

Beam Dynamics study in Linear Colliders

IJAZ AHMED
 National Centre for Physics, Islamabad

Ijaz Ahmed, National Centre for Physics, Islama6ad, 29-31 December 2009

Outlines

* Introduction of CLIC
* Introduction of CLIC Test Facility
* Beam-halo and tail particles generation
* Beam Delivery System (CLIC,ILC)
* Linear Accelerator (CLIC,ILC)
* Drive Beam (CLIC)
* CTF3 Test Beam Line
* Post Collision Line

World-wide CLIC / CTF3 collaboration

http://clic-meeting.web.cern.ch/clic-meeting/CTF3 Coordination Mtg/Table MoU.htm

 24 members representing 27 institutes involving 17 funding agencies of 15 countries

Major Parameters for Linear Collider

CLIC - Basic Features

CLIC TUNNEL CROSS-SECTION

- High acceleration gradient: > $100 \mathrm{MV} / \mathrm{m}$

- "Compact" collider - total length < 50 km at 3 TeV
- Normal conducting acceleration structures at high frequency
- Novel Two-Beam Acceleration Scheme
- Cost effective, reliable, efficient
- Simple tunnel, no active elements
- Modular, easy energy upgrade in stages

Drive beam-95A, 240 ns from 2.4 GeV to 240 MeV

CLIC Schematic

CLIC vs ILC

- Based on superconducting RF cavities
- Gradient 32 MV/m
- Energy: 500 GeV , upgradeable to 1 TeV (possible GigaZ factory at 90 GeV or ZZ factory at $\sim 200 \mathrm{GeV}$ is also considered)
- Detector studies focus mostly on 500 GeV
- Based on 2-beam acceleration scheme (warm cavities)
- Gradient $100 \mathrm{MV} / \mathrm{m}$
- Energy: 3 TeV, though will probably start at lower energy ($\sim 0.5 \mathrm{TeV}$)
- Detector study focuses on 3 TeV

Collider Parameters

Parameter	Symbol	3 TeV	1 TeV	0.5 TeV	ILC	Unit
Center of mass energy	E_{cm}	3000	1000	500	500	GeV
Main Linac RF Frequency	f_{RF}	12	12	12	1.3	GHz
Luminosity	L	7	2.25	2.24	2	$10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$
Luminosity (in 1\% of energy)	$\mathrm{L}_{99 \%}$	2	1.08	1.36		$10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$
Linac repetition rate	$\mathrm{f}_{\text {rep }}$	50	50	100	5	Hz
No. of particles / bunch	N_{b}	3.72	3.72	3.72	20	10^{9}
No. of bunches / pulse	k_{b}	312	312	312	2670	
No. of drive beam sectors / linac	$\mathrm{N}_{\text {unit }}$	24	8	4	-	-
Overall two linac length	$1_{\text {lina }}$	41.7	13.9	6.9	22	km
Proposed site length	$\mathrm{l}_{\text {tot }}$	47.9	20.1	13.2	31	km
DB Pulse length (total train)	$\tau_{\text {t }}$	139	46	23	-	$\mu \mathrm{s}$
Beam power / beam	P_{b}	14	4.6	4.6	10.8	MW
Wall-plug power to beam efficiency	$\eta_{\text {wp-ff }}$	8.7	6.1	6.1	9.4	\%
Total site AC power	$\mathrm{P}_{\text {tot }}$	322	~ 150	~ 150	230	MW
Transverse horizontal emittance	$\gamma \varepsilon_{s}$	660	660	660	8000	nm rad
Transverse vertical emittance	$\gamma \varepsilon_{y}$	20	20	20	40	nm rad
Horizontal IP beam size before pinch	$\sigma_{\mathrm{x}}{ }^{\text {c }}$	40		142	640	nm
Vertical IP beam size before pinch	σ^{*}	1		2	5.7	nm
Beamstrahlung energy loss	$\delta_{\text {B }}$	29	11	7	2.4	\%

CLIC Test Facility (CTF3)

- Demonstrate remaining CLIC feasibility issues, in particular:
- Drive Beam generation (fully loaded acceleration, bunch frequency multiplication)
- CLIC accelerating structures
- CLIC power production structures (PETS)

Beam-Generated Halo and Tail

- Halo particles contribute very little to the luminosity but may instead be a major source of background and radiation.
- Even if most of the halo will be stopped by collimators, the secondary muon background may still be significant.
- Halo and tail considerations are needed for design studies to allow to estimate and minimise any potential performance limitations from this source.
- Provides analytical estimates + package with code and interface for detailed tracking with samples and application to CLIC (+ ILC within EuroTeV)

CLIC: HTGEN as standard component of PLACET

Halo and Tail Sources

Particle processes:
 \square Beam-gas scattering (elastic, inelastic)
 \square Synchrotron radiation (coherent/incoherent)
 \square Scattering off thermal photons
 \square Ion/electron cloud effects
 I Intrabeam scattering
 - Touschek scattering

Optics related: Halo modeling

- Mismatch
- Coupling
- Dispersion
- Non-linearities

Various (equipment related, collective)

- Noise and vibration
- Dark currents
- Space charge effects close to source
- Wake fields
- Beam loading
- Spoiler scattering

Beam-Gas Scattering

Beam Delivery System (BDS)

Collimation System

. Reduce the background by removing particles at large betatron amplitudes (Halo) or energy Offsets.
\square The choice of the collimator apertures should guarantee good cleaning efficiency of Halo.

- To avoid wakefields that might degrade the orbit stability.

Final Focus System

- Need to provide a very strong focusing.
- Reduces the transverse sizes of the beam at the IP sufficiently to provide the required luminosity
- The correction of chromatic and geometric aberrations.

Equation of Motion

$$
\begin{array}{ll}
x^{\prime \prime}(s)-k(s) x(s)=0 & \text { Hills equation } \\
x(s)=\sqrt{\varepsilon} \sqrt{\beta(s)} \cdot \cos (\psi(s)+\phi) & \text { General solution } \\
\text { (1) } x(s)=\sqrt{\varepsilon} * \sqrt{\beta(s)} * \cos (\psi(s)+\phi) & \\
\text { (2) } & x^{\prime}(s)=-\frac{\sqrt{\varepsilon}}{\sqrt{B(s)}} *\{\alpha(s) * \cos (\psi(s)+\phi)+\sin (\psi(s)+\phi)\} \\
\varepsilon=\gamma(s)^{*} x^{2}(s)+2 \alpha(s) x(s) x^{\prime}(s)+\beta(s) x^{\prime}(s)^{2}
\end{array}
$$

Dispersion Function

$$
\begin{aligned}
& \alpha(s)=\frac{-1}{2} \beta^{\prime}(s) \\
& \gamma(s)=\frac{1+\alpha(s)^{2}}{\beta(s)}
\end{aligned}
$$

$$
x^{\prime \prime}+x\left(\frac{1}{\rho^{2}}-k\right)=\frac{\Delta p}{p} \cdot \frac{1}{\rho}
$$

$$
\text { Phase Advance: } \psi(s)=\int_{0}^{s} \frac{d s}{\beta(s)}
$$

general solution:

$$
\begin{array}{lr}
x(s)=x_{h}(s)+x_{i}(s) & \text { Tune: } Q_{y}=\frac{1}{2 \pi} \cdot \oint \frac{d s}{\beta(s)} \\
D(s)=\frac{x_{i}(s)}{\Delta p / p} & \text { Chromaticity: } \\
\xi=\frac{-1}{4 \pi} * \oint \boldsymbol{K}(s) \beta(s) d s
\end{array}
$$

CLIC BDS Optics

Simulation : Model of the Beam

If a lattice is linear then particle representation:

$$
\sum_{i} \equiv\left[\begin{array}{llll}
\sigma_{x, i} \sigma_{x, i} & \sigma_{x, i} \sigma_{\dot{x}, i} & \sigma_{x, i} \sigma_{y, i} & \sigma_{x, i} \sigma_{y, i} \\
\sigma_{x, i} \sigma_{x, i} & \sigma_{x, i} \sigma_{x, i} & \sigma_{x, i} \sigma_{y, i} & \sigma_{x, i}^{\prime} \sigma_{y, i} \\
\sigma_{y, i} \sigma_{x, i} & \sigma_{y, i} \sigma_{\dot{x}, i} & \sigma_{y, i} \sigma_{y, i} & \sigma_{y, i} \sigma_{\dot{y}, i} \\
\sigma_{y, i} \sigma_{x, i} & \sigma_{y, i} \sigma_{x, i} & \sigma_{y, i} \sigma_{y, i} & \sigma_{y, i} \sigma_{y, i}
\end{array}\right]
$$

Beam Matrix of pulse representation:

$$
\Sigma \equiv\left[\begin{array}{llll}
\sum_{x x} & \sum_{x x^{\prime}} & \sum_{x y} & \sum_{x y^{\prime}} \\
\sum_{x^{\prime} x} & \sum_{x^{\prime} x^{\prime}} & \sum_{x^{\prime} y} & \sum_{x^{\prime} y^{\prime}} \\
\sum_{y x} & \sum_{y x^{\prime}} & \sum_{y y} & \sum_{y y^{\prime}} \\
\sum_{y^{\prime} x} & \sum_{y^{\prime} x^{\prime}} & \sum_{y^{\prime} y} & \sum_{y^{\prime} y^{\prime}}
\end{array}\right]
$$

Beam Tracking in BDS (1)

Beam-Entrance Profile in BDS

Beam Entrance in BDS *

Beam Tracking in BDS (2)

Beam Profile at IP

Beam Tracking in BDS (3)

Beam Tracking in BDS (4)

Halo Estimation using Collimation Depth

Only 17% of halo particles are outside the window in case of final quad is super conducting final magnet. $25 \sigma_{x}$ and $80 \sigma_{y}$

Only 4.5% particles are outside the selected window in case of final quad is permanent magnet. $400 \sigma_{\mathrm{z}}$ and $1000 \sigma_{\mathrm{y}}$

Analytical Estimates and Simulations for CLIC BDS

Integrated over the Linac, the probability for Mott scattering is then 1.16×10^{-3}
\square The total probability for the 2.75 km long BDS is 6.02×10^{-5}.
\square For the sum of LINAC and BDS we get a scattering probability of 1.2×10^{-3}.
\square The probability for inelastic scattering with a fractional energy loss $\mathrm{K}_{\min }>0.01$ is much smaller, about $2.1 \times 10^{-13} \mathrm{~m}$ both in the LINAC and BDS.

- Summing up over the full length, we get a probability for inelastic scattering for the combined LINAC and BDS system of 5×10^{-9}.
A fraction of about 2×10^{-4} of all particles will have large amplitudes and hit the spoilers in the BDS.
\square With 1.24×10^{12} particles per train, this would translate into a flux of 2.4×10^{8} particles per train impacting on the spoiler.
\square At 1.5 TeV , we expect that a fraction of about 9×10^{-4} of these particles produce secondary muons, resulting in a flux of about 2×10^{-5} muons per train

Parameter	Unit	Value
$\mathrm{e}_{\mathrm{N}, \mathrm{y}, \text { initial }}$	nm	5.0
$\beta \mathrm{y}$	m	100
Residual gas (BDS)		CO
Residual gas (LINAC)		CO
Temperature (BDS)	K	300
Temperature (LINAC)	K	300
Pressure (BDS)	nTor	10
Pressure (LINAC)	nTor	10
Length of LINAC	Km	15
Length of BDS	Km	2.5
Kmin		0.01

Location	\mathbf{E} $\mathbf{G e V}$	Gas	ρ $m^{\wedge}-3$	$\sigma_{\text {el }}$ Barn	\mathbf{P} $m^{\wedge}-1$
LINAC	9	$C O$	3.2×10^{14}	1.1×10^{8}	3.6×10^{-6}
BDS	1500	$C O$	3.2×10^{14}	3.6×10^{5}	2.2×10^{-8}

Analytical Estimates and Simulations for ILC BDS

* The probability for elastic scattering at the beginning of the LINAC is about 50 times higher.
* The elastic scattering probability in whole LINAC is 9×10^{-3}.
* Only a fraction of these will hit spoilers or the beam pipe.
* The probability integrated over LINAC with angles exceeding 30 times the beam vertical divergence is 10^{-5}.
* Integrated probability over BDS is 5×10^{-7}.
* The probability for inelastic scattering with a fractional energy loss kmin >0.01 is small, $1.8 \times 10^{-12} / \mathrm{m}$ in the LINAC and rather similar, $1.0 \times 10^{-12 / \mathrm{m}}$ in the BDS.
* Sum of LINAC and BDS inelastic scattering of 2.3×10^{-8}.
* The probability of thermal scattering is still much smaller, about 9×10^{-11} for the BDS and completely negligible for the LINAC.
* The beam-gas scattering from the LINAC and BDS combined results in a fraction of 10^{-4} of the particles impacting on the spoilers. * For the nominal intensity of 2×10^{10} particles per bunch and 2820 bunches, we expect that 6×10^{9} particles hit the spoilers at each train crossing.

Location	\mathbf{E} $\mathbf{G e V}$	Gas	ρ $\mathbf{m}^{\wedge}-3$	$\sigma_{\text {el }}$ Barn	\mathbf{P} $\mathbf{m}^{\wedge-1}$
LINAC	5	He	4.8×10^{16}	2.0×10^{6}	9.9×10^{-6}
LINAC	250	He	4.8×10^{16}	3.8×10^{4}	1.8×10^{-7}
BDS	250	N 2	1.6×10^{15}	4.6×10^{-5}	1.5×10^{-7}

Analytical Estimates and Simulations for ILC BDS

Horizontal (top) and vertical (bottom) beam positions as function of the longitudinal coordinate s in the BDS

CLIC Drive Beam Tracking (1)

Parameter	Unit	Value
Drive beam sector length	\mathbf{m}	$\mathbf{1 0 5 3}$
numb. of part. per bunch	$\mathbf{1 0}^{\mathbf{9}}$	52.5
numb. of bunches per train	-	$\mathbf{2 9 2 8}$
mean initial beam energy	$\mathbf{G e V}$	$\mathbf{2 . 4 0}$
mean final beam energy	$\mathbf{G e V}$	$\mathbf{0 . 4 0}$
$\varepsilon_{\mathrm{N}, \mathrm{y}, \text { initial }}$	$\mathbf{m m}$	$\mathbf{1 5 0 . 0}$
$\varepsilon_{\mathrm{N}, \mathrm{y}, \text { final }}$	$\mathbf{m m}$	$\mathbf{3 3 4}$
Residual gas mixture		$\mathbf{4 0 \% \mathbf { H 2 O 4 0 \% H 2 } ,}$
20\% (CO, N2, CO2)		
Temperature	\mathbf{K}	$\mathbf{3 0 0}$
Pressure	$\mathbf{n T o r r}$	$\mathbf{1 0}$
Beam divergence		
$\mathrm{K}_{\text {min }}$		$\mathbf{0 . 0 1}$

Process	$\rho\left[\mathrm{m}^{-3}\right]$	$\mathbf{P}_{\text {init }}\left[\mathbf{m}^{-1}\right]$	$\mathbf{P}_{\text {final }}\left[\mathbf{m}^{-1}\right]$
Mott	3.22*10 ${ }^{14}$	7.96*10 ${ }^{-12}$	4.21*10 ${ }^{-11}$
Brems.	3.22*10 ${ }^{14}$	$1.11 * 10^{-13}$	$1.11 * 10^{-13}$
Comp.	$5.45 * 10^{14}$	3.63*10 ${ }^{-14}$	3.63*10 ${ }^{-14}$

CLIC Drive Beam Tracking (2)

Mott scattering

electron : theta

electron : theta

photon : energy

CLIC Drive Beam Tracking (3)

* Energy spread caused by Compton scattering stays below 0.25\%
* Total scattering probability integrated over the whole decelerator is 7.69×10^{-9}
* Effect of ionization of residual gas shows that the ionization level stays below 3\%. So no need of model extension.
* The total number of intra beam scattering events per unit time scales with $1 / \beta 4$ and increases with particle density which shows that intra beam as well as Touschek become more relevant with low energy beams and small beam size.
* Sliced beam -model and particle beam -model
* Particle is considered to be lost if amplitude exceeds the aperture of element.
* Small fraction of 10^{-7} particles is lost.

Test Beam Line (CTF3)

Test Beam Line (CTF3)

set n_bunches 200
set n_slices 51
set n_macros 1
set d_bunch 0.025
set sigma_bunch 1000
set gauss_cut 3
set charge 1.4575 e 10
set e0 0.150
set emitt_x 1500.0
set emitt_y 1500.0
\# Define the longitudinal mode
set beta_l 0.4529
set RQ 2294.7/2
set lambda_l 0.025
beam offset,
sigmax $=134.8$, sigmay $=329.8$

$$
\begin{align*}
& \text { Maximum beam energy }=0.150 \mathrm{GeV} \\
& \text { Lorentz factor }(\gamma) \quad=293.543 \\
& \text { Velocity }(\beta) \quad=0.999994 \\
& \text { Normalized emittance } \varepsilon_{\mathrm{N}}=\varepsilon_{\mathrm{x}, \mathrm{y}, \mathrm{~N}}=150 \mathrm{mrad} \\
& \text { Geometric emittance } \varepsilon=\varepsilon_{\mathrm{N}} /(\beta \gamma)=0.511001 \mathrm{mrad} \\
& \text { Beta Functions } \beta_{\mathrm{x}}=0.827, \quad \beta_{\mathrm{y}}=4.72 \mathrm{~m} \\
& \qquad \theta_{\min }=\sqrt{\varepsilon / \beta} \\
& \qquad \theta_{x}=\sqrt{\left(\varepsilon_{x} / \beta_{x}\right)}=0.786 \mathrm{mrad} \\
& \left.\theta_{y}=\sqrt{\left(\varepsilon_{y} / \beta_{y}\right.}\right)=0.329 \mathrm{mrad}
\end{align*}
$$

Drive Beam Halo: CTF3-TBL

CTF3-TBL LENGTH $[\mathrm{m}]$	$=21.99$
CLIC Drive Beam Length [m]	$=738.349$
Z mean $\left(\mathrm{N}_{2}\right)$	$=7$
PRESSURE [Pa]:1.33322e-06	$=10 \mathrm{nTorr}$
Temperature $[\mathrm{K}]$	
NPart	$=300$
KMIN	$=4 \mathrm{e}+09$
Particle density $\left(\mathrm{m}^{-3}\right)$	$=6.437660 \mathrm{e}+14 / \mathrm{m} 3$

CLIC estimate. $\quad \mathbf{P}=$ probability $/ \mathrm{m}$ for scattering

Location	E (GeV)	Gas	$\sigma_{\text {el }}$ Barn	$\sigma_{\text {in }}$ Barn	$\mathbf{P}_{\text {el }}$ m^{-1}	$\mathbf{P}_{\text {in }}$ m^{-1}	$\Theta_{\text {min }}$ mrad
CTF3- TBL	0.150	$\mathrm{~N}_{2}$	5242	5.5117	$3.37 \mathrm{e}-10$	$1.77 \mathrm{e}-13$	329

Beam-Gas Scattering: CTF3-TBL

Mott scattering

Drive Beam Halo: CTF3-TBL Tracking

HTGEN+PLACET application to low energy CLIC drive beam, started potential for benchmarking - CTF3

Halo Flux Estimate: CTF3-TBL

* electrons/bunch $=1.4575 \times 10^{10}$
* Probability $=3.37 \times 10^{-10} / \mathrm{m}$
* Probability in CLIC TBL Drive beam $=7.41 \times 10^{-9}$
* Halo/bunch $=1.08 \times 10^{2}$

Halo Acceleration in Linac (1)

- FullTracking
- Temperature 300 K
- Pressure 10 ntorr
- Scattering angle 10nrad
- Residual Gas

LINAC Beamline

- Standard PLACET lattice
- Total no. of elements 54068
- No. of Quad. 1324
- No. of BPMs 1324
- No. of slices 31
- No. of macroparticles 100
- Linac injection energy 9.0 GeV
- Charge 4 nC
- Emitt. along x-axis 680 nrad
- Emitt. Along y-axis 10 nrad

Energy of the halo particles is increasing almost linearly during passing through the accelerating structures of the LINAC

Halo Acceleration in Linac (2)

CLIC Post Collision Line

Benchmarking study between DIMAD and PLACET codes with 20 mrad post collision line

Overview (1)

- Comparison between two contemporary codes: DIMAD and PLACET.
- CLIC post collision line for benchmarking purpose.
- We consider current 20 mrad extraction line of CLIC
- Tracking performed using
- 4-particles tracking with different energy deviation.
- 1K particles
- Heavily disrupted post collision electrons beam

Overview (2)

- Lattice conversion from DIMAD \rightarrow MAD-X \rightarrow PLACET format
- Rotation of beam axes from horizontal to vertical is performed by tilt option inside the sector bend at right angle.
- Few wrong units are corrected:
- Modification in extraction line lattice
-Aperture sizes are corrected
-Removal of aperture constraints from drifts
-Implementation of aperture constraints on four collimators as well.
- Disrupted beam as DIMAD input
- Tracking performed with PLACET from IP to dump.

Layout of Post Collision Line

Transportation of spent beams and the beamsstrahlung photons from the interaction point to their dumps, with as small losses as possible.
4.0 m
highest point under the ceiling (present CE design, taken from ILC)

```
3.6m------
```


Extraction Line Lattice

Table 1: First set of four magnets, starting 20 m from the interaction point.

	Magnet 1	Magnet 2	Magnet 3	Magnet 4
Length (m)	4.000	4.000	4.000	4.000
Width (m)	0.414	0.682	0.946	1.208
Height (m)	0.833	1.451	2.065	2.677
Gap width (m)	0.167	0.230	0.288	0.344
Gap height (m)	0.260	0.610	0.960	1.310

Table 2: Second set of four magnets, just after the intermediate dump.

	Magnet 5	Magnet 6	Magnet 7	Magnet 8
Length (m)	4.000	4.000	4.000	4.000
Width (m)	1.870	1.870	1.870	1.870
Height (m)	1.510	1.510	1.510	1.510
Gap width (m)	0.450	0.450	0.450	0.450
Gap height (m)	1.000	1.000	1.000	1.000

- Coll. 1: $\mathrm{Y}=0.184 \mathrm{~m}$
- Coll. 2: $\mathrm{Y}=0.476 \mathrm{~m}$
- Coll. 3: $\mathrm{X}=\mathrm{Y}=0.809 \mathrm{~m}$

$$
\beta(s)=\beta^{*}+\frac{s^{2}}{\beta^{*}}
$$

In case when there is no quadrupole, only 2 sets of 4 bending magnets

Single Off Momentum Particles Tracking

- Switched off SR
- No need of particle-matter interactions
- Single particle trajectory
- Four particles with transverse components ($\mathrm{x}=0, \mathrm{xp}=0, \mathrm{y}=0, \mathrm{yp}=0$) at IP
- Energy deviation of each ($\delta=0, \delta=-0.3333, \delta=-0.80000, \delta=0.93333$)

Ideal Beam with Off Momentum Particles

Disrupted Beam: Transverse Distributions

Disrupted Beam: Energy vs Offsets/Angles

Disrupted Beam: Energy Histogram

Beam-Beam Interactions: GuineaPig

ACCELERATOR:: CLIC-2500

$$
\begin{aligned}
\{\text { energy }=2500 . ; \\
\text { particles }=0.4 ; \\
\text { emitt_x }=0.58 ; \\
\text { emitt_y }=0.01 ; \\
\text { beta_x }=8.0 ; \\
\text { beta_y }=0.1 ; \\
\text { sigma_z }=30 . ; \\
\text { dist_z }=0 ; \\
\text { espread }=0.0 ; \\
\text { which_espread }=0 ; \\
\text { offset_x }=0 ; \\
\text { offset_y }=0 . ; \\
\text { waist_x }=0 ; \\
\text { waist_y }=0 ; \\
\text { angle_x }=0 ; \\
\text { angle_y }=0 ; \\
\text { angle_phi }=0 ; \\
\text { trav_focus }=0 ; \\
\}
\end{aligned}
$$

PARAMETERS::

CLIC_standard_compton

$$
\begin{gathered}
\{ \\
\text { n_x }=64 ; \\
\text { n_y }=64 ; \\
\text { n_z }=36 ; \\
\text { n_t }=8 ;
\end{gathered}
$$

$$
\text { cut_x=3.0*sigma_x. } 1 \text {; }
$$

cut_y=6.0*sigma_y.1 ;

$$
\text { cut_z=3.0*sigma_z. } 1 \text {; }
$$

n_m=40000 ;
force_symmetric=1;
integration_method=2 ;

$$
\text { do_eloss = } 1 \text {; }
$$

$$
\text { do_espread = } 1 \text {; }
$$

do_isr = 1;
store_beam=1 ;
electron_ratio=0.1 ;
do_photons=1 ;
photon_ratio=0.1 ;
store_photons=1;
do_pairs=0 ;

```
track_pairs=1; grids=7 ;
        pair_ratio = 1.0;
        pair_ecut \(=0.005\);
        beam_size=1;
        do_compt = 1;
        compt_x_min=0.01;
        compt_emax=800;
        do_hadrons=1;
        store_hadrons = 1 ;
    hadron_ratio=1000.;
        do_jets=1;
        store_jets=1 ;
        jet_ptmin=3.2 ;
        jet_ratio=10000.;
        jet_log=1;
        do_lumi=1;
    num_lumi=10000;
        lumi_p=0.0001 ;
        \}
```


Jets Production at CLIC

Conclusion

-Analytical estimation of scattering probability of beam-generated halo in:

- Beam delivery system and LINAC of CLIC
- Beam delivery system and LINAC of ILC
- CLIC drive beam
- CLIC Test Facility 3 drive beam
-Performed a detailed benchmarking study of two particle tracking codes, DIMAD and PLACET using 20mrad post collision line.
- Beam-Beam interaction (study going on......)

Beam-Halo Collimation

Beam halo : damping ring, linac, final focus aberrations etc
\square The beam halo can result in electromagnetic showers and SR reaching the detector (+ muon background).
\square Halo removed by physically intercepting the particles using mechanical spoilers + thick absorbers to remove the debris.
\square Thick absorbers then become a source of muons - should be within tolerable levels at the detector.
\square IR layout and mainly final doublet dominate.

1 phase
2 phase

Lattice with low Dispersion: BDS

Transverse Phase Space: Exit of BDS

