
2/26/2024 ASC, National Centre for Physics 1

Programming in Python –
Lecture#2

Adeel-ur-Rehman

Programming in Python

2/26/2024 ASC, National Centre for Physics 2

Scheme of Lecture

Modules and Packages

Default Arguments and Keyword Arguments

Lambda Functions and Documentation Strings

Object Oriented Framework

Python Namespaces and Scopes

Classes, Objects, Methods

Iterators

Programming in Python

2/26/2024 ASC, National Centre for Physics 3

Modules

We can reuse code in our program by defining
functions once.

What if we want to reuse a number of functions in
other programs we write?

The solution is modules.

A module is basically a file containing all our
functions and variables that we have defined.

The filename of the module must have a .py
extension.

A module can be imported by another program to
make use of its functionality.

Programming in Python

2/26/2024 ASC, National Centre for Physics 4

The sys Module

sys stands for System

The sys module contains system-level
information, like:

◼ The version of Python we are running.

◼ i.e., (sys.version or sys.version_info),

◼ And system-level options like the maximum
allowed recursion

◼ i.e., depth (sys.getrecursionlimit() and
sys.setrecursionlimit()).

Programming in Python

2/26/2024 ASC, National Centre for Physics 5

Using sys module

A use of sys module

import sys

print 'The command line arguments used are:'

for i in sys.argv: # list of command-line args

print i

print '\n\nThe PYTHONPATH is', sys.path, '\n'

Programming in Python

2/26/2024 ASC, National Centre for Physics 6

The os module

os stands for Operating System.

The os module has lots of useful
functions for manipulating files and
processes – the core of an operating
system.

And os.path has functions for
manipulating file and directory paths.

Programming in Python

2/26/2024 ASC, National Centre for Physics 7

Using os module
A use of os module
import os
print os.getcwd()
os.chdir(“/dev”)
print os.listdir(os.getcwd())
print os.getpid()
print os.getppid()
print os.getuid()
print os.getgid()

Programming in Python

2/26/2024 ASC, National Centre for Physics 8

The Module Search Path

When a module named os is imported,
the interpreter searches for a file
named ‘os.py’ in the:

◼ Current directory

◼ In the list of directories specified by the
environment variable PYTHONPATH.

◼ In an installation-dependent default path;

 on UNIX, this is usually ‘.:/usr/local/lib/python’.

Programming in Python

2/26/2024 ASC, National Centre for Physics 9

The Module Search Path

Actually, modules are searched in the
list of directories given by the variable
sys.path

◼ Which is initialized from the directory
containing the input script (or the current
directory).

◼ PYTHONPATH

◼ Installation-dependent default.

Programming in Python

2/26/2024 ASC, National Centre for Physics 10

Byte-Compiled .pyc files

Importing a module is a relatively costly affair.

So Python does some optimizations to create byte-
compiled files with the extension .pyc

If you import a module such as, say, module.py, then
Python creates a corresponding byte-compiled
module.pyc

This file is useful when you import the module the
next time (even from a different program)
◼ i.e., it will be much faster.

◼ These byte-compiled files are platform-independent.

Programming in Python

2/26/2024 ASC, National Centre for Physics 11

The from.. import statement
If we want to directly import the argv variable
into our program, then we can use the from
sys import argv statement.

If we want to import all the functions, classes
and variables in the sys module, then we can
use the from sys import * statement.

This works for any module.

In general, avoid using the from..import
statement and use the import statement
instead since our program will be much more
readable that way.

Programming in Python

2/26/2024 ASC, National Centre for Physics 12

Packages
Packages are a way of structuring Python’s module namespace
by using “dotted module names”.
For example, the module name A.B designates a submodule
named ‘B’ in a package named ‘A’.
Just like the use of modules saves the authors of different
modules from having to worry about each other’s global variable
names, the use of dotted module names saves the authors of
multi-module packages like NumPy or the Python Imaging
Library from having to worry about each other’s module names.
Suppose we want to design a collection of modules (a
“package”) for the uniform handling of sound files and sound
data.
There are many different sound file formats usually recognized
by their extensions. For example:
‘.wav’, ‘.aiff’, ‘.au’, so we may need to create and maintain a
growing collection of modules for the conversion between the
various file formats.

Programming in Python

2/26/2024 ASC, National Centre for Physics 13

Packages
There are also many different operations we might want
to perform on sound data:
◼ Mixing
◼ Adding echo
◼ Applying an equalizer function
◼ Creating an artificial stereo effect,

We will be writing a never-ending stream of modules to
perform these operations.
Here’s a possible structure for our package (expressed in
terms of a hierarchical filesystem):

Programming in Python

2/26/2024 ASC, National Centre for Physics 14

Packages

Sound/ Top-level package

◼ Formats/ Subpackage for file format conversions
 wavread.py
 wavwrite.py
 aiffread.py
 aiffwrite.py
 auread.py
 auwrite.py
 ...

◼ Effects/ Subpackage for sound effects
 echo.py
 surround.py
 reverse.py
 ...

Programming in Python

2/26/2024 ASC, National Centre for Physics 15

Packages

◼ Filters/ Subpackage for filters
 equalizer.py

 vocoder.py

 karaoke.py

 ...

When importing the package, Python
searches through the directories on
sys.path looking for the package
subdirectory.

Programming in Python

2/26/2024 ASC, National Centre for Physics 16

Packages

Users of the package can import individual
modules from the package, for example:
import Sound.Effects.echo
This loads the submodule Sound.Effects.echo
It must be referenced with its full name.
◼ Sound.Effects.echo.echofilter(input, output,

delay=0.7, atten=4)

An alternative way of importing the
submodule is:
◼ from Sound.Effects import echo

Programming in Python

2/26/2024 ASC, National Centre for Physics 17

Packages

This also loads the submodule echo, and makes it
available without its package prefix, so it can be used
as follows:

echo.echofilter(input, output, delay=0.7, atten=4)

Yet another variation is to import the desired function
or variable directly:
◼ from Sound.Effects.echo import echofilter

Again, this loads the submodule echo, but this makes
its function echofilter() directly available:

echofilter(input, output, delay=0.7, atten=4)

Programming in Python

2/26/2024 ASC, National Centre for Physics 18

Packages
Note that when using from package import item, the
item can be either a submodule (or subpackage) of
the package, or some other name defined in the
package, like a function, class or variable.

The import statement first tests whether the item is
defined in the package; if not, it assumes it is a
module and attempts to load it.

If it fails to find it, an ImportError exception is raised.

Contrarily, when using syntax like import
item.subitem.subsubitem, each item except for the
last must be a package; the last item can be a
module or a package but can’t be a class or function
or variable defined in the previous item.

Programming in Python

2/26/2024 ASC, National Centre for Physics 19

Intra-Package References

The submodules often need to refer to each other.
For example, the surround module might use the echo
module.
In fact, such references are so common that the import
statement first looks in the containing package before
looking in the standard module search path.
Thus, the surround module can simply use import echo
or from echo import echofilter.
If the imported module is not found in the current
package (the package of which the current module is a
submodule), the import statement looks for a top-level
module with the given name.

Programming in Python

2/26/2024 ASC, National Centre for Physics 20

Intra-Package References

When packages are structured into
subpackages (as with the Sound package in
the example), there’s no shortcut to refer to
submodules of sibling packages - the full
name of the subpackage must be used.

For example, if the module
Sound.Filters.vocoder needs to use the echo
module in the Sound.Effects package, it can
use from Sound.Effects import echo.

Programming in Python

2/26/2024 ASC, National Centre for Physics 21

Default Argument Values
For some functions, we may want to make
some parameters as optional.

In that case, we use default values if the user
does not want to provide values for such
parameters.

This is done with the help of default
argument values.

We can specify default argument values for
parameters by following the parameter name
in the function definition with the assignment
operator (=) followed by the default
argument.

Programming in Python

2/26/2024 ASC, National Centre for Physics 22

Using Default Argument Values

Demonstrating default arg. values

def say(s, times = 1):

print s * times

say('Hello')

say('World', 5)

Programming in Python

2/26/2024 ASC, National Centre for Physics 23

Using Default Argument Values

Only those parameters which are at the end of the
parameter list can be given default argument values.

i.e. we cannot have a parameter with a default
argument value before a parameter without a default
argument value, in the order of parameters declared,
in the function parameter list.

This is because values are assigned to the
parameters by position.

For example:
◼ def func(a, b=5) is valid

◼ but def func(a=5, b) is not valid.

Programming in Python

2/26/2024 ASC, National Centre for Physics 24

Keyword Arguments
If we have some functions with many
parameters and we want to specify only some
parameters, then we can give values for such
parameters by naming them.
i.e., this is called keyword arguments. We use
the name instead of the position which we
have been using all along.
This has two advantages:
◼ Using the function is easier since we do not need

to worry about the order of the arguments.

◼ We can give values to only those parameters
which we want, provided that the other
parameters have default argument values.

Programming in Python

2/26/2024 ASC, National Centre for Physics 25

Using Keyword Arguments

Demonstrating Keyword Arguments
def func(a, b=5, c=10):

print 'a is', a, 'and b is', b, 'and c is', c
func(3, 7)
func(25, c=24)
func(c=50, a=100)

Programming in Python

2/26/2024 ASC, National Centre for Physics 26

Lambda Forms

Python supports an interesting syntax
that lets you define one-line mini-
functions on the fly.

Borrowed from Lisp, these so-called
lambda functions can be used anywhere
a function is required.

Have a look at an example:

Programming in Python

2/26/2024 ASC, National Centre for Physics 27

Using Lambda Functions
>>> def f(x):
... return x*2
...
>>> f(3)
6
>>> g = lambda x: x*2
>>> g(3)
6
>>> (lambda x: x*2)(3)
6
>>> def f(n):
…return lambda x: x+n
>>> v = f(3)
>>> v(10)
13

Programming in Python

2/26/2024 ASC, National Centre for Physics 28

Using Lambda Functions
This is a lambda function that accomplishes
the same thing as the normal function above
it.
Note the abbreviated syntax here:
◼ there are no parentheses around the argument list
◼ and the return keyword is missing (it is implied,

since the entire function can only be one
expression).

◼ Also, the function has no name
◼ But it can be called through the variable it is

assigned to.

Programming in Python

2/26/2024 ASC, National Centre for Physics 29

Using Lambda Functions
We can use a lambda function without even assigning
it to a variable.
It just goes to show that a lambda is just an in-line
function.
To generalize, a lambda function is a function that:
◼ takes any number of arguments and returns the

value of a single expression
◼ lambda functions can not contain commands
◼ and they can not contain more than one

expression.
◼ Don't try to squeeze too much into a lambda

function; if needed something more complex,
define a normal function instead and make it as
long as wanted.

Programming in Python

2/26/2024 ASC, National Centre for Physics 30

Documentation Strings

Python has a nifty feature called
documentation strings which are usually
referred to by their shorter name docstrings.

DocStrings are an important tool that we
should make use of since it helps to
document the program better.

We can even get back the docstring from a
function at runtime i.e. when the program is
running.

Programming in Python

2/26/2024 ASC, National Centre for Physics 31

Using Documentation Strings
def printMax(x, y):

'''Prints the maximum of the two numbers.

The two values must be integers. If they are
floating point numbers, then they are converted to
integers.'''

x = int(x) # Convert to integers, if possible
y = int(y)
if x > y:

print x, 'is maximum'

else:
print y, 'is maximum'

printMax(3, 5)
print printMax.__doc__

Programming in Python

2/26/2024 ASC, National Centre for Physics 32

Using Documentation Strings

A string on the first logical line of a function is a
docstring for that function.
The convention followed for a docstring is a multi-line
string where the first line starts with a capital letter
and ends with a dot.
Then the second line is blank followed by any
detailed explanation starting from the third line.
It is strongly advised to follow such a convention for
all our docstrings for all our functions.
We access the docstring of the printMax function
using the __doc__ attribute of that function.

Programming in Python

2/26/2024 ASC, National Centre for Physics 33

Object-Oriented Framework

Two basic programming paradigms:

◼ Procedural

Organizing programs around functions or
blocks of statements which manipulate data.

◼ Object-Oriented

 combining data and functionality and wrap it
inside what is called an object.

Programming in Python

2/26/2024 ASC, National Centre for Physics 34

Object-Oriented Framework

Classes and objects are the two main aspects
of object oriented programming.

A class creates a new type.

Where objects are instances of the class.

An analogy is that we can have variables of
type int which translates to saying that
variables that store integers are variables
which are instances (objects) of the int class.

Programming in Python

2/26/2024 ASC, National Centre for Physics 35

Object-Oriented Framework

Objects can store data using ordinary
variables that belong to the object.
Variables that belong to an object or class are
called as fields.
Objects can also have functionality by using
functions that belong to the class. Such
functions are called methods.
This terminology is important because it helps
us to differentiate between a function which
is separate by itself and a method which
belongs to an object.

Programming in Python

2/26/2024 ASC, National Centre for Physics 36

Object-Oriented Framework

Remember, that fields are of two types

◼ they can belong to each instance (object) of the
class

◼ or they belong to the class itself.

◼ They are called instance variables and class
variables respectively.

A class is created using the class keyword.

The fields and methods of the class are listed
in an indented block.

Programming in Python

2/26/2024 ASC, National Centre for Physics 37

Python Scopes and Namespaces

A namespace is a mapping from names to
objects.

Most namespaces are currently implemented
as Python dictionaries, but that’s normally not
noticeable in any way.

Examples of namespaces are:
◼ the set of built-in names (functions such as abs(),

and built-in exception names)

◼ the global names in a module,

◼ and the local names in a function invocation.

Programming in Python

2/26/2024 ASC, National Centre for Physics 38

Python Scopes and Namespaces

A scope is a textual region of a Python
program where a namespace is directly
accessible.

“Directly accessible” here means that an
unqualified reference to a name
attempts to find the name in the
namespace.

Programming in Python

2/26/2024 ASC, National Centre for Physics 39

Python Scopes and Namespaces

Although scopes are determined
statically, they are used dynamically.

At any time during execution, there are
at least three nested scopes whose
namespaces are directly accessible:

◼ the innermost scope, which is searched
first, contains the local names; the
namespaces of any enclosing functions,

Programming in Python

2/26/2024 ASC, National Centre for Physics 40

Python Scopes and Namespaces

◼ which are searched starting with the
nearest enclosing scope; the middle scope,
searched next, contains the current
module’s global names;

◼ and the outermost scope (searched last) is
the namespace containing built-in names.

Programming in Python

2/26/2024 ASC, National Centre for Physics 41

The self

Class methods have only one specific
difference from ordinary functions

◼ they have an extra variable that has to be added
to the beginning of the parameter list

◼ but we do not give a value for this parameter
when we call the method.

◼ this particular variable refers to the object itself,

◼ and by convention, it is given the name self.

Programming in Python

2/26/2024 ASC, National Centre for Physics 42

The self
Although, we can give any name for this
parameter, it is strongly recommended that
we use the name self.

Any other name is definitely frowned upon.

There are many advantages to using a
standard name
◼ any reader of our program will immediately

recognize that it is the object variable i.e. the self
and even specialized IDEs (Integrated
Development Environments such as Boa
Constructor) can help us if we use this particular
name.

Programming in Python

2/26/2024 ASC, National Centre for Physics 43

The self

Python will automatically provide this value in
the function parameter list.

For example, if we have a class called
MyClass and an instance (object) of this
class called MyObject, then when we call a
method of this object as
MyObject.method(arg1, arg2), this is
automatically converted to
MyClass.method(MyObject, arg1, arg2).

This is what the special self is all about.

Programming in Python

2/26/2024 ASC, National Centre for Physics 44

The __init__ method

__init__ is called immediately after an
instance of the class is created.

It would be tempting but incorrect to call this
the constructor of the class.
◼ Tempting, because it looks like a constructor (by

convention, __init__ is the first method defined for
the class), acts like one (it's the first piece of code
executed in a newly created instance of the class),
and even sounds like one ("init" certainly suggests
a constructor-ish nature).

Programming in Python

2/26/2024 ASC, National Centre for Physics 45

The __init__ method

◼ Incorrect, because the object has already
been constructed by the time __init__ is
called, and we already have a valid
reference to the new instance of the class.

But __init__ is the closest thing we're
going to get in Python to a constructor,
and it fills much the same role.

Programming in Python

2/26/2024 ASC, National Centre for Physics 46

Creating a Class

class Person:

pass # A new block

p = Person()

print p

#<__main__.Person instance at 0x816a6cc>

Programming in Python

2/26/2024 ASC, National Centre for Physics 47

Object Methods

class Person:

def sayHi(self):

print 'Hello, how are you?'

p = Person()

p.sayHi()

This short example can also be
#written as Person().sayHi()

Programming in Python

2/26/2024 ASC, National Centre for Physics 48

Class and Object Variables
class Person:

'''Represents a person.'''

population = 0

def __init__(self, name):
'''Initializes the person.'''

self.name = name

print '(Initializing %s)' % self.name

When this person is created, # he/she adds to the population

Person.population += 1

def sayHi(self):
'''Greets the other person. Really, that's all it does.'''

print 'Hi, my name is %s.' % self.name

Programming in Python

2/26/2024 ASC, National Centre for Physics 49

Class and Object Variables
def howMany(self):

'''Prints the current population.'''
There will always be at least one person
if Person.population == 1:

print 'I am the only person here.'

else:
print 'We have %s persons here.' % Person.population

adeel = Person(‘Adeel')
adeel.sayHi()
adeel.howMany()
kalam = Person('Abdul Kalam')
kalam.sayHi()
kalam.howMany()
adeel.sayHi()
adeel.howMany()

Programming in Python

2/26/2024 ASC, National Centre for Physics 50

Iterators

By now, you’ve probably noticed that most
container objects can looped over using a for
statement:
◼ for element in [1, 2, 3]:

print element

◼ for element in (1, 2, 3):
print element

◼ for key in {‘one’:1, ‘two’:2}:
print key

◼ for char in “123”:
print char

Programming in Python

2/26/2024 ASC, National Centre for Physics 51

Iterators

This style of access is clear, concise, and convenient.
The use of iterators pervades and unifies Python.
Behind the scenes, the for statement calls iter() on
the container object.
The function returns an iterator object that defines
the method next() which accesses elements in the
container one at a time.
When there are no more elements, next() raises a
StopIteration exception which tells the for loop to
terminate.
This example shows how it all works:

Programming in Python

2/26/2024 ASC, National Centre for Physics 52

Iterators

>>> s = ’abc’

>>> it = iter(s)

>>> it

<iterator object at 0x00A1DB50>

>>> it.next()

’a’

>>> it.next()

’b’

Programming in Python

2/26/2024 ASC, National Centre for Physics 53

Iterators

>>> it.next()

’c’

>>> it.next()

Traceback (most recent call last):

File "<pyshell#6>", line 1, in -toplevel

it.next()

StopIteration

	Slide 1: Programming in Python – Lecture#2
	Slide 2: Scheme of Lecture
	Slide 3: Modules
	Slide 4: The sys Module
	Slide 5: Using sys module
	Slide 6: The os module
	Slide 7: Using os module
	Slide 8: The Module Search Path
	Slide 9: The Module Search Path
	Slide 10: Byte-Compiled .pyc files
	Slide 11: The from.. import statement
	Slide 12: Packages
	Slide 13: Packages
	Slide 14: Packages
	Slide 15: Packages
	Slide 16: Packages
	Slide 17: Packages
	Slide 18: Packages
	Slide 19: Intra-Package References
	Slide 20: Intra-Package References
	Slide 21: Default Argument Values
	Slide 22: Using Default Argument Values
	Slide 23: Using Default Argument Values
	Slide 24: Keyword Arguments
	Slide 25: Using Keyword Arguments
	Slide 26: Lambda Forms
	Slide 27: Using Lambda Functions
	Slide 28: Using Lambda Functions
	Slide 29: Using Lambda Functions
	Slide 30: Documentation Strings
	Slide 31: Using Documentation Strings
	Slide 32: Using Documentation Strings
	Slide 33: Object-Oriented Framework
	Slide 34: Object-Oriented Framework
	Slide 35: Object-Oriented Framework
	Slide 36: Object-Oriented Framework
	Slide 37: Python Scopes and Namespaces
	Slide 38: Python Scopes and Namespaces
	Slide 39: Python Scopes and Namespaces
	Slide 40: Python Scopes and Namespaces
	Slide 41: The self
	Slide 42: The self
	Slide 43: The self
	Slide 44: The __init__ method
	Slide 45: The __init__ method
	Slide 46: Creating a Class
	Slide 47: Object Methods
	Slide 48: Class and Object Variables
	Slide 49: Class and Object Variables
	Slide 50: Iterators
	Slide 51: Iterators
	Slide 52: Iterators
	Slide 53: Iterators

