

Monte Carlo Study of Triple Gauge-boson Couplings at LHC

Hadron Collider Physics

M. Hamid Ansari

National Centre for Physics, QAU, Islamabad

31 December, 2009

MOTIVATIONS

- Have to prove the Standard Model, non-Abelian SU(2)xU(1) gauge theory of electroweak interaction
- The deviations will hint to new physics not described in the SM

Introduction

- In the last few years, the Large Electron Positron (LEP) and Tevatron have provided accurate tests of the non-Abelian gauge theory SU(2)xU(1) of electroweak interactions of the Standard Model (SM), probing the existence of self-interactions among electroweak gauge bosons (W, Ζ, γ)
- The experimental collaborations have performed several measurements of charged and neutral triple gaugeboson couplings (TGCs)

The Large Hadron Collider (The world's Largest Particle Accelerator)

In the near future, the Large Hadron Collider (LHC) will measure precisely the reaction products of the vector bosons produced in P-P collision at centre-ofmass energy of 14 TeV.

The LHC will be the main source of vector gauge bosons and good place to study their properties.

Collisions at the LHC

- 2804 bunches/beam
- 10¹¹ protons/bunch
- 10⁹ pp collisions/s
- 7 TeV + 7 TeV
- separation: 7.5 m (25 ns)
- 40 MHz crossing rate
- N = L × σ(pp) = 10⁹
- Mostly low pt events (soft) events
- Interesting high pt events are rare
- New physics rate ~ 0.00001 Hz
 - event selection: 1 in 10,000,000,000,000

Triple Gauge –boson Couplings (TGCs)

- In the SM, gauge-bosons interact not only with matter particles, but also with one another
- These interactions manifest themselves as couplings between three (or more) gauge-bosons, such as WWγ or WWZ coupling, referred as triple gauge-boson couplings (TGC's)
- Existence of these couplings has been beautifully verified at LEP and Tevatron
- The results so far are consistent with SM predictions
- The starting point for TGC is the non-Abelian structure of SM
- The couplings of WWγ, WWZ vertices reflect the full gauge group structure of SM

TGCs at LEP

W-pair production in e^+e^- annihilation involves the triple gauge-boson vertices WW γ or WWZ which are present in the SM

Gauge Couplings !

TGCs at Tevatron

Tree Level Feynman diagrams of triple gauge coupling

TGCs at LHC

Tree Level Feynman diagrams of triple gauge coupling

- Charged TGCs allowed in the SM
- Only s channel has three boson vertex, which manifest the gauge boson coupling
- WWZ and WWγ
- ZZZ, ZZγ, Zγγ and γγγ vertices are not allowed in the Standard Model, because neither the Z nor the γ carries charge which is the quantum number to which the gauge-bosons couple
- Vertices containing an odd number of W-bosons (WZZ, WZγ, Wγγ and WWW) are excluded by charge conservation

TGCs: W⁺W⁻Analysis

 Decaying Branching Ratios of W⁺W⁻ by pure hadronically, semileptonically, pure leptonically are given as follows

 $W^+W^- \rightarrow qqqq (~45\%) \qquad \qquad W^+W^- \rightarrow \tau \nu qq (~15\%)$

W⁺W⁻ $\rightarrow \mu \nu qq$ (~15%) W⁺W⁻ $\rightarrow e \nu qq$ (~15%)

 $W^+W^- \rightarrow e v \mu v$ (~4%)

I am working on charged Triple Gauge-boson Couplings (TGC);

$$q \overline{q} \rightarrow Z^{*0} \rightarrow W^+ W^-$$

where a virtual Z is produced at intermediate level

I am studying the pure hadronically decay of W⁺W⁻ (qq qq')

How to Find the Momentum (P) & Energy (E) Distributions

----- PYTHIA Event Listing (complete event)

no	id	name	status	me	others	daug	hters	co	lours	p_x	Р_У	p_z	е	m
0	90	(system)	-11	0	0	1	2	0	0	0.000	0.000	0.000	14000.000	14000.000
1	2212	(p+)	-12	0	0	279	0	0	0	0.000	0.000	7000.000	7000.000	0.938
2	2212	(p+)	-12	0	0	280	0	0	0	0.000	0.000	-7000.000	7000.000	0.938
з	-2	(ubar)	-21	7	7	5	6	0	101	0.000	0.000	54.594	54.594	0.000
4	2	(u)	-21	8	0	5	6	102	0	0.000	0.000	-1042.471	1042.471	0.000
5	-6	(tbar)	-22	3	4	9	9	0	101	-73.897	-53.244	-174.768	261.166	171.372
6	6	(t)	-22	3	4	10	10	102	0	73.897	53.244	-813.108	835.899	171.131
7	-2	(ubar)	-42	12	0	3	з	0	101	0.000	0.000	54.594	54.594	0.000
8	2	(u)	-41	13	13	11	4	104	0	-0.000	-0.000	-1191.549	1191.549	0.000
9	-6	(tbar)	-44	5	5	14	14	0	101	-71.565	-51.768	-210.234	285.251	171.372
10	6	(t)	-44	6	6	15	15	102	0	82.715	58.828	-926.573	947.695	171.131
11	21	(g)	-43	8	0	16	16	104	102	-11.150	-7.060	-0.149	13.198	0.000
25	21	(g)	-51	23	0	37	37	106	105	19.037	28.329	38.331	51.325	0.000
26	21	(g)	-51	23	0	39	39	101	106	6.832	-19.532	2.861	20.889	0.000
27	-6	(tbar)	-52	20	20	34	34	0	101	-88.187	-52.597	-231.302	305.635	171.372
44	21	(g)	-31	48	0	46	47	114	113	0.000	0.000	0.707	0.707	0.000
45	1	(d)	-31	49	49	46	47	113	0	0.000	0.000	-255.118	255.118	0.000
46	21	(g)	-33	44	45	50	50	114	115	2.524	5.061	-11.187	12.535	0.000
47	1	(d)	-33	44	45	51	51	115	0	-2.524	-5.061	-243.224	243.290	0.330
378	2	(u)	-63	1	0	492	492	113	0	-0.319	-0.512	1340.638	1340.638	0.330
379	2101	(ud_0)	-63	1	0	492	492	0	113	-0.427	-1.024	3266.905	3266.906	0.579
380	2	(u)	-63	1	0	493	493	108	0	-0.720	-1.118	56.936	56.952	0.330
381	-3	(sbar)	-63	1	0	519	519	0	117	-0.382	-0.112	1364.384	1364.384	0.500
486	-11	e+	23	441	0	0	0	0	0	7.949	-14.875	-217.791	218.443	0.001
487	12	nu_e	23	441	0	0	0	0	0	70.533	75.395	-668.054	675.985	0.000
502	1	(d)	-71	342	342	505	508	115	0	-3.404	-4.046	-233.825	233.885	0.330
503	21	(g)	-71	367	367	505	508	181	115	-0.384	-0.368	-9.293	9.309	0.000
504	-2	(ubar)	-71	370	370	505	508	0	181	-3.167	-0.517	-68.782	68.858	0.330
505	311	(KO)	-83	502	504	789	789	0	0	-2.046	-0.406	-58.420	58.460	0.498
506	331	(eta')	-83	502	504	941	942	0	0	-1.070	-2.000	-93.597	93.629	0.958
507	-323	(K*-)	-83	502	504	790	791	0	0	-2.736	-2.575	-132.287	132.344	0.943
508	111	(pi0)	-84	502	504	943	944	0	0	-1.102	0.050	-27.596	27.618	0.135
789	130	K_LO	91	505	505	0	0	0	0	-2.046	-0.406	-58.420	58.460	0.498
790	-311	(KbarO)	-91	507	0	932	932	0	0	-0.900	-1.003	-55.248	55.267	0.498
791	-211	pi-	91	507	0	0	0	0	0	-1.836	-1.571	-77.039	77.077	0.140
792	-211	pi-	91	516	0	0	0	0	0	0.117	-0.161	-1.617	1.635	0.140
793	111	(pi0)	-91	516	0	1069	1070	0	0	-0.431	-0.098	-0.498	0.680	0.135
794	2212	p+	91	537	0	0	0	0	0	-1.175	0.093	-0.721	1.670	0.938
795	211	pi+	91	537	0	0	0	0	0	-0.414	0.352	-0.340	0.657	0.140
1316	22	gamma	91	1313	0	0	0	0	0	-1.574	0.014	-0.839	1.783	0.000
1317	22	gamma	91	1313	0	0	0	0	0	-0.887	0.068	-0.569	1.056	0.000
			Charge	sum:	2.000		Mo	mentum	sum:	-0.000	0.000	-0.000	14000.000	14000.000

---- End PYTHIA Event Listing

31 December, 2009

P Distribution of W⁺

Total P (GeV) of W⁺

$$p_{W^+} = \sqrt{p_{W^+x}^2 + p_{W^+y}^2 + p_{W^+z}^2}$$

P, E & Mass (M) of W⁺ from D1D2

31 December, 2009

P, E & M (GeV) of W⁺

P Distribution of D_1 of W⁻

Total P (GeV) of D₁ (W⁻) $p_{W^-D_1} = \sqrt{p_{W^-D_1x}^2 + p_{W^-D_1y}^2 + p_{W^-D_1z}^2}$

31 December, 2009

P Distribution of D_2 of W⁻

Total P (GeV) of D₂ (W⁻) $p_{W^-D_2} = \sqrt{p_{W^-D_2x}^2 + p_{W^-D_2y}^2 + p_{W^-D_2z}^2}$

31 December, 2009

P Distribution W-

 $p_{W^{-}} = \sqrt{p_{W^{-}x}^{2} + p_{W^{-}y}^{2} + p_{W^{-}z}^{2}}$ Total P (GeV) of W⁻

31 December, 2009

P, E & M (GeV) of W⁻ from D1D2

P, E & M (GeV) of W-

How to Find Pseudorapidity (η), Transverse Momentum (P_T), Transverse Energy (E_T)

x-axis

-axis

y-axis

Beam Axis

z-axis

Azimuthal Scattering Angle

"p hi"

x-axis

Proton

where θ is the angle between the particle momentum \vec{p} and the beam axis

Transverse Momentum

$$p_T = \sqrt{p_x^2 + p_y^2}$$

Transverse Energy

$$E_T = \sqrt{E_x^2 + E_y^2}$$

Transverse Momentum

Proton

onevers

xy-plane

$$\eta = 0.88$$

 $\theta = 90^{\circ}$, $\eta = 0.88$
 $\theta = 45^{\circ}$, $\eta = 2.44$
 $\theta = 0^{\circ}$, $\eta = \infty$

31 December, 2009

 η , P_T , E_T & E (GeV) of D_1 (W⁺)

η , P_T, E_T, Total E (GeV) of D₂ (W⁺)

η , P_T, E_T, Total E (GeV) of W⁺

η, P_T , E_T , Total E (GeV) of D_1 (W⁻)

η, P_T , E_T , Total E (GeV) of D_2 (W⁻)

31 December, 2009

η, P_T, E_T, Total E (GeV) of W⁻

 $P_{T}, E_{T}, E \& P (GeV) \text{ of } D_{1} (W^{+})$

 $P_T, E_T, E \& P (GeV) \text{ of } D_2 (W^+)$

 $P_T, E_T, E \& P (GeV) \text{ of } W^+$

 $P_{T}, E_{T}, E \& P (GeV) \text{ of } D_{1} (W)$

31 December, 2009

 $P_{T}, E_{T}, E \& P (GeV) \text{ of } D_{2} (W)$

 $P_T, E_T, E \& P (GeV) \text{ of } W^-$

E Vs P (GeV) of D_1D_2 W⁺W⁻

31 December, 2009

E Vs P, E^2 Vs P^2 of W^+ , W^-

31 December, 2009

P Distribution Z°

Total P (GeV) of Z⁰ from W⁺ & W⁻ 31 December, 2009

Second Winter Meeting, NCP

 $p_{Z^0} = \sqrt{1}$

 $/ (p_{W^{+}x} + p_{W^{-}x})^{2} + (p_{W^{+}y} + p_{W^{-}y})^{2} + (p_{W^{+}z} + p_{W^{-}z})^{2}$

P, E & M (GeV) of Z^0

$$p_{Z^{0}} = \sqrt{(p_{W^{+}x} + p_{W^{-}x})^{2} + (p_{W^{+}y} + p_{W^{-}y})^{2} + (p_{W^{+}z} + p_{W^{-}z})^{2}}$$

31 December, 2009

- Calculated the different parameters like η, P, E,P_T, E_T, Opening Angle etc. of decaying products of both W⁺W⁻
- Then, using the four momenta, I reproduced the invariant mass (80.5 GeV) of W⁺W⁻
- Calculated the above parameters also for both W⁺W⁻
- Then, using the four momenta, I reproduced the invariant mass
 > 161 GeV
- Experimentally, there is no such a predicted particle whose mass is > 161 GeV
- So it proves that it's a virtual particle (γ^* , Z^{*})
- The Monte Carlo results proved that the interaction between gauge bosons (known as Triple gauge-boson Couplings) exist.

- Converting my analysis code in latest version of CMS Software, which is CMSSW_3_1_4.
- First complete Generator Level analysis.
- Then detector simulation and reconstruction will be added in the analysis code.
- CMS official data sets are available at Tier-2 center of CERN computing Grid, which will be used for my analysis.

