 0 6= f, Ri = 0 (a0z + a1)∂τ +
[
a0

(
e−βτ

βc3
− β

4
z2

)
− β

2
a1z + a2

]
∂z + X i(xa)∂xi

f = c3e
βτ

D9 R1 6= 0 6= f, Rj = 0

Ṙ1 6= 0, f = α1R1 −2R1

Ṙ1
h,x∂t + h∂x + X2(xa)∂y +

(
A1 − 1

α1

∫
h,zdx

)
∂z

α1h,xx + h,zz = 0 where A1 = A1(z) and h = h(x, z).

R1 = c1, f = c3

(
a1

z
c1

+ a2

)
∂x +

(
−a1

x
c3

+ a3

)
∂z + Xj(xa)∂xj

Ṙ1 6= 0, f = α1R
α2
1 −2a1R1

α2Ṙ1
∂t +

(
a1

x
α2

+ a2

)
∂x + X2(xa)∂y + (a1z + a3)∂z

D10 R2 6= 0 6= f, Rk = 0 −2αR2

Ṙ2
g1,z∂t + [(1− α)xg1,z − αyg1,zz + g2,z] ∂x

f = R
1/α
2 , Ṙ2 6= 0 + (−αyg1,z + g2) ∂y − g1∂z

where g1 = g1(z), g2 = g2(z) and α(6= 0) is a constant.

R2 = c2, ḟ 6= 0 2f

ḟ
g1,z∂t + [xg1,z + g2,z] ∂x + g2∂y − g1∂z

D12 Rj 6= 0 6= f, R1 = 0 a0∂τ + [a0(α− β)x + g(z),z] ∂x

R2,τ

R2
= 2β, f,τ

f
= 2α + [−a0βy + g(z)] ∂y + (−a0αz + a1)∂z
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Case Constraint(s) X

D13 Rk 6= 0 6= f, R2 = 0

R1 = c1, f = c2 (a1x + a2z + a3)∂τ + (−a1
τ
c1

+ a4)∂x + X2(xa)∂y + (−a2
τ
c2

+ a5)∂z

(a1x + a2)∂τ + (−a1
τ
c1

+ a3
z
c1

+ a5)∂x + X2(xa)∂y + (−a3
x
c2

+ a5)∂z

(a1z + a2)∂τ + (a3
z
c1

+ a4)∂x + X2(xa)∂y + (−a1
τ
c2
− a3

x
c2

+ a4)∂z

R1 = c1, f = c2e
2βτ (a1z + a2)∂τ + a3∂x + X2(xa)∂y +

[
a1

2

(
e−2βτ

c2β
− βz2

)
− a2βz + a4

]
∂z

R1 = c1e
2ατ , f = c2 (a1x + a2)∂τ +

[
a1

2

(
e−2ατ

c1α
− αz2

)
− a2αx + a3

]
∂x + X2(xa)∂y + a4∂z

R1 = c1e
2ατ , f = c2e

2βτ a1∂τ + (−a1αx + a2)∂x + X2(xa)∂y + (−a1βz + a3)∂z(
R1,τ

R1

)
,τ

= 2α2

R1
, α2 > 0 A0∂τ +

[
− R1,τ

2α2R1
A0,x − a1z

f
R1

+ a2

]
∂x + X2(xa)∂y(

f,τ

f

)
,τ

= 2β2

f
, β2 > 0 +

[
− f,τ

2β2f
A0,z + a1x + a3

]
∂z

f = −β2

α2 R1+ const. where A0 = cosh(αx) [a4 cosh(βz) + a5 sinh(βz)]

+ sinh(αx) [a6 cosh(βz) + a7 sinh(βz)]
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Case (D11). Ri 6= 0 6= f, R0 = 0. In this case, there exists an interesting situation where we

have found the finite number of RCs in most of the subcases.

When R1 6= c1R2, f 6= c3R1, Ṙ1 6= 0 or R1 = c1R2, f 6= c3R2 or R1 = c1, ḟ 6= 0 or

R1 = c1, R2 = c2, ḟ 6= 0, then the obtained RCs are only KVs given in (6).

In some subcases we have found the following proper RC in addition to the KVs given by (6)

X(4) = ε1 z∂x +
1

2

(
ε1 z2 − ε2x

2
)
∂y − ε2x∂z (31)

where ε1 and ε2 are constants related with the appeared constraints.

If R2 = c2f = c1R1, Ṙ1 6= 0 or f = c1R1 and R2 = c2 or R1 = c1 and f = c2 (these cases

include one proper RC given the above), then the constants ε1 and ε2 take respectively the

values ε1 = c1 and ε2 = c2 or ε1 = c1 and ε2 = 1 or ε1 = 1 and ε2 = c1/c2, where c1 and c2

are nonzero constants.

When R1 = c1, R2 = c2 and f = c3, we find infinitely many RCs as follows

X(1) = ξ(1), X(2) = ξ(2), X(3) = ξ(3)

X(4) = X0(x, y, z)∂t + ε1z∂x +
1

2

(
ε1z

2 − ε2x
2
)
∂y − ε2x∂z, (32)

where ξ(1), ξ(2) and ξ(3) are KVs given by (6); ε1 = 1/c1 and ε2 = 1/c3.

Department of Physics Çanakkale Onsekiz Mart University U. Camci
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For the case Ṙ1 6= 0, R1 = c2f
1/(β−1) and R2 = c1R

β
1 , it follows from the solution of RC

equations (16)-(25) that the proper RC is

X(4) = −2R1

Ṙ1

∂t + x∂x + βy∂y + (β − 1)z∂z (33)

where β is a constant ( 6= 1, 2), and the Lie algebra is given by

[
X(1),X(4)

]
= βX(1),

[
X(2),X(3)

]
= X(1), (34)

[
X(2),X(4)

]
= (β − 1)X(2),

[
X(3),X(4)

]
= X(3). (35)

When β = 1, i.e., R2 = c1R1, f = c3R1 and Ṙ1 6= 0, the number of RCs becomes infinite

which are the following ones

X0 = −2R1

Ṙ1

F,y, X1 = G, (36)

X2 = F − xF,x − x

c1

G,y, X3 = −F,x − 1

c1

G,y (37)

where F = F (x, y, z), G = G(x, y, z), and the following constraint equations have to be
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satisfied

G,z + xG,y − k

c1

(F,yy + c1F,xx) = 0, (38)

G− xF,y − F,z +
k

c2
1

(G,yy + c1F,xy) = 0, (39)

xG,yy + G,yz + c1 (F,xz + xF,xy + F,y) = 0. (40)

For R1 = c2f and R2 = c1R
2
1, i.e. β = 2, the obtained proper RCs are given by

X(4) = −2R1

Ṙ1

∂t + x∂x + 2y∂y + z∂z,

X(5) = ε1z∂x +
1

2

(
ε1z

2 − ε2x
2
)
∂y − ε2x∂z, (41)

where ε1 = 1 and ε2 = c2. The corresponding Lie algebra has the following non-vanishing

commutators:

[
X(1),X(4)

]
= 2X(1),[

X(2),X(3)

]
= X(1),

[
X(2),X(4)

]
= X(2), (42)

[
X(3),X(4)

]
= X(3),

[
X(3),X(5)

]
= −c2X(2).
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If R1 = c1 and R2 = af , where a is a constant, then we get

X(4) = −2R2

Ṙ2

∂t + y∂y + z∂z, (43)

where Ṙ2 6= 0, and the Lie algebra is given by

[
X(1),X(4)

]
= X(1),

[
X(2),X(3)

]
= X(1),

[
X(2),X(4)

]
= X(2). (44)

If R1 = b/f and R2 = c2, where b is a constant, then we have

X(4) = −2R1

Ṙ1

∂t + x∂x − z∂z, (45)

where Ṙ1 6= 0, and the Lie algebra has the following non-vanishing commutators

[
X(2),X(3)

]
= X(1),

[
X(2),X(4)

]
= X(2). (46)

Thus, we have finite number of RCs in most of the subcases of this case even if the Rab is

degenerate.
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Case (D14). R` 6= 0, f = 0 (` = 0, 1, 2). In this case, we have the following RCs

X = U0∂x + [zU0 + U1 − x (zU0,x + U1,x)] ∂y − (zU0,x + U1,x) ∂z

where U0 = U0(x), U1 = U1(x).

If R1 = −1
2ατ

and R2,τ 6= −β
ατ

R2, then we get

X = a1∂x + [a1z + U0 − xU0,x] ∂y − U0,x∂z.

When R1 = −1
2ατ

and R2 = c2e
−β/α, the RC vector field becomes

X = a1∂τ + (−a1αx + a2)∂x − [a1(α− β)z − U0,x] ∂z

+ (−a1βy + a2z + U0 − xU0,x) ∂y.

Thus, the number of RCs is infinite in this case.
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Now, we consider the RCs in non-degenerate cases, i.e. det(Rab) 6= 0, admitted by Bianchi II

spacetime. We define a set {Ṙ`(t), ḟ(t)} for functions R` and f , where ` = 0, 1, 2. Thus, we

have the following possibilities:

(ND1)-(ND4) three elements of the set are zero;

(ND5)-(ND10) two elements of the set are zero;

(ND11)-(ND14) one element of the set is zero;

(ND15) all elements of the set are zero.

Before giving the solutions of these cases, we write the constraint equations appearing in the

classification as

R1

(
R1,τ

2R1

)

,τ

= ε α2, R2

(
R2,τ

2R2

)

,τ

= ε β2, (47)

where ε takes values 1 or c0 (a constant related with R0), and α, β are separation constants.

If ε = 1, then we use the transformation dτ =
√

R0 dt. Otherwise, i.e. when ε = c0, then R0

becomes a constant (= c0), and the conformal time τ is equivalent to the physical time t. If

α2 and β2 are zero, then it follows from the constraint equations (47) that R1 = c1e
2η τ and

R2 = c2e
2µ τ , where η and µ are integration constants.

The obtained solutions of these possible cases are given Table 2.
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Table 2: The RCs of Bianchi II spacetimes in non-degenerate Ricci tensor cases. Here, we have

used c0, c1, c2, c3 as the non-zero constants related with the components of Ricci tensor.

Case Constraints ] of RCs proper RCs

ND1 Ṙ0 6= 0, R1 = c1, R2 = c2, f = c3, 5 X(4) = z
c1

∂x + 1
2

(
z2

c1
− x2

c3

)
∂y − x

c3
∂z,

C2 6= c3
c1

A2 X(5) = ∂τ

ND2 Ṙ1 6= 0, R0 = c0, R2 = c2, f = c3 3 —

ND3 Ṙ2 6= 0 R0 = c0, R1 = c1, f = c3 4 X(4) is same as ND1

ND4 ḟ 6= 0, R0 = c0, R1 = c1, R2 = c2 3 —

ND5 Ṙk 6= 0, R2 = c2, f = c3 (k = 0, 1) 3 —

ND6 Ṙj 6= 0, R1 = c1 f = c3 (j = 0, 2) 4 X(4) is same as ND1

ND7 Ṙ0 6= 0 6= ḟ , R1 = c1, R2 = c2 3 —

ND8 Ṙi 6= 0, R0 = c0, f = c3 (i = 1, 2) 3 —

ND9 Ṙ1 6= 0 6= ḟ , R0 = c0, R2 = c2 4 X(4) is same as ND1

ND10 Ṙ2 6= 0 6= ḟ , R0 = c0, R1 = c1 3 —
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Case Constraints ] of RCs proper RCs

ND11 Ṙj 6= 0 6= ḟ , R0 = c0 = ε, α2 = 0 = β2 X(4) = z
c1

∂x + 1
2

(
z2

c1
− x2

c3

)
∂y

− x
c3

∂z,

R1 = c1e
2ηt, R2 = c2e

2ηt, f = c3e
2ηt, µ = 2η 5 X(5) = ∂t − η x ∂x − 2η y ∂y

−η z∂z

R1 = c1e
2ηt, R2 = c2e

2µt, f = c3e
2ηt, µ 6= 2η 4 X(4) is same as ND1

ND12 Ṙ0 6= 0, R1 = c1, R2 = c2e
2µτ , f = c3e

2µτ 4 X(4) = ∂τ − µ y ∂y − µ z∂z

ε = 1, β2 = 0

ND13 Ṙ0 6= 0, R1 = c1e
2ητ , R2 = c2, f = c3e

2ητ 4 X(4) is same as ND1

ε = 1, α2 = 0

ND14 Ṙ` 6= 0, f = c3 (` = 0, 1, 2)) 3 —

ND15 R0 = c0, R1 = c1, R2 = c2, f = c3 5 X(4) is same as ND1

X(5) = ∂t
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For the cases (ND2), (ND4), (ND5), (ND7), (ND8), (ND10) and (ND14), we have only the

KVs.

In cases (ND3), (ND6) and (ND9), and some subcases of (ND11; where

R0 = c0 = ε, α2 = 0 = β2, f = c3e
2η t, µ 6= 2η) and (ND13; where

ε = 1, α2 = 0, R2 = c2, f = c3e
2η τ ), we have only one proper RC

X(4) =
z

c1

∂x +
1

2

(
z2

c1

− x2

c3

)
∂y − x

c3

∂z (48)

where c1 and c3 are non-zero constants, and the Lie algebra has the following non-vanishing

commutators

[
X(2),X(3)

]
= X(1),

[
X(2),X(4)

]
=

1

c1

X(3),
[
X(3),X(4)

]
= − 1

c3

X(2). (49)

For the case (ND12; where ε = 1, β2 = 0, R1 = c1, f = c3e
2µ τ ), the obtained proper RC is

given as

X(4) = ∂τ − µ y ∂y − µ z∂z (50)

with the non-vanishing commutators

[
X(1),X(4)

]
= −µX(1),

[
X(2),X(3)

]
= X(1),

[
X(2),X(4)

]
= −µX(2). (51)
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In the cases (ND1), (ND11; where R0 = ε = c0, α2 = 0 = β2, f = c3e
2η t, µ = 2η), and

(ND15), we have found two proper RCs. For the cases (ND1) and (ND15), one of these

proper RCs is given by (48) and the other one is X(5) = ∂τ or X(5) = ∂t, respectively. For the

case (ND11), in addition to the fourth RC given by (48), the fifth proper RC is obtained as

X(5) = ∂t − η x ∂x − 2η y ∂y − η z∂z (52)

where η = µ/2. For the last case, the non-vanishing commutators of the Lie algebra are given

by

[
X(1),X(5)

]
= −2ηX(1),

[
X(2),X(3)

]
= X(1),

[
X(2),X(4)

]
=

1

c1

X(3),
[
X(2),X(5)

]
= −2ηX(2), (53)

[
X(3),X(4)

]
= − 1

c3

X(2),
[
X(3),X(5)

]
= −ηX(3).
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a. In this study, we have solved the RC Eqs.(16)-(25) for Bianchi II spacetime (5), and

obtained all possible RCs according to the degenerate or non-degenerate Ricci tensor. We

have found that if the Ricci tensor is degenerate, section 3, then there are many cases of

RCs for the Bianchi II spacetime with infinite degrees of freedom except for most of the

subcases of case (D11), the groups of RCs are finite dimensional, in which there are one or

two proper RCs. When the Ricci tensor is non-degenerate, section 4, we have obtained

finite number of RCs which are three, four and five. Therefore, the number of proper RCs

in non-degenerate Ricci tensor cases are one or two. In some cases of sections 3 and 4, the

results are given in terms of R0 and some integration constants together with differential

constraints related to the components R1, R2, and f which must be satisfied.

Also, in any case of degenerate or non-degenerate cases of the Ricci tensor, we have

also obtained different constraint equations. When we could solve these constraint

equations, it could be able to find new exact solutions of EFEs.
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b. Before this section, we have not used any form of the energy-momentum tensor Tab. As an

application, for the Bianchi II spacetime, we consider the perfect fluid, which is given by

Tab = (ρ + p)uaub + pgab, where ua is the four velocity of the normalized fluid, ρ and p are

the energy density and the pressure, respectively. Therefore, if the universe is filled with a

perfect fluid, then using the EFEs one can obtain that

R0 =
1

2
(ρ + 3p), (54)

R1 =
A2

2
(ρ− p), R2 =

B2

2
(ρ− p), f =

C2

2
(ρ− p). (55)

The linear form of a barotropic equation of state p = p(ρ) is given by

p = wρ ≡ (γ − 1)ρ, (56)

where ρ is the energy density, p is the pressure, and w (and γ) is a constant. Causality then

requires w to be in the interval −1 ≤ w ≤ 1. Hence the parameters w = −1, 0, 1/3, and 1

correspond to vacuum fluid, dust filled universe, radiation and stiff matter, respectively.
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The mathematical instability of the parameter w might lead to some interesting physics. The

matter with the property ρ > 0 but p < −ρ < 0 (i.e., w < −1) is dubbed the phantom energy.

For the behavior of the matter in the quintessence regime, the interval of state parameter w is

−1 < w < −1/3. It ought to be noted that both quintessence and phantom fluids lead to the

inequality ρ + 3p ≤ 0, thus breaking the strong energy condition.

Now, using (54) and (55) in the metric (15), the Ricci tensor metric of perfect fluid Bianchi II

spacetime becomes

2ds2
Ric = (ρ + 3p) dt2 + (ρ− p)

[
dx2 + (dy − xdz)2 + dz2

]
, (57)

which has same signature with the metric (5) if w = −1, that is, p = −ρ. For the latter case,

there is a relation between the generic Bianchi II metric (5) and the Ricci tensor metric (57)

such as ds2
Ric = ρ ds2, that is, the spacetimes (5) and (57) are conformally related with the

conformal factor ρ. Beside the phantom barrier w = −1, both the phantom region w < −1

and quintessence region, −1 < w < −1/3, give rise to the Lorentzian signature metrics. But

in the causal region −1 ≤ w ≤ 1, it is interesting to note that we have the Euclidean signature

metric for the interval −1/3 < w < 1.
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The matter tensor metric of Bianchi II spacetime has the form

ds2
Matter ≡ Tabdxadxb = T0dt2 + T1dx2 + T2 (dy − xdz)2 + fMdz2, (58)

where Tab is given by

T00 ≡ T0 =
ȦḂ

AB
+

ȦĊ

AC
+

ḂĊ

BC
− B2

4A2C2
, (59)

T11 ≡ T1 = −A2

(
B̈

B
+

C̈

C
+

ḂĊ

BC
+

B2

4A2C2

)
, (60)

T22 ≡ T2 = −B2

(
Ä

A
+

C̈

C
+

ȦĊ

AC
− 3B2

4A2C2

)
, (61)

T23 = −xT2, T33 ≡ T3 = f(t)M + x2T2, (62)

where f(t)M is defined as

f(t)M = −C2

(
Ä

A
+

B̈

B
+

ȦḂ

AB
+

B2

4A2C2

)
. (63)

For the perfect fluid Bianchi II spacetime, we have T0 = ρ, T1 = pA2, T2 = pB2 and

fM = pC2, which yields the following metric

ds2
Perfect = ρ dt2 + p

[
A2dx2 + B2 (dy − xdz)2 + C2dz2

]
. (64)
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Therefore, using (59)-(63), the energy density and the pressure become

ρ =
ȦḂ

AB
+

ȦĊ

AC
+

ḂĊ

BC
− B2

4A2C2
, (65)

p = −
(

Ä

A
+

B̈

B
+

ȦḂ

AB
+

B2

4A2C2

)
, (66)

= −
(

Ä

A
+

C̈

C
+

ȦĊ

AC
− 3B2

4A2C2

)
, (67)

= −
(

B̈

B
+

C̈

C
+

ḂĊ

BC
+

B2

4A2C2

)
. (68)

Hence the curvature scalar given in (14) is obtained as R = ρ− 3p and ρ + 3p = 2R0.

The matter tensor metric is positive-definite when ρ > 0 and p > 0. For the perfect fluid the

energy conditions are given as [13]

p = p(ρ), ρ > 0, 0 ≤ p ≤ ρ. (69)

Under the assumption of perfect fluid in non-degenerate cases of the energy-momentum

tensor for Bianchi II spacetime, we have obtained from the constraints related with each of the

non-degenerate cases that R = (1− 3w)ρ. Thus, if w = 1/3 (radiation filled universe), then

the curvature scalar R of perfect fluid Bianchi II spacetime vanishes.
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c. In degenerate cases of Tab for perfect fluid, i.e. when det(Tab) = 0, the energy conditions

for the case (T0 6= 0, Ti = 0 = fM , i = 1, 2) are satisfied but for remaining ones are not. In

the latter case of degenerate Tab, we have dust (p = 0) and the curvature scalar has the

form R = ρ, i.e. R > 0.

In same case of the degenerate Rab, (D1;R0 6= 0, Ri = 0 = f) filled with perfect fluid,

we found that p = ρ = 1
2
R0 (stiff fluid) and R = −2ρ, that is, R < 0. This is an example

of difference of the results obtained from RCs and MCs in degenerate case.

Mathematical similarities between the Rab and Tab mean many techniques for their

study should show some similarities. When the Tab (equivalently Gab) is non-degenerate,

the determination of MCs for the Bianchi II spacetime follows immediately from Table 2

without any further calculations.

Then we will give an example for differences of the obtained results from RCs and MCs

in non-degenerate case. In case (ND15;Ṙ` = 0 = f , ` = 0, 1, 2) of non-degenerate Ricci

tensor, assuming the perfect fluid for Bianchi II spacetime, we found that ρ + 3p = const.

But the corresponding case (Ṫ` = 0 = fM) of MCs in perfect fluid Bianchi II metric yields

that ρ + 3p 6= const.
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[9] U. Camci and İ. Turkyilmaz, Gen. Rel. Grav.36 2005 (2004).

[10] J. Carot, J. da Costa, and E. G. L. R. Vaz, J. Math. Phys. 35 4832 (1994).

[11] G. S. Hall, I. Roy, and E. G. L. R. Vaz, Gen. Rel. Grav. 28 299 (1996).

[12] S. R. Roy and S. K. Banerjee, Class.Quantum Grav. 14 2845 (1997).

[13] S. W. Hawking and G. F. R. Ellis, The Large Scale Structures of Space-time, (Cambridge Univ.

Press, Cambridge, 1973).
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