QCD, a practical introduction.

Bilal Masud Centre for High Energy Physics Punjab University

$$q = -1 \qquad q = 0$$

(with "strange" strangeness conserved experimentally as "associated production") was explained as.....

with $8 \oplus 1 = 3 \otimes \overline{3}$

Associated Production....

$\pi^- + p \longrightarrow K^0 + \Lambda^0$

Explained as

 $d\overline{u} + uud \rightarrow d\overline{s} + sud$

Early problems, 3 identical Fermions....

Colour Degree of Freedom...

Motivation for Colour SU(3)

- Consider the ratio R of the e^+e^- total hadronic cross section to the cross section for the production of a pair of point-like, charge-one objects such as muons.
- The virtual photon excites all electrically charged constituent-anticonstituent pairs from the vacuum.

At low energy the virtual photon excites only the *u*, *d* and *s* quarks, each of which occurs in three colours.

$$R = N_c \sum_{i} Q_i^2$$

= $3 \left[\left(\frac{2}{3}\right)^2 + \left(-\frac{1}{3}\right)^2 + \left(-\frac{1}{3}\right)^2 \right] = 2$.

■ For centre-of-mass energies E_{cm} ≥ 10 GeV, one is above the threshold for the production of pairs of c and b quarks, and so

$$R = 3\left[2 \times \left(\frac{2}{3}\right)^2 + 3 \times \left(-\frac{1}{3}\right)^2\right] = \frac{11}{3}$$

Parton Model and perturbative QCDLecture I: QCD, asymptotic freedom and infrared safety - p.3/3/

Data

The data on R are in reasonable agreement with the prediction of the three colour model.

$$R_{e^+e^-} = \frac{\sigma(e^+e^- \to \text{hadrons})}{\sigma(e^+e^- \to \mu^+\mu^-)}$$

Parton Model and perturbative QCDLecture I: QCD, asymptotic freedom and infrared safety - p.4/3:

The present situation....

Colour SU(3) and spectroscopy

- The observed baryons are interpreted as three-quark states.
- The quark constituents of the baryons are forced to have half-integral spin in order to account for the spins of the low-mass baryons.
- The quarks in the spin-³/₂ baryons are then in a symmetrical state of space, spin and SU(3)_f degrees of freedom.
- However the requirements of Fermi-Dirac statistics imply the total antisymmetry of the wave function.
- We introduce the colour degree of freedom: a colour index a with three possible values (usually called red, green, blue for a = 1, 2, 3) is carried by each quark.
- The baryon wave functions are totally antisymmetric in this new index.

Quark	Charge	Mass	Baryon Number	Isospin	
u	$+\frac{2}{3}$	$\sim 4 \; \mathrm{MeV}$	$\frac{1}{3}$	$+\frac{1}{2}$	
d	$-\frac{1}{3}$	$\sim 7~{ m MeV}$	$\frac{1}{3}$	$-\frac{1}{2}$	
c	$+\frac{2}{3}$	$\sim 1.5~{\rm GeV}$	$\frac{1}{3}$	0	
8	$-\frac{1}{3}$	$\sim 135~{\rm MeV}$	$\frac{1}{3}$	0	
t	$+\frac{2}{3}$	$\sim 172~{\rm GeV}$	$\frac{1}{3}$	0	
b	$-\frac{1}{3}$	$\sim 5~{ m GeV}$	$\frac{1}{3}$	0	

Parton Model and perturbative QCDLecture I: QCD, asymptotic freedom and infrared safety - p.5/34

table. Within the $q\bar{q}$ model, it is especially hard to find a place for the first two of these f mesons and for one of the $\eta(1440)$ peaks. See the "Note on Non- $q\bar{q}$ Mesons" at the end of the Meson Listings.

$N^{2S+1}L_J$	JPC	$u\overline{d}, u\overline{u}, d\overline{d}$ I = 1	$u\overline{u}, d\overline{d}, s\overline{s}$ I = 0	$c\bar{c}$ I = 0	$b\overline{b}$ I = 0	$\overline{s}u, \overline{s}d$ I = 1/2	$c\overline{u}, c\overline{d}$ I = 1/2	$c\overline{s}$ I = 0	$\overline{b}u, \overline{b}d$ I = 1/2	\overline{bs} I = 0	$\overline{b}c$ I = 0
1 ¹ S ₀	0-+	π	η, η'	$\eta_c(1S)$	$\eta_b(1S)$	K	D	D,	B	B,	Bc
1 351	1	ρ	ω, φ	$J/\psi(1S)$	T (1S)	K*(892)	D*(2010)	D;	B *	B*	
1 ¹ P ₁	1+-	b1(1235)	h1(1170), h1(1380)	$h_c(1P)$	- 6-	K _{1B} [†]	D1(2420)	D _{s1} (2536)			
1 ³ P ₀	0++	a0(1450)*	fo(1370)*, fo(1710)*	$\chi_{c0}(1P)$	$\chi_{b0}(1P)$	$K_0^*(1430)$					
1 ³ P ₁	1++	a1(1260)	$f_1(1285), f_1(1420)$	$\chi_{c1}(1P)$	$\chi_{b1}(1P)$	K _{1A} †			a l		
1 ³ P ₂	2++	a2(1320)	$f_2(1270), f'_2(1525)$	$\chi_{c2}(1P)$	$\chi_{b2}(1P)$	K2(1430)	D [*] ₂ (2460)				
1 ¹ D ₂	2-+	$\pi_2(1670)$	$\eta_2(1645), \eta_2(1870)$			K ₂ (1770)		112	1	1	0.1
1 ³ D ₁	1	ρ(1700)	ω(1650)	\$\$(3770)		K*(1680) [‡]				1	
1 ³ D ₂	2		4			K ₂ (1820)			1	1	
1 ³ D ₃	3	ρ ₃ (1690)	$\omega_3(1670), \phi_3(1850)$			K ₃ (1780)		1.18	1 0		
1 ³ F ₄	4++	a4(2040)	$f_4(2050), f_4(2220)$	1 1 1 1 1 1	$G_{\pi}(k)$	K ₄ (2045)				~	
2 ¹ S ₀	0-+	π(1300)	η(1295), η(1440)	$\eta_c(2S)$		K(1460)	-				
2 ³ S ₁	1	p(1450)	$\omega(1420), \phi(1680)$	$\psi(2S)$	Y(2S)	K*(1410) [‡]					
2 ³ P ₂	2++	a2(1700)	$f_2(1950), f_2(2010)$	1.2.5	X 62(2P)	K [*] ₂ (1980)					~
3 ¹ S ₀	0-+	π(1800)	η(1760)	2(k) -	1	K(1830)					

* See our scalar minireview in the Particle Listings. The candidates for the I = 1 states are $a_0(980)$ and $a_0(1450)$, while for I = 0 they are: $f_0(600)$, $f_0(980)$, $f_0(1370)$, and $f_0(1710)$. The light scalars are problematic, since there may be two poles for one $q\bar{q}$ state and $a_0(980)$, $f_0(980)$ may be $K\bar{K}$ bound states.

[†] The K_{1A} and K_{1B} are nearly equal (45°) mixes of the $K_1(1270)$ and $K_1(1400)$.

Not only history: Parton model

• sub-structure and related differential cross section

was (earlier) interpreted as...

Lepton Hadron (Electron-Proton) Scattering (to be compared, *through QED*, with point-like electron-muon scattering)

2. DIS: Structure Functions and Scaling Photon exchange e(k')

$$A_{e+N \to e+X}(\lambda, \lambda', \sigma; q) = \bar{u}_{\lambda'}(k')(-ie\gamma_{\mu})u_{\lambda}(k)$$
$$\times \frac{-ig^{\mu\mu'}}{q^{2}}$$
$$\times \langle X | eJ_{\mu'}^{\text{EM}}(0) | p, \sigma \rangle$$

The leptonic tensor:

$$L^{\mu\nu} = \frac{e^2}{8\pi^2} \sum_{\lambda,\lambda'} (\bar{u}_{\lambda'}(k')\gamma^{\mu}u_{\lambda}(k))^* (\bar{u}_{\lambda'}(k')\gamma^{\nu}u_{\lambda}(k))$$
$$= \frac{e^2}{2\pi^2} (k^{\mu}k'^{\nu} + k'^{\mu}k^{\nu} - g^{\mu\nu}k \cdot k')$$

• The hadronic tensor:

$$W_{\mu\nu} = \frac{1}{8\pi} \sum_{\sigma,X} \langle X|J_{\mu}|p,\sigma\rangle^* \langle X|J_{\nu}|p,\sigma\rangle \ (2\pi)^4 \,\delta^4(p_X - p - q)$$

And the cross section:

$$2\omega_{k'}\frac{d\sigma}{d^3k'} = \frac{1}{s(q^2)^2} \ L^{\mu\nu}W_{\mu\nu}$$

 $W_{\mu\nu}$ has sixteen components, but known properties of the strong interactions constrain $W_{\mu\nu}$... $\partial^{\mu}J_{\mu}^{\text{EM}}(x) = 0$ $\Rightarrow \langle X | \partial^{\mu}J_{\mu}^{\text{EM}}(x) | p \rangle = 0$

$$\Rightarrow (p_X - p)^{\mu} \langle X | J^{\text{EM}}_{\mu}(x) | p \rangle = 0$$
$$\Rightarrow q^{\mu} W_{\mu\nu} = 0$$

$$W_{\mu\nu} = -\left(g_{\mu\nu} - \frac{q_{\mu}q_{\nu}}{q^2}\right)W_1(\nu, Q^2) + \left(p_{\mu} - q_{\mu}\frac{p.q}{q^2}\right)\left(p_{\nu} - q_{\nu}\frac{p.q}{q^2}\right)W_2(\nu, Q^2)$$

$F_1 = MW_1$	$F_2 =$	vW_2
--------------	---------	--------

Point-Like Scattering

 $p_X^2 = p^2 = M^2$ implies $\frac{Q^2}{2Mv} = 1$

 Q^2 and V are *not* independent

And if there is a point-like *parton i* inside a proton carrying a fraction *f* of the proton's four-momentum

Probability distributions f(x) of the fraction x $W_2(v,Q^2) = \sum_i \int_0^1 dx f_i(x) e_i^2 \delta\left(v - \frac{Q^2}{2Mx}\right)$

 W_2 for a point-like parton (like a muon in QED) is calculated, using the following, to be $e_i^2 \delta \left(v - \frac{Q^2}{2M_x} \right)$

In the lab frame:

$$L_{\mu\nu}W^{\mu\nu} = 4EE'\cos^2\theta/2[W_2(\nu,q^2) + 2W_1(\nu,q^2)\tan^2\theta/2]$$

electron-muon elastic scattering:

$$\frac{\mathrm{d}^2\sigma}{\mathrm{d}E'\mathrm{d}\Omega} = \frac{\alpha^2\cos^2\theta/2}{4E^2\sin^4\theta/2} \left[1 - \frac{q^2}{2M^2}\tan^2\theta/2\right]\delta\left(\nu + \frac{q^2}{2M}\right)$$

$$\frac{\mathrm{d}^2 \sigma}{\mathrm{d}E' \mathrm{d}\Omega} = \frac{\alpha^2 \cos^2 \theta/2}{4E^2 \sin^4 \theta/2} \left[W_2(\nu, q^2) + 2W_1(\nu, q^2) \tan^2 \theta/2 \right]$$

The above means the structure functions W_2 and F_2 are functions of the Bjorken x only. This is called the Bjorken scaling

Basic Parton Model Relation

$$\sigma_{\rm eh}(p,q) = \sum_{\rm partons \ a} \int_0^1 d\xi \, \hat{\sigma}_{ea}^{\rm el}(\xi p,q) \, \phi_{a/h}(\xi)$$

- where: σ_{eh} is the cross section for $e(k) + h(p) \rightarrow e(k' = k - q) + X(p + q)$
- and $\hat{\sigma}_{ea}^{el}(xp,q)$ is the <u>elastic</u> cross section for $e(k) + a(\xi p) \rightarrow e(k'-q) + a(\xi p+q)$ which sets $(\xi p+q)^2 = 0 \rightarrow \xi = -q^2/2p \cdot q \equiv x.$
- and $\phi_{a/h}(x)$ is the distribution of parton a in hadron h, the "probability for a parton of type ato have momentum xp".

Artist View of a Proton

The proton is not an elementary particle. It's a mess!

When we collide protons on anti-protons at the Tevatron or soon protons on protons at the LHC, we need to know the momentum distributions (parton distribution functions) of the quarks and gluons inside the proton.

$$u^{p}(x) = d^{n}(x) \equiv u(x) \qquad \bar{u}^{p}(x) = \bar{d}^{n}(x) \equiv \bar{u}(x)$$
$$d^{p}(x) = u^{n}(x) \equiv d(x) \qquad \bar{d}^{p}(x) = \bar{u}^{n}(x) \equiv \bar{d}(x)$$
$$s^{p}(x) = s^{n}(x) \equiv s(x) \qquad \bar{s}^{p}(x) = \bar{s}^{n}(x) \equiv \bar{s}(x)$$

Sea Quarks

There is a sea of virtual quark - antiquark pairs inside the proton.

$$u_{\text{sea}}(x) = \bar{u}_{\text{sea}}(x), \quad d_{\text{sea}}(x) = \bar{d}_{\text{sea}}(x), \quad s_{\text{sea}}(x) = \bar{s}_{\text{sea}}(x)$$

The $c,\ b \mbox{ and } t$ quarks are too heavy to contribute much.

$$u(x) = u_{\text{val}}(x) + u_{\text{sea}}(x) \qquad d(x) = d_{\text{val}}(x) + d_{\text{sea}}(x)$$

Sum Rules:
$$\int [u(x) - \bar{u}(x)] dx = 2$$
$$\int [d(x) - \bar{d}(x)] dx = 1$$
$$\int [s(x) - \bar{s}(x)] dx = 0$$

Fig. 9.9 The quark structure functions extracted from an analysis of deep inelastic scattering data. Figure (b) shows the total valence and sea quark contributions to the structure of the proton.

When sea contribution cancels....

QCD effects modify all above as...

• 1-Quark-gluon vertex (like electron-photon vertex but multiplied with "colour factors")

The 3-fold colour degree of freedom for quarks and antiquarks, combined with 8-fold "bicolour" degree of freedom for a gluon means that the strength of the Quark-gluon vertex is to be chosen from 3*3*8=72 numbers, read as elements of 8 SU(3) generator lambda matrices, each of order 3*3

$$\begin{bmatrix} D_{\mu} \end{bmatrix}_{ab} = \partial_{\mu} \delta_{ab} + ig \left(t^{B} G_{\mu}^{B} \right)_{ab}$$
$$\begin{bmatrix} t^{B}, t^{C} \end{bmatrix} = if^{BCD} t^{D}$$

$$\begin{split} \boldsymbol{\mathcal{L}}_{QCD} &= -\frac{1}{4} F^{B}_{\alpha\beta} F^{B,\alpha\beta} + \sum_{f} \overline{q}_{f,a} \left(i D_{\mu} \gamma^{\mu} - m_{f} \right)_{ab} q_{f,b} \\ F^{B}_{\alpha\beta} &= \left[\partial_{\alpha} G^{B}_{\beta} - \partial_{\beta} G^{B}_{\alpha} - g f^{BCD} G^{C}_{\alpha} G^{D}_{\beta} \right]. \end{split}$$

Effects of Quark-Gluon vertex

Meaning a) three jet events in addition to the two-jet events expected from the "QED portion"....

Or....

A QCD effect

D0 ~500 GeV Jets

For a comparison: The QED portion

For e^+e^- :

And in nucleon-nucleon collisions:

Run 178796 Event 67972991 Fri Feb 27 08:34:03 2004

phi_t: 223 deg

b) diagrams like

explain "violation of Bjorken scaling"

Also Gluon-Gluon vertices

Reversing signs of loop contribution to the "running of coupling constant" resulting from RENORMALIZATION: in QCD coupling constant *decreases* with larger momentum transfers....

Compare with QED or electric Plasmas...(trend opposite to QCD)

Again electric charge effects, not of the Colour charge

Back to QCD....

- The running $lpha_{\mathcal{S}}(\mathcal{Q}^2)$
 - non-Abelian character of theory leads to :

$$\alpha_{\mathcal{S}}(Q^2) = \frac{12\pi}{(11N_c - 2N_f)\ln(Q^2/\Lambda^2)}$$

this exhibits asymptotic freedom as long as N_f < 17
on the other side... confinement

Bino Maiheu

Horizontal is the distance scaled probed and vertical is the Charge strength....

Continued: QCD effects modify all above (QED portion) as...

• 2-Quarks and gluons do not reach detector but only hadrons....

えぬい とうりょうしん

2a-Quarks and gluons remain inside hadrons:

Confinement

Asymptotic freedom: $Q\bar{Q}$ becomes increasingly QED-like at short distances.

but at long distances, gluon self-interaction makes field lines attract each other:

\rightarrow linear potential \rightarrow confinement

Event Generator Physics 3

Bryan Webber

Interguark Potential

or from lattice QCD:

Event Generator Physics 3

Bryan Webber

 $V(r) = \kappa r$

The Lund String Model

Start by ignoring gluon radiation:

 e^+e^- annihilation = pointlike source of $q\bar{q}$ pairs

Intense chromomagnetic field within string $\rightarrow q\bar{q}$ pairs created by tunnelling. Analogy with QED:

 $rac{d(extsf{Probability})}{dx \ dt} \propto \exp(-\pi m_q^2/\kappa)$

Expanding string breaks into mesons long before yo-yo point.

Hadronizatio

yan Webber

How can you calculate with large coupling....

The S-matrix expansion in powers of coupling or H_1

$$S = \sum_{n=0}^{\infty} \frac{(-i)^n}{n!} \int \dots \int d^4 x_1 \, d^4 x_2 \dots d^4 x_n \, \mathrm{T}\{\mathscr{H}_{\mathrm{I}}(x_1)\mathscr{H}_{\mathrm{I}}(x_2) \dots \mathscr{H}_{\mathrm{I}}(x_n)\}, \quad (6.23)$$

Can be written as $S = T \exp \left[-i \int d^4 x \,\mathcal{H}_I(x)\right]$

And remains well defined no matter how large is H_1

Path Integrals...

$$< f|i> = \int [dx(t)]e^{iS/\hbar} = \int (\prod dx_i) e^{iS/\hbar}$$

Challenges for QCD: why only colour singlets and why clustering....