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It is well known that in quark model the mesons and baryons are composed of qq̄ and qqq,
respectively and it provides a convenient framework in the classification of hadrons. Most
experimentally observed hadronic states fit in it quite nicely.

The states which are beyond this quark model are non-conventional hadrons and are termed
“exotics” .

The exotic states in the spectrum of charmonium have been found experimentally, where few
of them are labelled as X , Y and Z states.
There are three different frameworks suggested to accommodate these exotic states

D − D∗ molecule

cc̄g hybrids

Diquark-antidiquark or four quark states.
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Motivation to explain the state X (3872) observed by the Belle by the hadronic molecule is
that the mass of this state is very close to the D0D̄∗0 threshold.

Dates back to the work by Fermi and Yang: The pion is interpreted as a nucleon-nucleon
bound state.

Problem: The D0D̄∗0 molecule containing the X (3872) state would be characterized by the
extremely small binding energy. This makes it odd that such a loosely bound molecule could
be produced promptly (i.e. not from B decays, used by Belle and BABAR) in high energy
hadron collision environment.

Grinstein et al. have estimated the prompt production cross section of X (3872) by
considering it as a D0D̄∗0 hadron molecule

It is about two orders of magnitude smaller than the minimum production cross section one
can extract from CDF data.
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Favors an alternate scenario in which these exotic states are roughly of hadronic size.

Maiani et al. have proposed that instead of a molecule one can study these states by
considering the bound system of a diquark and an antidiquark in a tetraquark scheme.

Jaffe and Wilckez interpretation of pentaquark baryons that can be formed from
“antidiquark-antidiquark-quark”.

Tetraquark states: Diquark-antidiquark pairs are in color 3̄ and 3 configuration, respectively,
bound together by the color forces.

Distinctive from the D − D∗ molecules.

Demerits of this picture is that there is no set of selection rule available to explain why many
of the states predicted in this picture are not yet seen.
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The purpose is to discuss;

Spin-spin interactions in the constitutent quark model and give the spectrum of bottom
diquark-antidiquark states both for LQQ̄ = 0, 1.

The estimate of the different decay modes of these states.

Its potential to look at on going and future experiments.
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Spectrum of bottom diquark-antidiquark states The mass spectrum of the systems
[bq][bq′] with q = u, d , s and c can be described in terms of the constituent diquark masses,
spin-spin interactions inside the single diquark, spin-spin interaction between quark and
antiquark belonging to two diquarks, spin-orbit and purely orbital term, i.e.

H = 2mQ + H(QQ)
SS + H(QQ̄)

SS + HSL + HLL (1)

where:

H(QQ)
SS = 2(Kbq)3̄[(Sb · Sq) + (Sb̄ · Sq̄)],

H(QQ̄)
SS = 2(Kbq̄)(Sb · Sq̄ + Sb̄ · Sq) + 2Kbb̄(Sb · Sb̄) + 2Kqq̄(Sq · Sq̄),

HSL = 2AQ(SQ · L + SQ̄ · L),

HLL = BQ
L(L + 1)

2
. (2)

The parameters involved in the above Hamiltonian (2) can be obtained from the known
meson and baryon masses by resorting to constituent quark model

H =
∑

i

mi +
∑

i<j

2Kij(Si · Sj ) (3)

where the sum runs over the hadron constituents. For instant applied to L = 0 mesons
K − K∗ gives

M = mq + ms + Ksq̄

[
J (J + 1) − 3

2

]
. (4)
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Writing the similar equations for π − ρ, D − D∗, Ds − D∗
s and J/Ψ − ηc complex one can

obtain the values of color singlet Kij for u, d , s and c−quark flavor which together with
spin-spin interaction in color antitriplet state that comes from baryon masses.

Table: Constituent quark masses derived from L = 0 mesons and baryons.

Constituent mass (MeV) q s c b
Mesons 305 490 1670 5008
Baryons 362 546 1721 5050

Table: Spin-Spin couplings for quark-antiquark pairs in in the color singlet state from known mesons.

Spin-spin couplings qq̄ sq̄ ss̄ cq̄ cs̄ cc̄ bq̄ bs̄ bc̄ bb̄(
Kij
)

0(MeV) 318 200 129 71 72 59 23 23 20 36

Table: Spin-Spin couplings for quark-quark in color 3̄ state from known baryons.

Spin-Spin couplings qq sq cq cs ss bq bs bc(
Kij
)

3̄(MeV) 98 65 22 24 72 6 25 10
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To calculate the spin-spin interaction of the QQ̄ quantum state explicitly, we use the following
non-relativistic notation ∣∣SQ , SQ̄ ; J

〉
=
∣∣Γ, Γ′; J

〉
(5)

where, SQ and SQ̄ are the spin of diquark and antidiquark, J is the total angular momentum
and the Γα are 2 × 2 matrices in spinor space. Using pauli matrices they can be written as:

Γ0 =
σ2√

2
; Γi =

1√
2
σ2σi (6)

and we define:

∣∣0Q , 0Q̄ ; 0J
〉

=
1

2
(σ2) ⊗ (σ2) ,

∣∣1Q , 1Q̄ ; 0J
〉

=
1

2
√

3

(
σ2σ

i
)
⊗
(
σ2σ

i
)
,

∣∣0Q , 1Q̄ ; 1J
〉

=
1

2
(σ2) ⊗

(
σ2σ

i
)
,

∣∣1Q , 0Q̄ ; 1J
〉

=
1

2

(
σ2σ

i
)
⊗ (σ2) ,

∣∣1Q , 1Q̄ ; 1J
〉

=
1

2
√

2
εijk
(
σ2σ

j
)
⊗
(
σ2σ

k
)
. (7)

Next step is the diagonalization of the Hamiltonian (1) using the basis of states with definite
diquark and antidiquark spin and total angular momentum. There are two different
possibilities:
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Lowest lying [bq][b̄q̄] states
(
LQQ̄ = 0

)

Conventionally the states can be classified in terms of the diquark and antidiquark spin, SQ
and SQ̄ , total angular momentum J, parity, P and charge conjugation, C. Considering both
good and bad diquraks and having LQQ̄ = 0 we have six possible states:

Two states with JPC = 0++

∣∣0++
〉

=
∣∣0Q , 0Q̄ ; 0J

〉
;

∣∣0++′〉 =
∣∣1Q , 1Q̄ ; 0J

〉
. (8)

Three states with J = 1

∣∣1++
〉

=
1√
2

(∣∣0Q , 1Q̄ ; 1J
〉

+
∣∣1Q , 0Q̄ ; 1J

〉)
;

∣∣1+−〉 =
1√
2

(∣∣0Q , 1Q̄ ; 1J
〉
−
∣∣1Q , 0Q̄ ; 1J

〉)
;

∣∣1+−′〉 =
∣∣1Q , 1Q̄ ; 1J

〉
. (9)

All these states have positive parity because both good and bad diquarks have positive parity
and LQQ̄ = 0. The difference is of charge conjugation, the state

∣∣1++
〉

is even under charge
conjugation, where as

∣∣1+−〉 and
∣∣1+−′〉 are odd.

One state with JPC = 2++
∣∣2++

〉
=
∣∣1Q , 1Q̄ ; 2J

〉
. (10)
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Keeping in view that for LQQ̄ = 0 there is no spin-orbit and purely orbital term, the Hamiltonian (1)
takes the form

H = 2m[bq] + 2(Kbq)3̄[(Sb · Sq) + (Sb̄ · Sq̄)] + 2Kqq̄(Sq · Sq̄)

+2(Kbq̄)(Sb · Sq̄ + Sb̄ · Sq) + 2Kbb̄(Sb · Sb̄). (11)

The diagonalization of Hamiltonian (11) with the states defined above gives its eignevalues which
are needed to estimate the masses of these states. It is straight forward to see that for 1++ and
2++ states the Hamiltonian is diagonal with the eigenvalues

M
(
1++

)
= 2m[bq] − (Kbq)3̄ +

1

2
Kqq̄ −Kbq̄ +

1

2
Kbb̄, (12)

M
(
2++

)
= 2m[bq] + (Kbq)3̄ +

1

2
Kqq̄ + Kbq̄ +

1

2
Kbb̄. (13)

To find the numerical values everything is known except the mass of the constituent diquark which
can be estimated as

m[bq] = m[cq] + (mb − mc) (14)

= 5.267 GeV, for q = u, d (15)

= 5.451 GeV, for q = s (16)

with m[cq] = 1933 MeV, m[cs] = m[cq] + (ms − mq) and the value of mb , mc and mq are given in
Table I.
The color octet couplings can be estimated with the help of the one gluon exchange model, where
neglecting spin, we can write the diquark in 3̄ color channel as: Q i = [bq]i ≡ εijk bjqk , where i , j
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and k are the color indices in the fundamental representation of SU (3). Hence, the color neutral
hadron is

[bq][b̄q̄] = εijkεilm
(
bjqk

) (
b̄l q̄m

)
=
(

bj b̄
j
) (

qk q̄k
)
−
(

bj q̄
k
) (

b̄jqk

)
. (17)

To re-arrange the color indices in the last term of Eq. (17) one can use the SU (N) identity for the
Lie algebra generators

N2−1∑

a=1

λa
ijλ

a
kl = 2

(
δilδjk − 1

N
δijδkl

)
(18)

which for N = 3 gives

[bq][b̄q̄] =
(

bj b̄
j
) (

qk q̄k
)
−
[

1

2

(
b̄iλa

ij b
j
) (

q̄kλa
klq

l
)

+
1

3

(
bj b̄

j
) (

qk q̄k
)]

=
2

3

(
bj b̄

j
) (

qk q̄k
)
− 1

2

(
b̄iλa

ij b
j
) (

q̄kλa
kl q

l
)

. (19)

This gives the relative weights of a color singlet and a color octet state in a diquark-antidiquark
system. Quite easily one can see that the probability to find a particular qq̄ pair in color octet state
is twice the probability of finding it in color singlet state. So for Kbb̄

Kbb̄

(
[bq][b̄q̄]

)
=

1

3

(
Kbb̄

)
0 +

2

3

(
Kbb̄

)
8 (20)
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where
(
Kbb̄

)
0 is reported in Table II. The only thing that we do not know is the

(
Kbb̄

)
8 which can

be derived from the one gluon exchange model by using the relation:

(
Kbb̄

)
X ∼

(
C2 (X) − C2 (3) − C2 (3̄

))
(21)

with C2 (X) = 0, 4/3, 4/3, 3 for X = 0, 3, 3̄, 8 respectively. Finally, Eq. (20) gives

Kbb̄

(
[bq][b̄q̄]

)
=

1

4

(
Kbb̄

)
0 (22)

Now, we have all the input parameters to calculate the mass spectrum numerically. Putting
everything together the masses for 1++ and 2++ states becomes

M
(
1++

)
= 10.504 GeV, for q = u, d (23)

= 10.849 GeV, for q = s (24)

= 13.217 GeV, for q = c (25)

M
(
2++

)
= 10.520 GeV, for q = u, d (26)

= 10.901 GeV, for q = s (27)

= 13.239 GeV, for q = c (28)

For the 0++ and 1+− states, the Hamiltonina is not diagonal and corresponding to them we have
2 × 2 matrices which are

M
(
0++

)
=

(
−3(Kbq)3̄

√
3

2

(
Kqq̄ + Kbb̄ − 2Kbq̄

)
√

3
2

(
Kqq̄ + Kbb̄ − 2Kbq̄

)
(Kbq)3̄ −

(
Kqq̄ + Kbb̄ + 2Kbq̄

)

)
, (29)
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M
(
1+−) =



 −(Kbq)3̄ + Kbq̄ − (Kqq̄+Kbb̄)
2 Kqq̄ −Kbb̄

Kqq̄ −Kbb̄ (Kbq)3̄ −Kbq̄ − (Kqq̄+Kbb̄)
2



 . (30)

To estimate the masses of these two states, one has to diagonalize the above matrices.
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Higher mass [bq][b̄q̄] states
(
LQQ̄ = 1

)

The orbital excitation comes when LQQ̄ = 1 and both good and bad diquarks are considered.

|A〉 =
∣∣0Q , 0Q̄ ; 1J

〉
;

|B〉 =

∣∣1Q , 0Q̄ ; 1J
〉

+
∣∣0Q , 1Q̄ ; 1J

〉
√

2
;

|C〉 =
∣∣1Q , 1Q̄ ; 1J

〉
. (31)

Now both the good and the bad diquarks have positive parity, therefore, the state |B〉 has
P = C = −1, only for LQQ̄ = 1. Since CQQ̄ (−1)LQQ̄+SQQ̄ = 1, therefore, states |A〉 and |C〉
have CQQ̄ = −1 provided that LQQ̄ = 1 and SQQ̄ = 0 , 2.
Using the notations defined in Eq. (7) one can easily diagonalize the Hamiltonian (1) and the
mass shift due to spin-spin interaction terms HSS becomes

∆MSS =





−3
(
Kbq

)
3̄ 0 0

0
−
(
Kbq

)
3̄ −Kbq̄

+
(
Kqq̄ + Kbb̄

)
/2

0

0 0
−
(
Kbq

)
3̄ −Kbq̄

−
(
Kqq̄ + Kbb̄

)
/2





The eigenvalues of spin-orbit and angular momentum operators given in Eq. (1) were
calculated by Polosa et al.
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Table: Eigenvalues of spin-orbit and angular momentum operator in Eq. (1) with all the states having
J = LQQ̄ + SQQ̄ = 1.

∣∣SQ , SQ̄ , SQQ̄ , L
〉

a
(
SQ , SQ̄ , SQQ̄ , L

)
b
(
sQ , SQ̄ , SQQ̄ , L

)

|0 , 0, 0, 1〉 0 1
|1 , 0, 1, 1〉 −2 1
|1 , 1, 2, 1〉 −6 1
|1 , 1, 1, 1〉 −2 1
|1 , 1, 0, 1〉 0 1

Hence the four states having quantum numbers 1−− are:

M(1)
(
SQ = 0, SQ̄ = 0, SQQ̄ = 0, LQQ̄ = 1

)
= 2m[bq] + λ1 + BQ,

M(2)
(
SQ = 1, SQ̄ = 0, SQQ̄ = 1, LQQ̄ = 1

)
= 2m[bq] + δ + λ2 − 2AQ + BQ,

M(3)
(
SQ = 1, SQ̄ = 1, SQQ̄ = 0, LQQ̄ = 1

)
= 2m[bq] + 2δ + λ3 + BQ, (32)

M(4)
(
SQ = 1, SQ̄ = 1, SQQ̄ = 2, LQQ̄ = 1

)
= 2m[bq] + 2δ + λ3 − 6AQ + BQ,

The δ is the mass difference of the good and the bad diquark, i.e.

δ = mQ (SQ = 1) − mQ (SQ = 0) . (33)

In order to calculate the numerical values of these states, we have to calculate the value of
AQ , BQ and δ which are the only unknowing remaining in this calculation.
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AQ = 5 MeV, for q = u, d ,

AQ = 3 MeV, for q = s,

AQ = 3 MeV, for q = c,

BQ = 408 MeV, for q = u, d ,

BQ = 423 MeV, for q = s,

BQ = 423 MeV, for q = c. (34)

M(i)
Y[bq]

q = u, d q = s q = c q = d , q̄ = s

M
Y (1)

[bq]

10.890 11.218 13.618 11.054

M
Y (2)

[bq]

11.130 11.479 13.841 11.281

M
Y (3)

[bq]

11.257 11.646 14.025 11.476

M(4)
Y[bq]

11.227 11.629 14.009 11.453

We would like to emphasis here that the observation of the bottom counterparts to the new
anomalous charmonium-like states is very important since it will allow to discriminate
between different theoretical description of these states as well different models which give
significantly distinctive results for masses in the bottom sector.
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13 249 H1++L
13 271 H2++L

13 223 H0++L
13 258 H0++L

13 238 H1+-L13 253 H1+-L

13 650 Y H1L

13 873 Y H2L

14 057 Y H3L
14 041 Y H4L

0++ 1++ 1+- 1-- 2++
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13 650

10 708 H1++L
10 742 H2++L

10 637 H0++L
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11 086 Y H1L

11 313 Y H2L

11 508 Y H3L
11 485 Y H4L

0++ 1++ 1+- 1-- 2++
10 600

11 550

11 075

Figure: Tetraquark spectrum, where the tetraquarks have the valence quark content [bq][b̄q̄] with q = u, d
to the left and q = s to the right. Some importent decay thresholds are indicated by dashed lines. The
masses are given in MeV .
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Isospin breaking and the leptonic decay widths
We discuss in this section the isospin breaking effects, which were neglected in the previous
section, and calculate the decay widths Γee(Y[b,l]) and Γee(Y[b,h]) for Y[b,l] and Y[b,h]. The
mass eigenstates are given by a linear superposition of the states defined in

Y[b,l] = cos θ Y[bu] + sin θ Y[bd ] (35)

Y[b,h] = − sin θ Y[bu] + cos θ Ybd ]. (36)

The isospin breaking part of the mass matrix is
(

2mu + δ δ
δ 2md + δ

)
, (37)

where δ is the contribution from quark annihilation diagrams, where the light quark pair
annihilates to intermediate gluons.

M(Y[b,h]) − M(Y[b,l]) = (7 ± 3) cos(2θ) MeV. (38)

The partial electronic widths Γee(Y[b,l]) and Γee(Y[b,h]) are given by the well known Van
Royen-Weisskopf formula for the P-states, which we write generically as:

Γee =
16πQ2α2|Ψ′2

QQ̄
|

M2ω2
, (39)

where Q = −2/3 is the diquark charge in Ybd = [bd][b̄d̄] and Q = +1/3 is the charge of the
diquarks in Ybu = [bu][b̄ū], α = 1/137 is the electromagnetic coupling constant to lowest
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order and Ψ′
QQ̄

(~r) = ψ(φ, θ)R′(r) is the first derivative in r of the wave function of the
tetraquark, which needs to be taken at the origin. The corresponding value for the tetraquark
states [bq][b̄q̄] is then calculated taking into account the ratio of the string tensions κ. As the
linear part of the confining potential determines essentially the heavy Quarkonia wave
functions, we find that to a good approximation, ΨQQ̄(0) ≃ κΨbb̄(0), which is what we have

used in our derivations of the decay widths. Moreover, we expect that for all the P-states Y (n)
[bu]

and Y (n)
[bd ]

, the electronic widths will be constant, to a good approximation. For the mass

eigenstates Y[b,l] and Y[b,h], Γee(Y[b,l] and Γee(Y[b,h] are given by Γee(θ) = 0.81κ2Q(θ)2 keV,
where Q(θ) are the mixing angle weighted charges of the two mass eigenstates. The ratio
Ree(Yb) of Γee(Y[b,l]) and Γee(Y[b,h]) is given by

Ree(Yb) ≡
Γee(Y[b,l])

Γee(Y[b,h])
=

(cos θ/3 + 2 sin θ/3)2

(− sin θ/3 + 2 cos θ/3)2
. (40)

Since the total cross sections for e+e− → (Y[b,l],Y[b,h]) → hadrons is directly proportional to
Γee(Y[b,l]) and Γee(Y[b,h]), the ratio Ree(Yb) is accessible from the experiment.
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Diquark-antidiquark decay modes
There are several two body decays, which decay thresholds are pictured in figure 1. Starting
from the Vertices we derive the corresponding decay width:

qµ

1−−

l

k

0
−

0
−

L = 1

=̂ F (kµ − lµ) Γ = F2|~k|3
2M2π

q

0
−

µ

1−−

1
−

l

k

ν

=̂ F
|q| ǫ

µνρσkρ lσ Γ = F2|~k|3
4M2π

q

0
++

l

k

0
−

0
−

=̂ F |q| Γ = F2|~k|
8π

qµ

1
−−

l

k

ρ

ν

1
−

1
−

L = 1

=̂
F (gµρ(q + l)ν

−gµν(k + q)ρ

+gρν(q + k)µ)
Γ = F2|~k|3(48|~k|4−104M2|~k|2+27M4)

2π(M3−4|~k|2M)2

(41)
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and

qµ

1
++

l

k

ρ

ν
1
−−

1
−−

=̂ Fǫµνρσqσ

Γ =
F 2 |~k|

4π
(6

√
|~k|2+m2

l
M

+

( 1
m2

l
+ 1

M2 )(|~k |2 + 3m2
l ))

qµ

1
−−

l

k

β

α

1
2

+

1
2

+

=̂
(

Fγµ + 2F ′

i|q| qνσνµ
)

αβ

Γ = 3(F2+F ′2)|~k|
4π

− (F2+2F ′2)|~k|3
M2π

q

l

k

p

L = 1

1
++ν

µ

1
−−

0
−

0
−

=̂ ǫµνρσ

q2 (F (pρkσ − pρlσ) + F ′kρlσ)

(42)
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While the decay momentum |~k | is given by

|~k | =

√
M2 − (mk + ml )2

√
M2 − (mk − ml)2

2M
, (43)

where M is the mass of the decaying particle and mk , ml are the masses of the decay
products. The polarization vectors ε(i)µ of the vector (1−) and axial vector (1+) particles
satisfy the transversality condition with polarization sum

3∑

i

ε(i)µ(p)ε(i)ν(p) = −gµν +
pµpν

p2
. (44)

The decay constants F and F ′ contain all non-perturbative interactions, which are beyond
scope in our approximation. To get an estimate for the couplings, we adjust them to match the
known processes, which mimic the processes we are interested in (i.e. strong interaction
processes involving the same vertices as in (41), (42)).

Table: Mass values taken from

hadron mass hadron mass hadron mass hadron mass
B 5.279 π 0.139 Υ(1s) 9.46 Λb 5.62
B∗ 5.325 ρ 0.775 Υ(4s) 10.5794 Ξb 5.792
Bs 5.366 ω 0.783 Υ(10860) 10.865 K 0.4937
B∗

s 5.412 f0(860) 0.98 Υ(11020) 11.019
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Table: 2-body decays Υ(5S) → B(∗)B̄(∗), which we use as a reference, with the mass and the decay
widths taken from [?]. The extracted values of the coupling constants F and the centre of mass momentum
|~k| are also shown.

process Γ F |~k|[GeV ]

Υ(10860) → B B̄ < 13.2MeV < 2.15 1.3
Υ(10860) → B B∗ 15.4+6.6

−6.6MeV 3.7+0.7
−0.9 1.2

Υ(10860) → B∗ B̄∗ 48+11
−11MeV 1+0.13

−0.12 1.0

The three body decays are too much phase space suppressed to be of any practical use.
Within a reasonable range of the couplings up to 100 the decay withs are only of order of few
hundred eV .

Table: Results for q = u, d (first two tables) and q = s (second two tables), the * indicates, that we
proposed an educated guess for the couplings, which is described further in the text. The error estimates
are most optimistic in the sense, that they correspond only to the errors of the decay width in Table 6, not
taking into account any other possible error sources.
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Decay Mode Γ/κ2[MeV ] F |~k |[GeV ]

Y (1)
[bq]

→ B B̄ < 15 2.15 1.3

Y (1)
[bq]

→ B B∗ 18+8
−8 3.7 1.2

Y (1)
[bq]

→ B∗ B̄∗ 56+14
−14 1 1.1

Y (2)
[bq]

→ B B̄ < 33 2.15 1.8

Y (2)
[bq]

→ B B∗ 43+18
−18 3.7 1.7

Y (2)
[bq]

→ B∗ B̄∗ 162+42
−42 1 1.6

Y (3)
[bq]

→ B B̄ < 43 2.15 2

Y (3)
[bq]

→ B B∗ 58+25
−25 3.7 1.9

Y (3)
[bq]

→ B∗ B̄∗ 231+60
−60 1 1.8

Y (3)
[bq]

→ Λb Λ̄b 10+5
−5 1.1+0.3

−0.35/3 0.3

Y (4)
[bq]

→ B B̄ < 41 2.15 1.9

Y (4)
[bq]

→ B B∗ 54+23
−23 3.7 1.8

Y (4)
[bq]

→ B∗ B̄∗ 213+55
−55 1 1.8

particle Γee[keV ]

Y (1,2,3,4) 0.12

1−−

Tetraquark Γtot/κ
2[MeV ]

Y (1)
[bq]

88+16
−16

Y (2)
[bq]

238+45
−45

Y (3)
[bq]

342+65
−65

Y (4)
[bq]

308+60
−60
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Decay Mode Γ/κ2[MeV ] F |~k |[GeV ]

Y (1)
[bs]

→ Bs B̄s < 26 2.15 1.6

Y (1)
[bs]

→ Bs B∗
s 33+14

−14 3.7 1.6

Y (1)
[bs]

→ B∗
s B̄∗

s 118+30
−30 1 1.5

Y (2)
[bs]

→ Bs B̄s < 47 2.15 2

Y (2)
[bs]

→ Bs B∗
s 64+27

−27 3.7 2

Y (2)
[bs]

→ B∗
s B̄∗

s 258+65
−65 1 1.9

Y (3)
[bs]

→ Bs B̄s < 63 2.15 2.3

Y (3)
[bs]

→ Bs B∗
s 86+37

−37 3.7 2.2

Y (3)
[bs]

→ B∗
s B̄∗

s 367+90
−90 1 2.1

Y (3)
[bs]

→ Ξ Ξ̄ 19+10
−10 1.1+0.3

−0.35/3 0.6

Y (4)
[bs]

→ Bs B̄s < 61 2.15 2.2

Y (4)
[bs]

→ Bs B∗
s 84+35

−35 3.7 2.2

Y (4)
[bs]

→ B∗
s B̄∗

s 355+90
−90 1 2.1

Y (4)
[bs]

→ Ξ Ξ̄ 16+10
−10 1.1+0.3

−0.35/3 0.5
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1−− Tetraquark Γtot/κ
2[MeV ]

Y (1)
[bs]

176+33
−33

Y (2)
[bs]

368+70
−70

Y (3)
[bs]

534+100
−100

Y (4)
[bs]

516+96
−96
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To calculate the production cross section we need to calculate the partial width Γee for the
annihilation of the two diquarks to e+ and e−.Γee is given by the well known Van
Royen-Weisskopf formula for p states

Γee =
16πQ2α2|Ψ′2

M2ω2
, (45)

where Q = 2/3 is the charge, α = 1/137 is the electromagnetic coupling constant to lowest
order and Ψ′(~r) = ψ(φ, θ)R′(r) is the first derivative in r of the wave function of the
tetraquark, which needs to be taken at the origin. One has to take the first derivative since we
are dealing with a p-wave and the wave function vanishes at the origin. R′(0) ≈ 1.2 GeV 5

which was calculated by using the QQ-onia package of Each derivative increases the energy
dimension by one and needs to be normalized by the kinetic energy ω ≈ mQ of the diquark
[bq]. For the lowest lying 1−− state Y (11024) we get Γee ≈ 0.12 keV . Since all 1−− states
are p-waves, the R′(0) value will not change because the masses of the diquarks remain the
same. So the value of Γee only varies with the mass and therefore does not change
significantly. To compare the production cross section with BABAR we take the R-value which
is defined by

R =
σBW (

√
s)

σee→µµ(
√

s)
. (46)

The cross sections are given by

σBW (
√

s) =
3π

(M2 − 4m2
e)

(
ΓtotΓee

(
√

s − M)2 + Γ2
tot/4

)
, σee→µµ(

√
s) =

4πα2

3s
. (47)
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Assuming, that our calculated decay widths cover all dominant decay modes, we can
estimate the total decay width to be Γtot ≈ 90 MeV .

The formula for the cross section for n interfering resonnances, which is fitted to the data is
given as:

σ = |B1|2 + |B2 +
n∑

i

Ai e
iϕi BW (Mi ,Γi )|2,

BW (M, Γ) =
1

s − M2 + iMΓ
. (48)
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Plot with the existing BABAR data.
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Figure: 2 BW BABAR fit

M. Jamil Aslam (Dept. of Physics, QAU) Exotica Second Winter Meeting, Dec. 31, 2009 30 / 30


	Introduction
	Spectrum
	Isospin breaking
	Decay Modes

