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What is Python?

Python is a computer programming language 
which is: 
◼ General-purpose
◼ Open source
◼ Object-oriented
◼ Interpreted 

Used by hundreds of thousands of developers 
around the world in areas such as:
◼ Internet scripting
◼ System programming
◼ User interfaces
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What is Python?

Combines remarkable power with very 
clear syntax.

Also usable as an extension language.

Has portable implementation:
◼ Many brands of UNIX

◼ Windows

◼ OS/2

◼ Mac

◼ Amiga 



Programming in Python

2/26/2024 ASC, National Centre for Physics 5

History of Python

Created in the early 1990s

By Guido van Rossum.

At Stichting Mathematisch Centrum in the 
Netherlands.

As a successor of a language called ABC.

Guido remains Python’s principal author.

Includes many contributions from others.



Programming in Python

2/26/2024 ASC, National Centre for Physics 8

Installation of Python

The current production versions are Python 2.6.3 and 
Python 3.1.1. 

Download Python-2.6.3.tgz file from the URL: 
http://www.python.org/download/

Unzip and untar it by the command:
◼ tar -zxvf Python-2.6.3.tgz

Change to the Python-2.6.3 directory and run:
◼ ./configure to make the Make file

◼ make to create ./python executable

◼ make install to install ./python

http://www.python.org/download/releases/2.6.3/
http://www.python.org/download/releases/3.1.1/
http://www.python.org/download/
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Interactive Mode
On Linux systems, the Python is already 
installed usually.
But it does not have any unique interface for 
programming in it.
An attractive interface is IDLE which does not 
get automatically installed with the Linux 
distribution.
Type python on the console and then try the 
statement print “Python Course” on the 
invoked interpreter prompt. 
To use the interpreter prompt for executing 
Python statements is called interactive mode.
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Operators in Python

Operators Description

lambda Lambda Expression

or Boolean OR

and Boolean AND

not x Boolean NOT
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Operators in Python

Operators Description

in, not in Membership tests 

is, is not Identity tests 

<, <=, >, >=, !=, == Comparisons 

| Bitwise OR 
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Operators in Python

Operators Description

^ Bitwise XOR 

& Bitwise AND 

<<, >> Shifts 

+, - Addition and 
Subtraction 
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Operators in Python

Operators Description

*, /, % Multiplication, Division 
and Remainder 

+x, -x Positive, Negative 

~x Bitwise NOT 

** Exponentiation 
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Operators in Python

Operators Description

x.attribute Attribute reference 

x[index] Subscription 

x[index:index] Slicing 

f(arguments, ...) Function call 
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Operators in Python

Operators Description

(expressions, ...) Binding or tuple display 

[expressions, ...] List display 

{key:datum, ...} Dictionary display 

`expressions, ...` String conversion 
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Decision Making Statements
# Decision Making in Python

number = 23 

guess = int(raw_input('Enter an integer : ')) 

if guess == number: 
print 'Congratulations, you guessed it’ 

print "(but you don't win any prizes!)" 

elif guess < number: 
print 'No, it is a little higher than that.' 

else: 
print 'No, it is a little lower than that.' 

print 'Done' 
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Loops

Loops makes an execution of a program 
chunk iterative.

Two types of loops in Python:
◼ for loop

◼ while loop

When our iterations are countable , we often 
use for loop.

When our iterations are uncountable, we 
often use while loop.
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While Loop Example
# While Loop Demonstration
number = 23 
stop = False 
while not stop: 

guess = int(raw_input('Enter an integer : ')) 
if guess == number: 

print 'Congratulations, you guessed it.' 
stop = True 

elif guess < number: 
print 'No, it is a little higher than that.' 

else: 
print 'No, it is a little lower than that.' 

else: 
print 'The while loop is over.' 
print 'I can do whatever I want here.' 

print 'Done.' 
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For Loop Example

# For Loop Demonstration

for i in range(1, 5): 

print i   # 1 2 3 4

else: 

print 'The for loop is over.' 
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The break Statement

The break statement is used to break out of a 
loop statement.

i.e., stop the execution of a looping 
statement.
◼ even if the loop condition has not become false

◼ or the sequence of items has been completely 
iterated over

An important note is that if you break out of 
a for or while loop, any loop else block is not
executed.     
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Using The break Statement

# Demonstrating break statement

while True: 

s = raw_input('Enter something : ') 

if s == 'quit': 

break 

print 'Length of the string is', len(s) 

print 'Done' 
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The continue Statement

It means:

◼ To skip the rest of the statements in the 
current loop cycle.

◼ and to continue to the next iteration of the 
loop. 

Here is an example of continue
statement:
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Using The continue Statement

while True: 

s = raw_input('Enter something : ') 

if s == 'quit': 

break 

if len(s) < 4: 

continue 

print 'Sufficient length' 
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The pass Statement

The pass statement does nothing.

It can be used when a statement is 
required syntactically but the program 
requires no action.

For example:

while True:

pass # Busy-wait for keyboard interrupt
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Functions

Functions are reusable pieces of programs.

They allow us to give a name to a block of 
statements.

We can execute that block of statements by 
just using that name anywhere in our 
program and any number of times.   

This is known as calling the function. 
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Functions

Functions are defined using the def keyword. 

This is followed by an identifier name for the 
function.

This is followed by a pair of parentheses 
which may enclose some names of variables. 

The line ends with a colon and this is 
followed by a new block of statements which 
forms the body of the function.  
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Defining a function

def sayHello(): 

print 'Hello World!'  # A new block 

# End of the function 

sayHello() # call the function
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Function Parameters
Are values we supply to the function to perform any 
task.
Specified within the pair of parentheses in the 
function definition, separated by commas. 
When we call the function, we supply the values in 
the same way and order.
the names given in the function definition are called 
parameters.
the values we supply in the function call are called 
arguments. 
Arguments are passed using call by value (where the 
value is always an object reference, not the value of 
the object).
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Using Function Parameters
# Demonstrating Function Parameters

def printMax(a, b): 

if a > b: 
print a, 'is maximum' 

else: 
print b, 'is maximum'

printMax(3, 4) # Directly give literal values

x = -5 

y = -7  

printMax(x, y) # Give variables as arguments 
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Local and Global Variables

While declaring variables inside a function 
definition:
◼ They are not related in any way to other variables 

with the same names used outside the function

◼ That is, variable declarations are local to the 
function.

This is called the scope of the variable. 

All variables have the scope of the block they 
are declared in, starting from the point of 
definition of the variable.   
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Using Local Variables

# Demonstrating local variables

def func(x): 
print 'Local x is', x 

x = 2 

print 'Changed local x to', x 

x = 50 

func(x) 

print 'x is still', x 
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Local and Global Variables

Global variables are used for assigning to a 
variable defined outside the function.
This is used to declare that the variable is 
global i.e. it is not local. 
It is impossible to assign to a variable defined 
outside a function without the global 
statement.
We can specify more than one global 
variables using the same global statement. 
For example, global x, y, z . 
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Using global variables
# demonstrating global variables

def func(): 

global x 

print 'x is', x 

x = 2 

print 'Changed x to', x 

x = 50 

func() 

print 'Value of x is', x 
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The return Statement
The return statement is used to return from a function
i.e. break out of the function. 
We can optionally return a value from the function as well. 
Note that a return statement without a value is equivalent 
to return None. 
None is a special value in Python which presents 
nothingness. 
For example, it is used to indicate that a variable has no 
value if the variable has a value of None. 
Every function implicitly contains a return None statement. 
We can see this by running print someFunction() where 
the function someFunction does not use the return 
statement such as 
def someFunction(): 
◼ pass 
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The return Statement
# Demonstrating the return Statement

def max(x, y): 
if x > y: 

return x 
else: 

return y 
print max(2, 3) 
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Strings

A string is a sequence of characters.

Strings are basically just words. 

Usage of strings:

◼ Using Single Quotes (') 

◼ Using Double Quotes(")

◼ Using Triple Quotes (''' or """)



Programming in Python

2/26/2024 ASC, National Centre for Physics 37

Important Features of Strings

Escape Sequences.

◼ These are the characters starting from  ‘\’ 
(backslash). 

◼ ‘\’ means that the following character has a 
special meaning in the current context.

◼ There are various escape characters (also 
called escape sequences). 

◼ Some of them are: 
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Escape Sequences

Escape Sequence Description

\n Newline. Position the screen 
cursor to the beginning of the 
next line. 

\t Horizontal tab. Move the screen 
cursor to the next tab stop. 

\r Carriage return. Position the 
screen cursor to the beginning 
of the current line;  do not 

advance to the next line.
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Escape Sequences

\a Alert. Sound the system bell 
(beep)

\\ Backslash. Used to print a 
backslash character.

\” Double quote. Used to print a 
double quote character.
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Important Features of Strings

Raw Strings.

◼ To avoid special processing on a string 
such as escape sequences

◼ Specify a raw string by prefixing r or R to 
the string

◼ e.g., r"Newlines are indicated by \n."
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Important Features of Strings

Unicode Strings.
◼ Unicode is a standard used for 

internationalization

◼ For writing text in our native language 
such as Urdu or Arabic, we need to have a 
Unicode-enabled text editor

◼ To use Unicode strings in Python, we prefix 
the string with u or U

◼ E.g., u"This is a Unicode string."
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Important Features of Strings

Strings are immutable.

◼ Once created, cannot be changed

String literal concatenation.

◼ Placing two string literals side by side get  
concatenated automatically by Python.   

◼ E.g., 'What\'s ' "your name?" is 
automatically converted to "What's your 
name?" . 
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Some Important String Methods

# Demonstrating some String Methods
name = 'Swaroop' # This is a string object 
if name.startswith('Swa'): 

print 'Yes, the string starts with "Swa"' 
if 'a' in name: 

print 'Yes, it contains the string "a"' 
if name.find('war') != -1: 

print 'Yes, it contains the string "war"'
delimiter = '-*-' 
mylist = [‘Pakistan', 'China', 'Finland', 'Brazil'] 
print delimiter.join(mylist) 
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Python’s Built-in Data Structures

Structures which hold data together. 

Used to store a collection of related 
data. 

There are three built-in data structures 
in Python:
◼ List

◼ Tuple  

◼ Dictionary 
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List

A data structure that holds an ordered 
collection of items.

i.e. you can store a sequence of items 
in a list.

The list of items should be enclosed in 
square brackets separated by 
commas.

We can add, remove or search for items 
in a list.   
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Using a List

# List Demonstration
shoplist = ['apple', 'mango', 'carrot', 'banana']
print 'I have', len(shoplist), 'items to purchase.' 
print 'These items are:', 
for item in shoplist: 

print item,
print '\nI also have to buy rice.' 
shoplist.append('rice') 
print 'My shopping list now is', shoplist 
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Using a List

shoplist.sort() 

print 'Sorted shopping list is', shoplist 

print 'The first item I will buy is', shoplist[0] 

olditem = shoplist[0] 

del shoplist[0] 

print 'I bought the', olditem 

print 'My shopping list now is', shoplist 
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List

We can access members of the list by 
using their position.

Remember that Python starts counting 
from 0.  

if we want to access the first item in a 
list then we can use mylist[0] just like 
arrays. 

Lists are mutable; these can be 
modified.



Programming in Python

2/26/2024 ASC, National Centre for Physics 49

Tuple
Tuples are just like lists except that they 
are immutable. 
i.e. we cannot modify tuples. 
Tuples are defined by specifying items 
separated by commas within a pair of 
parentheses. 
Typically used in cases where a 
statement or a user-defined function 
can safely assume that the collection of 
values i.e. the tuple of values used will 
not change. 
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Using Tuples

# Tuple Demonstration

zoo = ('wolf', 'elephant', 'penguin') 

print 'Number of animals in the zoo is', len(zoo) 

new_zoo = ('monkey', 'dolphin', zoo) 

print 'Number of animals in the new zoo is', len(new_zoo) 

print new_zoo # Prints all the animals in the new_zoo

print new_zoo[2] # Prints animals brought from zoo 

print new_zoo[2][2] # Prints the last animal from zoo 
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Dictionary

A dictionary is like an address-book used to 
find address/contact details of a person by 
knowing only his/her name.

i.e. we associate keys (name) with values
(details). 

Note that the key must be unique.

i.e. we cannot find out the correct 
information if we have two persons with the 
exact same name.  
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Dictionary

We can use only immutable values (like 
strings) for keys of a dictionary.

But We can use either immutable or 
mutable values for values. 

This basically means to say that we can 
use only simple objects as keys. 

Pairs of keys and values are specified in 
a dictionary by using the notation: 
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Dictionary

d = {key1 : value1, key2 : value2 }. 

Notice that:

◼ the key and value pairs are separated by a 
colon

◼ pairs are separated themselves by commas 

◼ all this is enclosed in a pair of curly 
brackets or braces
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Using Dictionaries

# Dictionary Demonstration

ab={ 'Swaroop' : 'python@g2swaroop.net',             
'Miguel' : 'miguel@novell.com', 

'Larry' : 'larry@wall.org', 

'Spammer' : 'spammer@hotmail.com' }

print "Swaroop's address is %s" % ab['Swaroop'] 

# Adding a key/value pair 

ab['Guido'] = 'guido@python.org'  
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Using Dictionaries

# Deleting a key/value pair 

del ab['Spammer'] 

print "\nThere are %d contacts in the address-\
book\n" % len(ab) 

for name, address in ab.items(): 

print 'Contact %s at %s' % (name, address) 

if ab.has_key('Guido'): 

print "\nGuido's address is %s" % ab['Guido'] 
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Sequences

Lists, tuples and strings are examples of 
sequences.

Two of the main features of a sequence
is:
◼ the indexing operation which allows us to 

fetch a particular item in the sequence

◼ and the slicing operation which allows us 
to retrieve a slice of the sequence i.e. a 
part of the sequence
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Using Sequences

# Sequence Demonstration
shoplist = ['apple', 'mango', 'carrot', 'banana'] 
# Indexing or 'Subscription' 
print shoplist[0] 
print shoplist[1] 
print shoplist[2] 
print shoplist[3] 
print shoplist[-1] 
print shoplist[-2] 
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Using Sequences

# Slicing using a list 

print shoplist[1:3] 

print shoplist[2:] 

print shoplist[1:-1] 

print shoplist[:] 
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Using Sequences

# Slicing using a string 

name = 'swaroop' 

print name[1:3] 

print name[2:] 

print name[1:-1] 

print name[:] 



Programming in Python

2/26/2024 ASC, National Centre for Physics 60

References

Lists are examples of objects. 

When you create an object and assign it 
to a variable, the variable only refers to 
the object and is not the object itself.

i.e. the variable points to that part of 
our computer's memory where the list 
is stored. 
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Objects and References

# Demonstrating object slicing

shoplist = ['apple', 'mango', 'carrot', 'banana'] 

mylist = shoplist  # Referencing i.e. aliasing

del shoplist[0] 

print 'shoplist is', shoplist 

print 'mylist is', mylist

mylist = shoplist[:] # Slicing i.e. copying

del mylist[0]  

print 'shoplist is', shoplist 

print 'mylist is', mylist 
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