Investigation of local structural environment of complex oxide materials by employing synchrotron radiations

M. J. Akhtar

- Nilore, Islamabad, Pakistan

eda apinstech.org.pk

Pakistan Institute of Nuclear Science & Technoloy

What is Synchrotron Light (SL)?

 Synchrotron light is very *intense* light, including light that we cannot see *infrared light, ultraviolet light, & X-rays*

• SL X-rays are identical with X-rays from medical and dental x-ray machines. But their intensity is more than **one million** times greater.

• SL enables scientists to do experiments that they have only dreamed of in the past. Experiments that would have taken months or years to perform can now be done in minutes.

• We are living through a revolution in science & technology due to this immense increase in x-ray source performance.

Wilhelm Conrad Roentgen 1845-1923

An X-ray lab – circa 1895

Early X-ray by Roentgen. His wife's hand?

Curiositydriven research

What Properties Make Synchrotron Radiation (SR) so Useful?

High brightness:

SR is extremely intense (hundreds of thousands of times higher than conventional X-ray tubes)

Wide energy spectrum: SR is emitted with a wide

range of energies

Highly polarized and short pulses:

SR is emitted in very short pulses, typically less that a nano-second (a billionth of a second)

SR offers many characteristics of visible lasers but into the x-ray regime!

Growth in X-ray Brightness compared to growth in Computing Speed

Computing speed

- X-ray from SYNCHROTRON RADIATION
- Long penetration depth in a matter
- Wavelengths near the size of atoms and molecules
- The right energies to interact with electrons in light atoms

Synchrotron radiation is used for experiments typically over this region

<u>Synchrotron Radiation Facilities</u> <u>Around the World</u>

• 54 in operation in 19 countries used by more than 20,000 scientists

(Brazil, China, India, Korea, Taiwan, Thailand)

8 in construction

Armenia, Australia, China, France, Jordan, Russia, Spain, UK

11 in design/planning

For a list of SR facilities around the world see http://ssrl.slac.stanford.edu/SR_SOURCES.HTML www.sesame.org.jo

COMPARISON OF POPULATION OF SESAME MEMBER COUNTRIES WITH SOME INDUSTRIALISED COUNTRIES

SESAME COUNTRY	POPULATION	INDUSTRIAL COUNTRY	POPULATION	SR ENTRES
Pakistan Iran Turkey Israel Jordan	150,694,740 68,278,826 68,109,469 6,116,533 5,460,265	USA UK France Germany Japan	290,342,554 60,094,648 60,180,529 82,398,326 127,214,499	8 2 2 3 3(6)
Palestinian Authority UAE Bahrain	3,512,062 2,484,818 667,238			
TOTAL	305,323,395			

In industrialised countries, where economies are knowledge based, there is a synchrotron radiation facility per 40M population.

How a storage ring light source works

What we learn about matter with photons

Imaging - Seeing the Invisible

Atomic and Molecular Structure - where are the atoms -

Electronic Structure and Bonding

- where are the electrons -

Magnetic Structure and Properties - where are the spins-

Techniques to Study Matter with Photons

SRS Daresbury Laboratory UK

• 2 GeV Synchrotron Radiation Source

Synchrotron Radiation Source

The basis of an X-ray absorption spectrum In the interaction of X-rays with matter, there are three main processes: elastic scattering, inelastic scattering (Compton) absorption due to ionisation.

The absorption can be characterised by the following equation

 $\mathbf{I}_{t} = \mathbf{I}_{0} \exp(-\mu \mathbf{x})$

I₀ is incident intensity

I_t is the exiting intensity

x is the distance travelled through the material

μ is the x-ray absorption coefficient of the material

$$I = I_0 \exp(-\mu(E)x)$$

Fluorescence Mode

$$I \propto I_0 \mu_s(E) \left(\frac{1 - \exp(-\alpha)}{\alpha}\right)$$
$$\alpha = (\mu_t(E) / \sin \theta + \mu_t(E_f) / \sin \phi) x$$

EXAFS experimental setup

STRUCTURAL STUDIES BY X-RAY ABSORPTION STUDIES

STRUCTURAL STUDIES BY X-RAY ABSORPTION STUDIES

- XANES: Gives information about the ionic state of the absorbing atom.
- EXAFS: Provides information about the local structural environment (coordination nos and radial distances) of an absorbing atom.

XANES Chemical information: oxidation state

EXAFS spectra and Fourier transforms of the Fe K-edge in SrFeO₃

- Similar to an atomic radial distribution function
 - Distance
 - Number
 - Type
 - Structural disorder

Defects in Perovskites (ABO

BO₆ distorted octahedra

Present Studies

• **BaBiO₃** (K & Pb doping)

• YBa₂Cu₃O₇ (Sb doping)

BaFeO₃ & SrFeO₃ (Nb doping)

- $BaBi_{1-x}Pb_xO_3$ T_c 13K
- $Ba_{1-x}K_xBiO_3$ $T_c 30K$
- Dispute about the valence state of Bi in pure & doped BaBiO₃
- BaBi⁴⁺O₃
- BaBi_{0.5}³⁺Bi_{0.5}⁵⁺O₃

XANES Spectra of Ba_{1-x}K_xBiO₃

- (a) Bi_2O_3
- (b) $BaBiO_3$
- (c) $Ba_{0.6}K_{0.4}BiO_3$
- (d) $Ba_{0.5}K_{0.5}BiO_3$
- (e) $NaBiO_3$

Energy ($E_0 = 13410 \text{ eV}$)

XANES Spectra of BaBi_{1-x}Pb_xO₃

- (a) Bi_2O_3
- (b) $BaBiO_3$
- (c) $BaBi_{0.25}Pb_{0.75}O_3$
- (d) $BaBi_{0.3}Pb_{0.7}O_3$
- (e) $NaBiO_3$

Energy $(E_0 = 13410 \text{ eV})$

XANES Spectra of BaBiO₃

- (a) Bi_2O_3
- (b) $BaBiO_3$
- (c) spectrum produced by linear combination of Bi₂O₃ & NaBiO₃
- (d) $NaBiO_3$

Energy ($E_0 = 13410 \text{ eV}$)

Properties of SrFeO₃

- Shows interesting properties:
 - Catalyst
 - Metals-Insulator transitions
 - Toxic gas sensors
 - Magnetoresistance

Motivation for present study

-SrFeO₃ (Fe⁴⁺ valence state)

-SrFeO_{2.5} (Fe³⁺ valence state)

• SrFeO₃ SrFe_{0.5}Nb_{0.5}O₃

Synthesis of SrFe_{1-x}Nb_xO₃

- Solid State Methods
- Appropriate amount of oxides were mixed in stoichiometric ratio.
- Heated at 1450 °C for 72 hours in air.

XRD data of SrFeO₃

XRD data of SrFe_{0.5}Nb_{0.5}O₃

XRD Data Analysis Results

$SrFeO_3 \qquad SrFe_{0.5}Nb_{0.5}O_3$

a (Å) 3.87000(5) 3.96804(3)

• No oxygen vacancies are found

XANES Spectra of Fe K-edge in SrFe_{1-x}Nb_xO₃

EXAFS spectra and Fourier transforms of the Fe K-edge in SrFeO₃

EXAFS spectra and Fourier transforms of the Fe K-edge in SrFe_{0.5}Nb_{0.5}O₃

EXAFS Structural data for the Fe K-edge in SrFe_{1-x}Nb_xO₃

Shell	SrFe	SrFeO ₃			SrFe _{0.5} Nb _{0.5} O ₃		
	CN	RD(Å	Å)DWF(Ų)	CN	RD(Å	A)DWF(Å ²)	
Fe-O	6	1.92	0.021	6	1.98	0.016	
Fe-Sr	8	3.34	0.023	8	3.38	0.029	
Fe-Fe	6	3.89	0.011	3	3.91	0.004	
Fe-Nb	-	-	-	3	3.99	0.040	

The Effects of Sb doping on YBa₂Cu_{3-x}Sb_xO₇

Effects of doping & sintering conditions on YBa₂Cu_{3-x}Sb_xO₃

Resistance vs. temperature measurements for furnace cooled YBa, Cu, Sb, O,

Resistance vs. temperature measurements for air quenched YBa₂Cu_{3,x}Sb_xO_{7,8}

XANES Spectra of Cu K-edge in YBa₂Cu_{3-x}Sb_xO₇

XANES spectra at the Cu K-edge of (a) $KCuO_2$, (b) $YBa_2Cu_{2.98}Sb_{0.02}O_{7-8}$, (c) $YBa_2Cu_{2.99}Sb_{0.01}O_{7-8}$, (d) $YBa_2Cu_3O_{7-8}$, (e) CuO and (f) Cu_2O

EXAFS spectra and Fourier transforms of the Cu K-edge in YBa₂Cu_{3-x}Sb_xO₇

EXAFS Structural data for the Cu K-edge in YBa₂Cu_{3-x}Sb_xO₇

Shell		YBa ₂ Cu ₃ O ₇		YBa ₂ Cu ₂	$YBa_2Cu_{2.99}Sb_{0.01}O_7$			YBa ₂ Cu _{2.98} Sb _{0.02} O ₇		
	CN	RD(Å)	DWF(Å ²)	CN	RD(Å)	DWF(Å ²)	CN	RD(Å)	DWF(Å ²)	
Cu-O	4.0(3.7)	1.95	0.010(0.009)	4.0(3.6)	1.96	0.014(0.011)	4.0(3.6)	1.95	0.013(0.010)	
Cu-O	1.0(0.9)	2.33	0.021(0.022)	1.0(0.9)	2.38	0.021(0.024)	1.0(0.9)	2.40	0.022(0.022)	
Cu-Y	4.0(3.9)	3.24	0.016(0.015)	4.0(3.8)	3.23	0.016(0.016)	4.0(3.6)	3.22	0.016(0.015)	
Cu-Ba	4.0(3.5)	3.46	0.036(0.031)	4.0(3.4)	3.42	0.049(0.038)	4.0(3.3)	3.41	0.050(0.039)	
Cu-Cu	1.0(1.1)	3.68	0.003(0.004)	1.0(1.1)	3.68	0.004(0.006)	1.0(1.1)	3.68	0.004(0.005)	
Cu-Cu	4.0(4.1)	4.00	0.015(0.016)	4.0(3.8)	4.00	0.014(0.014)	4.0(4.0)	4.00	0.015(0.015)	

Akhtar et al, Supercond. Sci. Technol., 13 (2000) 1612

XRD data

XRD patterns of furnace cooled (a) $YBa_2Cu_3O_{7-\delta}$ and (b) $YBa_2Cu_{2.98}Sb_{0.02}O_{7-\delta}$

XRD data

XRD patterns of air quenched ${\sf YBa}_2{\sf Cu}_{3\text{-}{\sf x}}{\sf Sb}_{\scriptscriptstyle {\sf x}}{\sf O}_{_{7\text{-}{\sf 5}}}$ (effects of doping)

Size Dependence

Size dependence on the extended x-ray absorption spectra. The amplitude of the EXAFS signal is directly proportional to the coordination numbers for each shell; therefore, as the cluster size increases, the amplitude also will increase.

Temperature Dependence

Temperature dependence on the extended x-ray absorption spectra for 10% Pt/C. As the temperature increases, the dynamic disorder (σ_D^2) increases, causing the amplitude to decrease.

Role of metal-reducing bacteria in arsenic release from Bengal sediments (Islam et al., Nature, 430, 68-71, 2004)

As-contaminated drinking water a global problem – hundreds of millions now at risk

As(III) more toxic and more mobile than As(V); As causes skin lesions and cancers; tube wells sample contaminated water at depth

Researchers from Manchester University and Daresbury have studied sediments from Bengal and shown:

Anaerobic bacteria release As from sediments as water soluble As(III) via redox reactions As(V) – As(III) reduction follows Fe(III) – Fe(II) reduction

As K-edge EXAFS shows >90% sediment As is As(V) (arsenate) adsorbed on Fe oxides both **before and after** reaction with bacteria – only ~10% As is bioavailable.

This fundamental work will help development of 'clean-up' technologies

Phase One Beamlines

No.	Beamline	Energy	Source type
		Range	
1	MAD Protein Crystallogphy	5 – 15 keV	MPW (In-vacuum
			undulator in phase 2)
2	PES and Photoabsorption	5-1000 eV	Undulator
	spectroscopy		
3	SAX/WAXS	10 keV	Undulator
4	XAFS/XRF	3-30 keV	2.5 Tesla MPW
5	Powder Diffraction	3-25 keV	2.5 Tesla MPW
6	IR Spectromicroscopy	0.01-1 eV	Large Aperture
			Bending magnet

EXAFS Users Group at SESAME

- http://www.sesame.org.jo
- •Dr. M. Javed Akhtar (PINSTCH)

javeda@pinstech.org.pk

Thank you