Quantum ElectroDynamics III

Feynman diagram

Dr. Farida Tahir

Physics department CIIT, Islamabad

quarks

lepton

weak interaction

* Graphic way to represent exchange forces * Describing a variety of particle interactions

Developed by **Richard Feynman** when working on the development of QED

To calculate

Decay rates and Scattering cross section

Calculation of Decay rates and Scattering cross sections

Need two information Dynamical

> Evaluation of relevant Feynman diagram to determine the amplitude M for the process. Kinematical

The phase space factor, it depends on the masses, energies, and momenta of the participants.

*****Ingredients (Rules)

******Recipe (Structure)*

* Feynman rules: Electron (e⁻) & Positron (e⁺) (Dirac eq.) Photons (Maxwell eq.) Dirac Equation in electromagnetic field (concept of gauge symmetry)

S =

$$\begin{array}{c} \bullet Electron (e^{-}) & \bullet Positron (e^{+}) \\ \psi(X) = ae^{\frac{-i}{\hbar}(X,P)}u^{s}(P) & Free & \psi(X) = ae^{\frac{i}{\hbar}(X,P)}v(P) \\ (\gamma^{\lambda} P_{\lambda} - mc)u = 0 & Dirac & (\gamma^{\lambda} P_{\lambda} + mc)v = 0 \\ \overline{u}(\gamma^{\lambda} P_{\lambda} - mc) = 0 & Adjoint & \overline{v}(\gamma^{\lambda} P_{\lambda} + mc) = 0 \\ \overline{u}(\gamma^{\lambda} P_{\lambda} - mc) = 0 & Adjoint & \overline{v}^{1}v^{2} = 0 \\ \overline{u}u = 2mc & Normalized & \overline{v}v = -2mc \\ \overline{u}u = 2mc & Normalized & \overline{v}v = -2mc \\ \sum_{i=1,2} u^{s}\overline{u}^{s} = (\gamma^{\lambda} P_{\lambda} + mc) & Completeness & \sum_{s=1,2} v^{s}\overline{v}^{s} = (\gamma^{\lambda} P_{\lambda} - mc) \\ \end{array}$$

The Feynman rules for (\gamma) **Photon* (*y*) $A^{\mu}(X) = ae^{\frac{-i}{\hbar}(X,P)} \varepsilon^{\mu}(s) \quad Free$ $\varepsilon^{\mu}P_{\mu}=0$ Lorentz condition

Orthogonal

Normalized

 $\sum \left(\varepsilon_{(s)}\right)_{i} \left(\varepsilon_{(s)}\right)_{j} = \delta_{ij} - \hat{p}_{i} \hat{p}_{j} \qquad \textbf{Completeness}$

 $\varepsilon_{(1)}^{\mu^*}\varepsilon_{\mu(2)}=0$

 $\varepsilon^{\mu^*}\varepsilon_{\mu}=1$

Complete Lagrangian for f & y

* Lagrangian density describing the fermionic field in the presence of an electromagnetic field is $\mathcal{L} = \overline{\Psi}(X) \Big[\gamma^{\lambda} (i\partial_{\lambda} - qA_{\lambda}) - m \Big] \Psi(X) - \frac{1}{4} F^{\lambda \nu} F_{\lambda \nu} - J^{\lambda} A_{\lambda}$ $\mathcal{L} = \overline{\Psi}(X) \Big[i\gamma^{\lambda} \partial_{\lambda} - m \Big] \Psi(X) - \frac{1}{4} F^{\lambda \nu} F_{\lambda \nu} - (J^{\lambda} + q\overline{\Psi}(X)\gamma^{\lambda}\Psi(X)) A_{\lambda}$

***** Current coupled to A_{λ} , describe the interaction vertex.

Current produce by Dirac particle

Structure of Feynman Diagrams

Structure of Feynman Diagrams

Fermions represented by straight lines with arrows pointing in direction of time flow

***** Forward-facing arrows represent particles

* Backward-facing arrows represent antiparticles

* Photons and weak bosons, W- and W+ and Z⁰ are squiggly lines An electron enters, but not a trajectory and

***** *Gluons are curly lines*

Line types

*****External lines

- Enter and leave diagram
- Represent real "observable" particles

***** real particles and must have

 $E^2 = p^2 + m^2$

* Referred to as particle being on "mass shell"

***Internal lines**

Connect vertices, called propagators Represent "virtual" particles that cannot be observed

Do not have to obey relativistic mass,

energy, momentum relationship:

 $(mc^2)^2 = E^2 - (pc)^2$

Referred to as particle being off "mass shell"

At the point of emission (or absorption) the vertices gives a contradiction with Einstein relation between energy and mass.
Vertices

- Conserve: energy, momentum, & charge for all types of interactions
- * Determine order of perturbation contributes to the particular calculation
- * Same number of arrows enter as leave

How to write currents by using F.D

***** For each QED vertex, write factor $i e \gamma^{\mu}$

For each internal photon line having momentum k write factor

^{$$\alpha$$} **(k)** = $i \frac{g_{\alpha\beta}}{k^2 + i\varepsilon}$

* For each internal lepton line having momentum p write factor

$$iS_F(p) = i\frac{1}{p - m + i\varepsilon} = \frac{p + m}{p^2 - m^2 + i\varepsilon}$$

*For each initial photon $\mathcal{E}_{r\alpha}(k)$ * For each final photon $\mathcal{E}_{r\alpha}^{*}(k)$ * $\mathcal{E}_{r\alpha}^{*}(k)$

*****Basic vertices

Electromagnetic

Charge particle enters, emits (or absorbs) a photon and exits.

$$M_{fi} = \overline{u_r}(p)ie\gamma_{\mu}u_r(p')i\frac{g^{\mu\nu}}{K^2 - i\varepsilon}\overline{u_r}(K + p_2)ie\gamma_{\nu}u_r(p_2)$$

$$=-i\frac{e^2}{K^2-i\varepsilon}\overline{u_r(p)\gamma_\mu u_r(p')u_r(K+p_2)\gamma^\mu u_r(p_2)}$$

Scattering

Møller scattering $ee \rightarrow ee$

* Electron-electron scattering (*Moller scattering*)
* Two electron enters, a photon passes between them

Bahabha scattering $e^-e^+ \rightarrow e^-e^+$

Twist into any topological configuration Rule:

Particle line running backward in time isinterpreted as the corresponding antiparticlegoing forward

 e^-e^+ annihilate to form a photon which produces a new e^-e^+

Bhabha & Moller scattering are related by cross symmetry

 $e_1^- + e_2^+ \rightarrow e_3^- + e_4^+$

 $A + B \to C + D$ $A + \overline{C} \to \overline{B} + D$ $\overline{C} + \overline{D} \to \overline{A} + \overline{B}$ e^{-} e^{-} e^{-}

e^{-} γ γ $r: \dots e_{0}^{-}$

Remember

***** Dominant contribution comes from tree level

 $\alpha = \frac{e^2}{\hbar c} = \frac{1}{137}$

******Ignore higher order contribution*

******Higher order diagrams*

**Charge* screening

Forces	coupling	Strength	Range	Particles
Strong	α_{s}	1	10-15	Gluons; m=0
Electromagnetic	α	1/137	∞	Photon; m=0
Weak	$\alpha_{\rm w}$	10-6	10-18	W &Z boson
Gravity	α _g	10-39	∞	graviton; m=0