QCD, a practical introduction.

Bilal Masud

Centre for High Energy Physics
Punjab University
$s=1$
$s=-1$

$$
q=-1 \quad q=0
$$

(with "strange" strangeness conserved experimentally as "associated production") was explained as.....

with $8 \oplus 1=3 \otimes \overline{3}$

Mesons

Associated Production....

$$
\pi^{-}+p \rightarrow K^{0}+\Lambda^{0}
$$

Explained as
$d \bar{u}+u u d \rightarrow d \bar{s}+s u d$

Early problems,
 3 identical Fermions....

Colour Degree of Freedom...

$$
\begin{gathered}
\sigma_{0}=\frac{4 \pi \alpha^{2}}{3 s} \cdot \sum_{\text {color }} \cdot \sum_{f} e_{f}^{2}=\frac{4 \pi \alpha^{2}}{3 s} \cdot 3 \sum_{f} e_{f}^{2} \\
\sigma_{0}=\frac{4 \pi \alpha^{2}}{3 Q^{2}} \sum_{q} e_{q}^{2} ; \quad R=\frac{\sigma\left(e^{+} e^{-} \rightarrow q \bar{q}\right)}{\sigma\left(e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}\right)}=\sum_{q} e_{q}^{2}=\frac{2}{3}
\end{gathered}
$$

Motivation for Colour SU(3)

\square Consider the ratio R of the $e^{+} e^{-}$total hadronic cross section to the cross section for the production of a pair of point-like, charge-one objects such as muons.

- The virtual photon excites all electrically charged constituent-anticonstituent pairs from the vacuum.

At low energy the virtual photon excites only the u, d and s quarks, each of which occurs in three colours.

$$
\begin{aligned}
R & =N_{c} \sum_{i} Q_{i}^{2} \\
& =3\left[\left(\frac{2}{3}\right)^{2}+\left(-\frac{1}{3}\right)^{2}+\left(-\frac{1}{3}\right)^{2}\right]=2 .
\end{aligned}
$$

- For centre-of-mass energies $E_{\mathrm{cm}} \geq 10 \mathrm{GeV}$, one is above the threshold for the production of pairs of c and b quarks, and so

$$
R=3\left[2 \times\left(\frac{2}{3}\right)^{2}+3 \times\left(-\frac{1}{3}\right)^{2}\right]=\frac{11}{3}
$$

Data

The data on R are in reasonable agreement with the prediction of the three colour model.

$$
R_{e^{+} e^{-}}=\frac{\sigma\left(e^{+} e^{-} \rightarrow \text { hadrons }\right)}{\sigma\left(e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}\right)}
$$

The present situation....

Colour $\operatorname{SU}(3)$ and spectroscopy

- The observed baryons are interpreted as three-quark states.
- The quark constituents of the baryons are forced to have half-integral spin in order to account for the spins of the low-mass baryons.
The quarks in the spin- $\frac{3}{2}$ baryons are then in a symmetrical state of space, spin and $\mathrm{SU}(3)_{f}$ degrees of freedom.
\square However the requirements of Fermi-Dirac statistics imply the total antisymmetry of the wave function.
We introduce the colour degree of freedom: a colour index a with three possible values (usually called red, green, blue for $a=1,2,3$) is carried by each quark.
The baryon wave functions are totally antisymmetric in this new index.

Quark	Charge	Mass	Baryon Number	Isospin
u	$+\frac{2}{3}$	$\sim 4 \mathrm{MeV}$	$\frac{1}{3}$	$+\frac{1}{2}$
d	$-\frac{1}{3}$	$\sim 7 \mathrm{MeV}$	$\frac{1}{3}$	$-\frac{1}{2}$
c	$+\frac{2}{3}$	$\sim 1.5 \mathrm{GeV}$	$\frac{1}{3}$	0
s	$-\frac{1}{3}$	$\sim 135 \mathrm{MeV}$	$\frac{1}{3}$	0
t	$+\frac{2}{3}$	$\sim 172 \mathrm{GeV}$	$\frac{1}{3}$	0
b	$-\frac{1}{3}$	$\sim 5 \mathrm{GeV}$	$\frac{1}{3}$	0

table. Within the $q \bar{q}$ model, it is especially hard to find a place for the first two of these f mesons and for one of the $\eta(1440)$ peaks. See the "Note on Non $-q \bar{q}$ Mesons" at the end of the Meson Listings.

$N^{2 S+1} L_{J}$	$J^{P C}$	$\begin{gathered} u \bar{d}, u \bar{u}, d \bar{d} \\ I=1 \end{gathered}$	$\begin{gathered} u \bar{u}, d \bar{d}, s \bar{s} \\ I=0 \end{gathered}$	$\begin{gathered} c \bar{c} \\ I=0 \end{gathered}$	$\begin{gathered} b \bar{b} \\ I=0 \end{gathered}$	$\begin{gathered} \bar{s} u, \overline{\bar{s} d} \\ I=1 / 2 \end{gathered}$	$\begin{gathered} c \bar{u}, c \bar{d} \\ I=1 / 2 \end{gathered}$	$\begin{gathered} c \bar{s} \\ I=0 \end{gathered}$	$\begin{gathered} \overline{b u}, \bar{b} d \\ I=1 / 2 \end{gathered}$	$\begin{gathered} b_{0} \\ I=0 \end{gathered}$	$\begin{gathered} \bar{b} c \\ I=0 \end{gathered}$
$1^{1} S_{0}$	0^{-+}	π	$\boldsymbol{\eta}, \boldsymbol{\eta}^{\prime}$	$\eta_{c}(1 S)$	$m_{l}(1.5)$	K	D	D.	B	B_{1}	$\boldsymbol{B}_{\text {c }}$
$1^{3} S_{1}$	1^{--}	ρ	ω, ϕ	$J / \psi(1 S)$	$r(1 S)$	$K^{*}(892)$	$D^{*}(2010)$	D_{*}^{*}	B^{*}	B^{*}	
$1^{1} P_{1}$	1^{+-}	$b_{1}(1235)$	$h_{1}(1170), h_{1}(1380)$	$h_{e}(1 P)$		$K_{1 B}{ }^{\dagger}$	$D_{1}(2420)$	$D_{A 1}(2536)$			
$1^{3} P_{0}$	0^{++}	$a_{0}(1450)^{*}$	$f_{0}(1370)^{*}, \overline{f_{0}(1710)^{*}}$	$\chi_{00}(1 P)$	$\chi_{60}(1 P)$	$K_{0}^{*}(1430)$					
$1^{3} P_{1}$	1^{++}	$a_{1}(1260)$	$f_{1}(1285), f_{1}(1420)$	$\chi_{c 1}(1 P)$	$\chi_{\Delta_{11}(1 P)}$	$K_{1 A}{ }^{\dagger}$					
$1^{3} P_{2}$	2^{++}	$a_{2}(1320)$	$f_{2}(1270), f_{2}^{\prime}(1525)$	$\chi_{c 2}(1 P)$	$\chi_{62}(1 P)$	$K_{2}^{\prime}(1430)$	$D_{2}^{*}(2460)$				
$1^{1} D_{2}$	2^{-+}	$\pi_{2}(1670)$	$\eta_{2}(1645), \eta_{2}(1870)$			$K_{2}(1770)$					\%
$1^{3} D_{1}$	1^{--}	$\rho(1700)$	$\omega(1650)$	$\psi(3770)$		$\boldsymbol{K}^{*}(\mathbf{1 6 8 0})^{\frac{1}{4}}$					
$1^{3} D_{2}$	$2-$					$K_{2}(1820)$					
$1^{3} D_{3}$	3^{--}	$\rho_{3}(1690)$	$\omega_{3}(1670), \phi_{3}(1850)$			$\left.K_{3} \mathbf{(1 7 8 0}\right)$					
$1^{3}{ }_{5}$	4++	$a_{4}(2040)$	$f_{4}(2050), f_{4}(2220)$			K_{4}^{*} (2045)					
$2^{1} S_{0}$	0^{-+}	$\pi(1300)$	$\eta(1295), \eta(1440)$	$\boldsymbol{n c}_{c}(2 S)$		$K(1460)$					
$2^{3} S_{1}$	1--	$p(1450)$	$\omega(1420), \phi(1680)$	$\psi(2 S)$	$\boldsymbol{r}(2 S)$	$K^{*}(1410)^{\frac{1}{4}}$					
$2^{3}{ }^{2}$	2^{++}	$a_{3}(1700)$	$f_{2}(1950), f_{2}(2010)$		$\chi_{62}(2 P)$	$K_{2}^{*}(1980)$					
$3^{1} S_{0}$	0^{-+}	π (1800)	$\eta(1760)$			$K(1830)$					

* See our scalar minireview in the Particle Listings. The candidates for the $I=1$ states are $a_{0}(980)$ and $a_{0}(1450)$, while for $I=0$ they are: $f_{0}(600), f_{0}(980), f_{0}(1370)$, and $f_{0}(1710)$. The light scalars are problematic, since there may be two poles for one $q \bar{q}$ state and $a_{0}(980)$, $f_{0}(980)$ may be $K K$ bound states.
t The $K_{1 A}$ and $K_{1 B}$ are nearly equal (45°) mixes of the $K_{1}(1270)$ and $K_{1}(1400)$.

Not only history: Parton model

- sub-structure and related differential cross section

was (earlier) interpreted as...

Lepton Hadron (Electron-Proton) Scattering (to be compared, through QED, with point-like electron-muon scattering)

2. DIS: Structure Functions and Scaling

Photon exchange

$$
\begin{aligned}
A_{e+N \rightarrow e+X}\left(\lambda, \lambda^{\prime}, \sigma ; q\right)= & \bar{u}_{\lambda^{\prime}}\left(k^{\prime}\right)\left(-i e \gamma_{\mu}\right) u_{\lambda}(k) \\
& \times \frac{-i g^{\mu \mu^{\prime}}}{q^{2}} \\
& \times\langle X| e J_{\mu^{\prime}}^{\mathrm{EM}}(0)|p, \sigma\rangle
\end{aligned}
$$

$$
\begin{aligned}
p^{v} & =(m, \overrightarrow{0}), \\
k^{\mu} & =(E, \vec{k})=(E, 0,0, k), \\
k^{\prime \mu} & =\left(E^{\prime}, \vec{k}^{\prime}\right)=\left(E^{\prime}, k^{\prime} \sin \theta, 0, k^{\prime} \cos \theta\right) \\
v & =\frac{p \cdot q}{m}=\left(E-E^{\prime}\right) \\
x & =\frac{-q^{2}}{2 m v} \equiv \frac{Q^{2}}{2 m v}=\frac{Q^{2}}{2 m\left(E-E^{\prime}\right)}
\end{aligned}
$$

The leptonic tensor:

$$
\begin{aligned}
& L^{\mu \nu}=\frac{e^{2}}{8 \pi^{2}} \sum_{\lambda, \lambda^{\prime}}\left(\bar{u}_{\lambda^{\prime}}\left(k^{\prime}\right) \gamma^{\mu} u_{\lambda}(k)\right)^{*}\left(\bar{u}_{\lambda^{\prime}}\left(k^{\prime}\right) \gamma^{\nu} u_{\lambda}(k)\right) \\
& =\frac{e^{2}}{2 \pi^{2}}\left(k^{\mu} k^{\prime \nu}+k^{\prime \mu} k^{\nu}-g^{\mu \nu} k \cdot k^{\prime}\right)
\end{aligned}
$$

- The hadronic tensor:

$$
W_{\mu \nu}=\frac{1}{8 \pi} \sum_{\sigma, X}\langle X| J_{\mu}|p, \sigma\rangle^{*}\langle X| J_{\nu}|p, \sigma\rangle(2 \pi)^{4} \delta^{4}\left(p_{X}-p-q\right)
$$

And the cross section:

$$
2 \omega_{k^{\prime}} \frac{d \sigma}{d^{3} k^{\prime}}=\frac{1}{s\left(q^{2}\right)^{2}} L^{\mu \nu} W_{\mu \nu}
$$

$W_{\mu \nu}$ has sixteen components,
but known properties of the strong interactions constrain $W_{\mu \nu}$. .

$$
\begin{aligned}
& \partial^{\mu} J_{\mu}^{\mathrm{EM}}(x)=0 \\
& \quad \Rightarrow\langle X| \partial^{\mu} J_{\mu}^{\mathrm{EM}}(x)|p\rangle=0 \\
& \quad \Rightarrow\left(p_{X}-p\right)^{\mu}\langle X| J_{\mu}^{\mathrm{EM}}(x)|p\rangle=0 \\
& \quad \Rightarrow q^{\mu} W_{\mu \nu}=0
\end{aligned}
$$

$W_{\mu \nu}=-\left(g_{\mu \nu}-\frac{q_{\mu} q_{\nu}}{q^{2}}\right) W_{1}\left(\nu, Q^{2}\right)+\left(p_{\mu}-q_{\mu} \frac{p \cdot q}{q^{2}}\right)\left(p_{v}-q_{v} \frac{p . q}{q^{2}}\right) W_{2}\left(\nu, Q^{2}\right)$

$$
F_{1}=M W_{1} \quad F_{2}=v W_{2}
$$

Point-Like Scattering

$p_{X}{ }^{2}=p^{2}=M^{2}$ implies $\frac{Q^{2}}{2 M \nu}=1$
Q^{2} and V are not independent
And if there is a point-like parton i inside a proton carrying a fraction f of the proton's four-momentum

$$
\begin{aligned}
& p_{i}{ }^{\mu} \approx f p^{\mu} \quad Q^{2} \text { and } \quad V \text { are not independent } \\
& \text { Deep Inelastic Scattering } \\
& m_{i} \approx f M \\
& (q+f p)^{2}=m_{i}^{2} \\
& f=\frac{Q^{2}}{2 M \nu} \equiv x \\
& \text { in Parton Model }
\end{aligned}
$$

Probability distributions $f(x)$ of the fraction x

$$
W_{2}\left(v, Q^{2}\right)=\sum_{i} \int_{0}^{1} d x f_{i}(x) e_{i}^{2} \delta\left(v-\frac{Q^{2}}{2 M x}\right)
$$

W_{2} for a point-like parton (like a muon in QED) is calculated, using the following, to be

$$
e_{i}^{2} \delta\left(v-\frac{Q^{2}}{2 M x}\right)
$$

In the lab frame:
$L_{\mu \nu} W^{\mu \nu}=4 E E^{\prime} \cos ^{2} \theta / 2\left[W_{2}\left(\nu, q^{2}\right)+2 W_{1}\left(\nu, q^{2}\right) \tan ^{2} \theta / 2\right]$
electron-muon elastic scattering:
$\frac{\mathrm{d}^{2} \sigma}{\mathrm{~d} E^{\prime} \mathrm{d} \Omega}=\frac{\alpha^{2} \cos ^{2} \theta / 2}{4 E^{2} \sin ^{4} \theta / 2}\left[1-\frac{q^{2}}{2 M^{2}} \tan ^{2} \theta / 2\right] \delta\left(\nu+\frac{q^{2}}{2 M}\right)$

$$
\frac{\mathrm{d}^{2} \sigma}{\mathrm{~d} E^{\prime} \mathrm{d} \Omega}=\frac{\alpha^{2} \cos ^{2} \theta / 2}{4 E^{2} \sin ^{4} \theta / 2}\left[W_{2}\left(\nu, q^{2}\right)+2 W_{1}\left(\nu, q^{2}\right) \tan ^{2} \theta / 2\right]
$$

The above means the structure functions W_{2} and F_{2} are functions of the Bjorken x only. This is called the Bjorken scaling

Basic Parton Model Relation

$$
\sigma_{\mathrm{eh}}(p, q)=\sum_{\text {partons } a} \int_{0}^{1} d \xi \hat{\sigma}_{e a}^{\mathrm{el}}(\xi p, q) \phi_{a / h}(\xi)
$$

- where: $\sigma_{e h}$ is the cross section for

$$
e(k)+h(p) \rightarrow e\left(k^{\prime}=k-q\right)+X(p+q)
$$

- and $\hat{\sigma}_{e a}^{\mathrm{el}}(x p, q)$ is the elastic cross section for $e(k)+a(\xi p) \rightarrow e\left(k^{\prime}-q\right)+a(\xi p+q)$ which sets $(\xi p+q)^{2}=0 \rightarrow \xi=-q^{2} / 2 p \cdot q \equiv x$.
- and $\phi_{a / h}(x)$ is the distribution of parton a in hadron \mathbf{h}, the "probability for a parton of type a to have momentum $x p$ ".

Artist View of a Proton

The proton is not an elementary particle. It's a mess!

When we collide protons on anti-protons at the Tevatron or soon protons on protons at the LHC, we need to know the momentum distributions (parton distribution functions) of the quarks and gluons inside the proton.

$$
\begin{array}{rr}
u^{p}(x)=d^{n}(x) \equiv u(x) & \bar{u}^{p}(x)=\bar{d}^{n}(x) \equiv \bar{u}(x) \\
d^{p}(x)=u^{n}(x) \equiv d(x) & \bar{d}^{p}(x)=\bar{u}^{n}(x) \equiv \bar{d}(x) \\
s^{p}(x)=s^{n}(x) \equiv s(x) & \bar{s}^{p}(x)=\bar{s}^{n}(x) \equiv \bar{s}(x)
\end{array}
$$

Sea Quarks

There is a sea of virtual quark - antiquark pairs inside the proton.

$$
u_{\text {sea }}(x)=\bar{u}_{\text {sea }}(x), \quad d_{\text {sea }}(x)=\bar{d}_{\text {sea }}(x), \quad s_{\text {sea }}(x)=\bar{s}_{\text {sea }}(x)
$$

The c, b and t quarks are too heavy to contribute much.

$$
u(x)=u_{\mathrm{val}}(x)+u_{\text {sea }}(x) \quad d(x)=d_{\mathrm{val}}(x)+d_{\mathrm{sea}}(x)
$$

$$
\begin{array}{ll}
\text { Sum Rules: } & \int[u(x)-\bar{u}(x)] \mathrm{d} x=2 \\
& \int[d(x)-\bar{d}(x)] \mathrm{d} x=1 \\
& \int[s(x)-\bar{s}(x)] \mathrm{d} x=0
\end{array}
$$

Fig. 9.9 The quark structure functions extracted from an analysis of deep inelastic scattering data. Figure (b) shows the total valence and sea quark contributions to the structure of the proton.

When sea contribution cancels....

Three bound valence
quarks + somete sherv

Only QED!

Here, we need QCD!

QCD effects modify all above as...

- 1-Quark-gluon vertex (like electron-photon vertex but multiplied with "colour factors")

The 3-fold colour degree of freedom for quarks and antiquarks, combined with 8 -fold "bicolour" degree of freedom for a gluon means that the strength of the Quark-gluon vertex is to be chosen from $3 * 3 * 8=72$ numbers, read as elements of $8 \mathrm{SU}(3)$ generator lambda matrices, each of order $3 * 3$

$$
\begin{gathered}
\left(D_{\mu}\right)_{a b}=\partial_{\mu} \delta_{a b}+i g\left(t^{B} G_{\mu}^{B}\right)_{a b} \\
{\left[t^{B}, t^{C}\right]=i f^{B C D} t^{D}}
\end{gathered}
$$

$$
\begin{aligned}
& \mathcal{L}_{Q C D}=-\frac{1}{4} F_{\alpha \beta}^{B} F^{B, \alpha \beta}+\sum_{f} \bar{q}_{f, a}\left(i D_{\mu} \gamma^{\mu}-m_{f}\right)_{a b} q_{f, b} \\
& F_{\alpha \beta}^{B}=\left[\partial_{\alpha} G_{\beta}^{B}-\partial_{\beta} G_{\alpha}^{B}-g f^{B C D} G_{\alpha}^{C} G_{\beta}^{D}\right] .
\end{aligned}
$$

Quark $\alpha_{\mathrm{a}} \longrightarrow \beta_{\mathrm{b}} \frac{\mathbf{i} \delta_{\text {ab }}}{\left(\gamma^{\mu} \mathbf{q}_{\mu}-\mathbf{m}\right)_{\alpha \beta}}=\frac{\mathbf{i}^{\left(\gamma^{\mu} \mathbf{q}_{\mu}+\mathbf{m}\right)_{\alpha \beta}} \delta_{\text {ab }}}{\mathbf{q}^{2}-\mathbf{m}^{2}}$
Gluon ${\underset{\mu}{\mu}}_{A}^{O} \underbrace{B}_{v} \frac{-i}{q^{2}} \delta_{A B}\left[g^{\mu v}-(1-\lambda) \frac{q^{\mu} q^{v}}{q^{2}}\right]$

Effects of Quark-Gluon vertex

Meaning a) three jet events in addition to the two-jet events expected from the "QED portion"....

Or....

For a

comparison: The QED portion

For $\mathrm{e}^{+} \mathrm{e}^{-}$:

And in nucleon-nucleon collisions:

Mean: 2.32
Min: 0.00933
Max: 384

b) diagrams like

Figure 15.12. Virtual photon processes entering into figure 15.9.

Figure 15.13. The first process of figure 15.12 , viewed as a contribution to e^{-}-nucleon scattering.

explain "violation of Bjorken scaling"

Also Gluon-Gluon vertices

Reversing signs of loop contribution to the "running of coupling constant" resulting from RENORMALIZATION: in QCD coupling constant decreases with larger momentum transfers....

$$
\begin{aligned}
& \text { bele lellele lell } \\
& \alpha_{s}(\mu) \sim \alpha_{s}(M)-\frac{\beta_{0}}{4 \pi} \ln \left[\frac{\mu^{2}}{M^{2}}\right] \alpha_{s}^{2}(M)+\left(\frac{\beta_{0}}{4 \pi}\right)^{2} \ln ^{2}\left[\frac{\mu^{2}}{M^{2}}\right] \alpha_{s}^{3}(M)+\ldots, \\
& \beta_{0}=\frac{11 C_{A}-2 n_{f}}{3}=11-\frac{2}{3} n_{f} . \\
& \alpha_{s}(\mu)=\frac{\alpha_{s}(M)}{1+\left(\beta_{0} / 4 \pi\right) \alpha_{s}(M) \ln \left[\frac{\mu^{2}}{M^{2}}\right]}
\end{aligned}
$$

Compare with QED or electric Plasmas...(trend opposite to QCD)

Again electric charge effects, not of the Colour charge

Back to QCD....

The running $\alpha_{S}\left(Q^{2}\right)$

- non-Abelian character of theory leads to :

$$
\alpha_{S}\left(Q^{2}\right)=\frac{12 \pi}{\left(11 N_{c}-2 N_{f}\right) \ln \left(Q^{2} / \Lambda^{2}\right)}
$$

- this exhibits asymptotic freedom as long as $N_{f}<17$
- on the other side... confinement

Bino Maiheu

Horizontal is the distance scaled probed and vertical is the Charge strength....

Continued: QCD effects modify all above (QED portion) as...

- 2-Quarks and gluons do not reach detector but only hadrons....

2a-Quarks and gluons remain inside hadrons:

Confinement

Asymptotic freedom: $Q \bar{Q}$ becomes increasingly QED-like at short distances.

QED:

but at long distances, gluon self-interaction makes field lines attract each other:

QCD:

\rightarrow linear potential \rightarrow confinement
Event Generator Physics 3

Interquark Potential

Can measure from quarkonia spectra:

Event Generator Physics 3
or from lattice QCD:

$\kappa \approx 1 \mathrm{GeV} / \mathrm{fm}$.
$V(r)=\kappa r$

The Lund String Model

Start by ignoring gluon radiation:
$e^{+} e^{-}$annihilation $=$pointlike source of $q \bar{q}$ pairs
Intense chromomagnetic field within string $\rightarrow q \bar{q}$ pairs created by tunnelling. Analogy with QED:

$$
\frac{d(\text { Probability })}{d x d t} \propto \exp \left(-\pi m_{q}^{2} / \kappa\right)
$$

Expanding string breaks into mesons long before yo-yo point.

How can you calculate with large coupling....

The S-matrix expansion in powers of coupling or H_{l}

$$
\begin{equation*}
s=\sum_{n=0}^{\infty} \frac{(-\mathrm{i})^{n}}{n!} \int \ldots \int \mathrm{d}^{4} x_{1} \mathrm{~d}^{4} x_{2} \ldots \mathrm{~d}^{4} x_{n} \mathrm{~T}\left\{\mathscr{H}_{1}\left(x_{1}\right) \mathscr{H}_{1}\left(x_{2}\right) \ldots \mathscr{H}_{1}\left(x_{n}\right)\right\}, \tag{6.23}
\end{equation*}
$$

Can be written as

$$
S=T \exp \left[-i \int d^{4} x \mathcal{H}_{I}(x)\right]
$$

And remains well defined no matter how large is H_{l}

Path Integrals...

$$
\langle f \mid i\rangle=\int[d x(t)] e^{i s / h}=\int\left(\Pi d x_{i}\right) e^{i S / h}
$$

Challenges for QCD: why only colour singlets and why clustering....

