

How to Measure Top Quark Mass with CMS Detector ???

Ijaz Ahmed National Centre for Physics, Islamabad

- o High Pt top basic idea
- o Methods for jets selection
- o Top quark mass reconstruction from jets
- o Jets clustering and clusters method for Mtop clus
- o Underlying Event (UE_{clus}) estimation and subtraction
- o Systematics errors
- o Summary

- □ Highly boosted top quarks : Decay back-to-back
- □ Higher top boost : Small opening angle of W-boson and b-quark
- □ High Pt top quarks : Large probability of jets overlaping in space.
- Invariant mass of the objects (jets/clusters) in larger cone around the top quark flight direction : Correlation with the real top quark mass.
- □ Top quark needs to have a larger boost : Pt > 200 GeV.

Kinematical variables

- Invariant mass
- Transverse momentum
- Transverse mass
- Transverse energy
- Pseudo-rapidity
- Rapidity
- Jet cone radius
- Missing Transverse Energy

$$m^{2} = p^{\mu} p_{\mu} = E^{2} - \vec{p}^{2}$$

$$p_{T}^{2} = p_{x}^{2} + p_{y}^{2}$$

$$m_{T}^{2} = m^{2} + p_{T}^{2} = E^{2} - p_{z}^{2}$$

$$E_{T} = E \sin \theta$$

$$\eta = -\ln\left(\tan\frac{\theta}{2}\right)$$

$$y = \frac{1}{2}\ln\left(\frac{E + p_{z}}{E - p_{z}}\right) = \ln\left(\frac{E + p_{z}}{m_{T}}\right)$$

$$\Delta R = \sqrt{\Delta \eta^{2} + \Delta \phi^{2}}$$

$$E_{T}^{miss}$$

- 1. Event generation (PYTHIA, TOPREX, CMKIN)
- 2. Simulation of the interaction of the generated particles with the detector (OSCAR, FAMOS, CMSSW : GEANT4)
- 3. Simulation of digitized phase (FAMOS, CMSSW, ORCA)
 - Level-1 trigger (100 KHz)
 - High Level Trigger (100 Hz)
- 4. Local and global event reconstruction (FAMOS, CMSSW, ORCA)
- 5. Physics Analysis tools (PAW, ROOT)

$t\bar{t} \rightarrow bW^+bW^- \rightarrow bbq\bar{q}\mu\nu_{\mu}$

- P_{t}^{top} > 200 GeV, $|\eta|$ < 3.0
- $\ge \underline{P}_t^{anti-top} > 200 \text{ GeV}, |\eta| < 3.0$
- P_t^μ > 30 GeV, |η| < 2.0</p>
- > P_t^q > 20 GeV, |η| < 2.5</p>

Fast simulation based samples

165 Top mass point = 20K events

175 Top mass point = 50K events

185 Top mass point = 20K events

Pile-up events are included

Cross-section approximately 1% of the total tT cross-section

	No. of events	Int . luminosity	X-section		
	With pile-up	fb ⁻¹	pb		
$t\bar{t} \rightarrow bW^{\dagger}bW \rightarrow bq\bar{q}blv(l=\mu)$	49535	7.23	6.85		

Distributions at Decay Vertex (1)

Distributions at Decay Vertex (2)

Muon reconstruction and isolation

Jets Reconstruction and Identification

- 2 light jets corresponds to 2 quarks from W boson
- Four possible jet combinations
- Take best combination which gives correctly matching

Steps to measure top quark direction

- \therefore Leading jets > = 2 b-tagged jets, > = 2 non b-tagged jets
- Exactly 4 jets, =2 b-tagged jets, = 2 non b-tagged jets
- \Rightarrow > 2 leading b-jets, 2 light jets with m_{jj} closest to W mass

Top Quark Selection: Leading Jets Topology

1 quark matched = 42.7% 2 quarks matched = 18.17%

	Kinematical cuts	ematical cuts Selection efficiency %			
	Before selection	100	49535		
	no of iso. muons	93.6	46370		
	\geq 1 iso muon P _t > 30 GeV	92.7	45920		
	\geq 1 reco light jets P _t > 20 GeV	91.1	45117		
	\geq 2 reco light jets $ \eta $ < 2.5	73.6	36484		
	≥ 1 b-jet P _t > 20 GeV	55.6	27543		
	\geq 2 b-jets $ \eta $ < 2.5	18.6	9214		
	$ m_{jj} - m_W^{nom} < 20$ GeV	8.5	4235		
r C	n _{w^{nom} = 65.24 (g correctly jet-part}				

b-jet with biggest angle wr.t muon called Hadronic b-jets

-30 October 2009

Top Quark Selection: Four Jets Topology

Hadronic top selection

- Four highest Pt jets selection
- b-jets identification with b-tagging
- >Two light jets invariant mass

reconstruction

- Hadronic b-jet requires
 - For away from isolated muon with maximum distance 0.4
 - or closests to light jets

1 quark matched = 20.98% 2 quarks matched = 43.26%

Kinematical cuts	Selection efficiency %	No. of events		
Before selection	100	49535		
no of iso muons	93.6	46370		
\geq 1 iso muon P _t > 30 GeV	92.7	45916		
\geq 1 reco light jets P _t > 20 GeV	92.7	45915		
Exectly 4 jets η < 2.5	21.3	10551		
Exectly 2 light jets	8.0	3941		
Exectly 2 b-jets	8.0	3941		
$ m_{jj}-m_{W} <20~GeV$	3.9	1937		

Top Quark Selection: $JJ \rightarrow W$

W Mass from Three Approaches

Nominal mass—fitted mass ~ 65 GeV

Same m_w^{nominal} used in all selections (JPM)

Study based on shape of distributions for top direction determination.

Expalored three types of selection criteria for hadronic top mass reconstruction

Four jets selection results low efficiency with higher W purity

Jets with invariant mass close to W have higher efficiency with intermediate purity of W

Leading jets selection gives sharp and narrow dist. shape with less long tail behaviour and reasonable selection efficiency

Top Quark Selection: Leading Jets Topology

***** First peak from the wrong jet combination

- Exchanging the leptonic b-jet into hadronic b-jet
- One of the 4 leading jets could be coming from the gluon radiation
- Soft QCD events
- ***** Second peak corresponds to the correct combinations
 - At preselection level we demand high Pt jets

Calibrated Top Quark Mass

Peaks are shifted towards the nominal Top mass

Calo Clusters Reco Method

Invariant mass of all calorimeters clusters in $\Delta \eta \times \Delta \phi$ around top direction

Calorimetric Clusters Reconstruction Method $m_{clusters}(\Delta R) = (E^{-} - P^{-}) = (\sum_{i=0.7}^{\infty} E^{-}_{i})^{-} - (\sum_{i=0.7}^{\infty} P^{-}_{i})^{-}_{i}$

 $\checkmark E_i$ represents total energy of the ith cluster

✓nDR runs over all clusters within selected cone size

 $\checkmark P_i$ its 3-momenta vector

Known: E,η,ϕ about clusters

Assumptions: considering particles to be mass-less

 $m \approx 0 \Longrightarrow E^2 \equiv P^2$ $P_x = E \sin \vartheta \cos \varphi$ $P_y = E \sin \vartheta \sin \varphi$ $P_z = E \cos \vartheta$

M_{top}^{clus} **Determination**

UE Estimation Method

It is not only minimum bias event
 The underlying event is everything
 except the two outgoing hard
 scattered jets

In a hard scattering process, the underlying event has a hard component (initial+final state radiation and particles from the outgoing hard scattered partons) and a soft component (beam-beam remnants)

Jet Isolation variable

-		_		_		-								
	Jet Isolation	< no of clusters < / night rt event												
		r	ๅ <0.7	r	< 1.4	η < 2.1		η	η < 3.0 η		η > 3.0		η < 5.0	
	$\Delta \mathbf{R} = 0.7$	6 3	26.89 88	5 8	09.19 8	445.77 134		3 2	363.00 2 229 1		236.77 182		326.78 352	
	$\Delta \mathbf{R} = 0.8$	6 3	23.07	5 8	03.17 0	439.69 125		3 2	356.43 2 218 1		2 36.76 181		321.39 33	
	$\Delta \mathbf{R} = 0.9$		0 18.47 29	4 7	96.66 3	4 1	33.11 16	349.3621803		2 3	236.69 330		315.67 208	
	$\Delta \mathbf{R} = 1.1$		0 14.85 22	4 2	85.24 2	420.82 22		3 2	335.58 2 22 2		236.35 22		304.62 22	
	$\Delta \mathbf{R} = 1.5$		99.83		59.49 3		94.11 6	3 1	306.64 136		237.03 169		283.05 53	
	Let Isolation Calorimeter <et> / cluster (MeV) < no of clusters > / high Pt event</et>													
			$ \eta < 0.7$		$ \eta < 1.4$		η <2.1		η < 3.0		η >2.5		$ \eta < 5.0$	
	Δ R = 0.7		201.24 76		173.59 81		102.26 708		102.26 708		53.99 309		78.73 1383	
	$\Delta R = 0.8$	R=0.8 199.50 172 66 66		172.54 66		100.71 10 66 66		100.7 1 66	100.71 53. 66 66			77.43 66		
	ΔR = 0.9		198.50 57		171.20 146		99.28 630		99.28 630		54.01 303		76.23 1285	
	Δ R = 1.1		197.46 41		168.08 112	168.08 96.26 112 546			96.26 546		54.17 295		73.79 1175	

922

268

922

IC Physics, 162-30 October 2009 372

50K events corresponds to 7.2 fb⁻¹, statistical uncertainty about δm =1-1.5 GeV on top mass.

Source	∆m _{top} (GeV/c²)				
of uncertainty					
Re-calibration	0.9				
Electronic noise	1.2				
ISR on/off	0.14				
FSR on/off	0.07				
B-quark fragmentation	0.3				
UE estimate (+-10%)	1.34				
Cluster mis calibration:+-1(5)%	0.7(1.3)				
Calorimeter: e/h=1.25 (1.63)	0.8(0.3)				

- An alternate method for top mass reconstruction in CMS is presented, which strongly depends on CMS Calorimeters.
- A new method for Underlying Event (UE) estimation, subtraction and calibration is developed.
- This analysis is performed with both Full and Fast Simulations techniques.
- Statistical error on top mass M_{jjb}(1-1.5 GeV) and 1.1 -- 1.6 GeV/c in M_{clus}^{top} is estimated.