

Physics Analysis at LHC-I

Shamona Fawad Qazi National Centre for Physics

First School on LHC Physics

- Raw data Format
- Event Generators
- Physics data objects
- The software : CMSSW, ROOT
- A real analysis

CMS

We use experiments to inquire about what reality (nature) does.

We use experiments to inquire about what reality (nature) does.

The goal is to understand
in the most general; that's
usually also the simplest.First School on LHC Physics-A.Eddington

CMS very very very

We use experiments to inquire about what reality (nature) does.

We intend to fill this gap

The goal is to understand
in the most general; that's
usually also the simplest.First School on LHC Physics-A.Eddingt@n

Theory.....

e.g The Standard Model

Experiment.....

Output is a set of signals from all the detector channels

Signal has two parts

Address

which detector element took the reading

Value(s)

what the electronics
wrote out

First School on LHC Physics

A small number of general equations, with some parameters (poorly or not known at all)

A small number of general equations, with some parameters (poorly or not known at all)

cross-sections (probabilities for interactions), branching ratios (BR), lifetimes,.....

A small number of general equations, with some parameters (poorly or not known at all)

Y/Z→ ee Data Y/Z→ ee MC

400 300 200

Have to collect data from many channels on many sub-detectors

7/Z→ ee Data 7/Z→ ee MC

- Have to collect data from many channels on many sub-detectors
- Decide to read out everything or throw the event away (Trigger)

7/Z→ ee Data 7/Z→ ee MC

400

- Have to collect data from many channels on many sub-detectors
- Decide to read out everything or throw the event away (Trigger)
 - Build the event (put info together)

7/Z→ ee Data 7/Z→ ee MC

400

- Have to collect data from many channels on many sub-detectors
- Decide to read out everything or throw the event away (Trigger)
- Build the event (put info together)
- Store the data

Z→ ee Data

- Have to collect data from many channels on many sub-detectors
- Decide to read out everything or throw the event away (Trigger)
- Build the event (put info together)
- Store the data
- Analyze the data

Reconstruction, user analysis algorithms

200

- Have to collect data from many channels on many sub-detectors
- Decide to read out everything or throw the event away (Trigger)
- Build the event (put info together)
- Store the data
- Analyze the data
 - Reconstruction, user analysis algorithms
- Do the same with simulated data

First School on LHC Physics

• γ/Z→ ee Data □ γ/Z→ ee MC

200

- Have to collect data from many channels on many sub-detectors
- Decide to read out everything or throw the event away (Trigger)
 - Build the event (put info together)
 - Store the data
 - Analyze the data

Reconstruction, user analysis algorithms

- Do the same with simulated data
- Compare theory with data

 $\cap N$

- :
- .
- .

First School on LHC Physics

Offline Analysis Chain

Offline Analysis Chain

Analog

signals

From Electronics to Physics

signals

From Electronics to Physics

signals

From Electronics to Physics

signals

From Electronics to Physics

Physics Objects

- Reconstruct Tracks
- Reconstruct Clusters
- Reconstruct Jets
- Apply Particle Identification
- Define Physics Data objects e, $\mu,\,\gamma$ and jets etc.

Track Reconstruction

- Need at least two points to define a line
- Increase measuring points better measurements
- Find all the hits in all sub-detectors
- Curve Fitting using Method of least squares; Kalman-Filter algorithm for track fitting
- Transverse Momentum *p_t*: inverse of sagitta *ρ*
- Measurement of θ gives actual momentum p in lab frame
- Direction of bending in B field gives charge

Cluster Reconstruction

- Lead Tungstate crystals of ECAL in barrel (61200) and endcap (14648)
- Start by searching for seeds; crystals with transverse energy above a certain threshold
- Seeds adjacent to the one with maximum energy forming an array of crystals in phi direction are called bumps
- Bumps are extended to include all eta directions to form clusters
- Clusters of clusters are called super-clusters
 First School on LHC Physics

____ bump boundary

Jets Reconstruction

- What is a Jet? : Software artifact A cluster / spray of particle (tracks, calorimeter deposits) or flow of energy in a restricted angular region
- Represents perturbative part of QCD
- Cone : natural definition of a jet in hadron collider experiments
- Algorithms: Cone algorithm, Jade algorithm, Berkeley algorithm etc.
- Variables: sphericity, thrust, aplanarity, energy flow etc.

Simulation of a Jet in CMS

Four types of particles need to be identified

- Electrons
- Photons
- Muons
- Pions

Electrons and Photons

- Electrons radiate between the interaction point and the ECAL depositing all of their energy in ECAL
- Energy is deposited in ϕ direction due to 4T magnetic field
- Threshold Energy for electrons is lower than for photons
- Electron (narrow shower) $\frac{\$9}{\$25} < 1$ Photon (wide shower) $\$9_{\$25} \approx 1$
 - Standard collections of electrons and photons are intended to be efficient for electrons with pt > 5GeV and prompt photons with pt >10GeV

Muons

- Pass through to the outer most layers of muon chambers
- Generally do not shower in EMC, rather ionize
- Tracks are visible as very low energy clusters in EMC
- Cut-based identification for global muons, which consists of a set of track-quality requirements
- Likelihood-based identification for tracker muons, which uses compatibility of the calorimeter response with the muon hypothesis and the presence of matched segments in the muon system
- Cut-based identification for tracker muons, which selects muons on the basis of the track-penetration depth in the detector

- Do not shower in ECAL
- Get absorbed in HCAL
- Plot $\frac{E_{HCAL}}{p}$ for e⁻ and π^{\pm}
 - -p is measured by the tracker
- Measurement of $\frac{dE}{dx}$

Evaluation of acceptance corrections

To account for the lost particles; e.g. some particles could be out of detector coverage or along the beam pipe etc.

• Evaluate the efficiency

To account for cracks or malfunctioning parts in the detector

- Check purity of the sample To discard fake selections resulting due to the choice of cuts or wrong particle identification
- Need SIMULATED DATA

- Generators acts like accelerators (LHC,LEP,TEVATRON)
- Allow theoretical and experimental studies of complex multi-particle physics
- Vehicle of ideology to disseminate ideas from theorists to experimentalists
- Predict the event rates and topology (Kinematics of particles resulted from collisions)
- To trace back the history of end products need
- Simulate possible backgrounds
- Study detector requirements

After data flow from DAQ: data reduction and abstraction

reconstruct tracks, energy deposits in calorimeters

- reconstruct tracks, energy deposits in calorimeters
- > calculate high level physics quantities e.g. momentum

- reconstruct tracks, energy deposits in calorimeters
- calculate high level physics quantities e.g. momentum
- > apply even higher-level algorithms e.g. jet finding

- reconstruct tracks, energy deposits in calorimeters
- calculate high level physics quantities e.g. momentum
- > apply even higher-level algorithms e.g. jet finding
- store all these quantities/objects event per event

- reconstruct tracks, energy deposits in calorimeters
- calculate high level physics quantities e.g. momentum
- > apply even higher-level algorithms e.g. jet finding
- store all these quantities/objects event per event
- The data analysis

- reconstruct tracks, energy deposits in calorimeters
- calculate high level physics quantities e.g. momentum
- > apply even higher-level algorithms e.g. jet finding
- store all these quantities/objects event per event
- The data analysis
- define the theoretically computed observable(s) to be measured

- After data flow from DAQ: data reduction and abstraction
- reconstruct tracks, energy deposits in calorimeters
- calculate high level physics quantities e.g. momentum
- > apply even higher-level algorithms e.g. jet finding
- store all these quantities/objects event per event
- The data analysis
- define the theoretically computed observable(s) to be measured
- apply event selection (cuts)

- After data flow from DAQ: data reduction and abstraction
- reconstruct tracks, energy deposits in calorimeters
- calculate high level physics quantities e.g. momentum
- > apply even higher-level algorithms e.g. jet finding
- store all these quantities/objects event per event
- The data analysis
- define the theoretically computed observable(s) to be measured
- apply event selection (cuts)
- estimate efficiencies and backgrounds e.g. from MC simulation

- After data flow from DAQ: data reduction and abstraction
- reconstruct tracks, energy deposits in calorimeters
- calculate high level physics quantities e.g. momentum
- > apply even higher-level algorithms e.g. jet finding
- store all these quantities/objects event per event
- The data analysis
- define the theoretically computed observable(s) to be measured
- apply event selection (cuts)
- estimate efficiencies and backgrounds e.g. from MC simulation
- ➢ if distributions are measured : take care of calibrations and effects due to detector resolution → correct for these effects

- reconstruct tracks, energy deposits in calorimeters
- calculate high level physics quantities e.g. momentum
- > apply even higher-level algorithms e.g. jet finding
- store all these quantities/objects event per event
- The data analysis
- define the theoretically computed observable(s) to be measured
- apply event selection (cuts)
- estimate efficiencies and backgrounds e.g. from MC simulation
- ➢ if distributions are measured : take care of calibrations and effects due to detector resolution → correct for these effects
- determine statistical and systematic uncertainties

- After data flow from DAQ: data reduction and abstraction
- reconstruct tracks, energy deposits in calorimeters
- calculate high level physics quantities e.g. momentum
- > apply even higher-level algorithms e.g. jet finding
- store all these quantities/objects event per event
- The data analysis
- define the theoretically computed observable(s) to be measured
- apply event selection (cuts)
- estimate efficiencies and backgrounds e.g. from MC simulation
- ➢ if distributions are measured : take care of calibrations and effects due to detector resolution → correct for these effects
- determine statistical and systematic uncertainties
- Compare with theory, found a deviation, something new?
 - book a ticket to Stockholm

THANK YOU!!!

Questions? Comments..

BACKUP SLIDES

- Raw data Format
- Event Generators
- Physics data objets
- The software : CMSSW, ROOT
- A real analysis

