

Resistive Plate Chambers

The Resistive Plate Chamber (RPC)

Developed by R. Santonico (Roma) in the early 80'

The "avalanche" regime

High rate environment require low gas gain (avalanche operation)

$$< q_e > = \frac{k}{\eta d} < Q_e(d) > = q_{el} n_0 \frac{k}{\eta d} \frac{\lambda}{\eta + \lambda} e^{\eta d}$$

- k= ($\varepsilon_r d/s$)/($\varepsilon_r d/s + 2$)
- $-q_{el}$ is the electron charge
- n_0 is the average size of the primary cluster
- $\boldsymbol{\lambda}$ is the cluster density in the gas mixture
- $\boldsymbol{\epsilon}_r$ is the relative dielectric constant
- d is the gap width
- s is the electrode thickness

 λ should be large to achieve high efficiency----> C₂H₂F₄ gas mixtures

The "streamer" regime

Why resistive electrodes?

Since τ_{circ} is large ,the electron on the anode will reduce the electric field inside the gas and the discharge will be quenched

During the discharge the bakelite electrodes can be considered perfect dielectrics

Only a small region ~ few mm² around the discharge becomes inefficient for a time τ ~10 ms

The inefficiency region increases with the decrease of the electrode surface resistivity

AT high flux of particles, the rate capability can be improved by:

Lowering the discharge intensity and decreasing the electrode region interested by the discharge

...so we need to make ρ_{sup}/ρ_{vol} large and we need low electric field

Move the amplification from gap to front-end electronics

Use electronegative gas (C2H2F4) to stop streamers

RPC in avalanche

Double gaps.....multigaps

NCP/PAECE - Islamabad, December 2004 G.laselli

Multigap

The L3 experiment

600 m² (single gap)
6000 electronics channels
Double gap geometry
Streamer mode operation

Detector efficiency

Space resolution

NCP/PAECE - Islamabad, December 2004 G.laselli

RPC efficiencies vs dark currents

2000 m² coverage Glass electrodes $10^{12} \Omega$ cm Single gap geometry Quasi-avalanche mode operation X-Y read-out with independent gaps

BaBar

NCP/PAEC - Islamabad, December 2004 G.laselli

What happened?

BAD OIL COATING!!!!

An improved oil coating technic is now used

The gap assembly procedure has been completely revised

The quality control is more accurate (20% drop rate!!)

ARGO-YBJ

ArgoN05

ARGO-YBJ (Astrophysical Radiation with Ground based Observatory at YangBaJiing, Tibet)

Detection of atmospheric shower with energy > 100 GeV

γ Astronomy with a threshold of ~ 100 GeV Diffuse γ rays γ-Burst Ratio anti p/p Spectrum of primary protons

Main Building with RPCs

ARGO-YBJ

ARGO-YBJ

CMS

Dedicated trigger

CMS environment

- bunch separation of 25 ns
- high background of n and γ
- long term operation with high irradiation

Background

NCP/PAEC - Islamabad, December 2004 G.Iaselli

The barrel organisation

NCP/PAEC - Islamabad, December 2004 G.Iaselli

Barrel

Summary

- 164 chambers are at ISR
- 60 chambers installed in wheel W+2

NCP/PAEC - Islamabad, December 2004 G.Iaselli

Endcap overview

	RE											
	1/1	1/2	1/3	2/1	2/2	2/3	3/1	3/2	3/3	4/1	4/2	4/3
No. of chambers	36*2	36*2	36*2	18*2	36*2	36*2	18*2	36*2	36*2	18*2	36*2	36*2
							1					

Endcap overview

Endcap organisation

Bakelite Purchase Italy	Cut	Clean	Ship to S. Korea
Gaps	Built in Seoul	QC	Ship to CERN Pakistan
Mechanics	Kit prep in China Pakistan	Procurement Cables and pieces	Assembly at CERN Pakistan
FEBs, Adaptor Boards	Procured from Italy	Ordered from Pakist	Ship to Pakistan CERN
Chamber Assembly	CERN/Pakistan	QC	Construction Database
Storage	Point 5	Installation	Production Database

NCP/PAEC - Islamabad, December 2004 G.Iaselli

Gap production

Oiling procedure successfully transferred to Korea 2003

K O D E L

Schedule for gap delivery

_ +	A sti it Mana	2003	2004	2005	2006	
₽₽	ACIMIY Name	JFMAMJJASOND	J F M A M J J A S O N D	J F M A M J J A S O N D	JFMAMJJ	
1	Preproduction of oiled gaps					
2	Bakelite ready (cut and cleaned) \sim	100 Gaps 🔺	4 4 4	vorth 80 ch per batch		
3	Gaps for RE 1/2 (80*3)		40 40	▼		
4	Delivery to CERN		Ă Î			
5	Gaps for RE 1/3 (80*3)		40	N N		
6	Delivery to CERN			40		
7	Gaps for RE 2/2 (80*3)		40			
8	Delivery to Pakistan					
9	Gaps for RE 2/3 (80*3)		40			
0	Delivery to Pakistan		A	Å		
1	Gaps for RE 3/2 (80*3)	V ready for i	nstallation milestone +z	80	▼	
2	Delivery to Pakistan	ready for i	nstallation milestone -z			
13	Gaps for RE 3/3 (80*3)					
14	Delivery to Pakistan	→ delivery at assembly site → 00 ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓				
15						

Gap QC at CERN@ISR

Quality Good and equal to Gap produced from GT

Passed polymerization tests Gas and HV QC

RE1 assembly at CERN@ISR

NCP/PAEC - Islamabad, December 2004 G.laselli

RE1 assembly at CERN@ISR

http://cms-isr-endcap-rpc.web.cern.ch/cms-isr-endcap-rpc/

RE1 assembly at CERN@ISR

	RE1/2	RE1/3
Should be installed	72	72
Shall be built	80	80
Target of 2004	20	20
Accomplished so far	23	20
Target of 2005	57	60

Cosmics QC

Cosmic stand and DAQ

Cosmics QC

Cosmics QC

Noise < 10Hz/cm²

Data Base

Database developed to store RPC production information http://forwardrpc/cms_forward_rpc/production_db/Main_db.htm

Data Base

Irradiation tests

Gamma Irradiation Facility

Filters can be positioned in front of the source:

•Absorption 1	(no filters)	ABS 1
•Absorption 5		ABS 5

ABS 10

ABS 100

- •Absorption 5
- Absorption 10Absorption 100

CMS R&D Absorbed dose during the test: ~23 Gy

Irradiation tests

Aim

- Check the RPC performance after a working period equivalent to 10 CMS years
- Check possible long term effects of the close loop gas system on the chambers performance
- Study the HF and/or others pollutants production and their effects on the chambers performance

Dimensions: 50 x 50 cm², equipped with 10 x 10 cm² pads Entered in the GIF during May 2002 Integrated charge up to now: 70 mC/cm² Equivalent to ~ 15 CMS years (safety factor included) 2 final chambers (RB1)

At the beginning in open loop mode; Until December 2003 integrated 15 mC/cm2 ~ 3 CMS eq. years

Later with the with the closed loop gas system Integrated about 25 mC/cm2 ~ 5 CMS eq. years

Performance of small gaps

Many problems

Major problem with some chemical reaction on the copper springs used in gas pipe followed by a strong increase in current and counting rate

T-connectors in the gas circuit badly damaged by HF in exhaust

Chambers found not bubbling (sometimes with HV on) (also due to frequent detector displacements in GIF)

Performance of small gaps

Working voltage at 90% efficiency as a function of the time

ABS0 (Source Off)

ABS1

Performance of small gaps

Performance of RB1s

efficiency of chamber 45 at ABS0 and ABS1 (single gap and double gap)

Performance of RB1s

Efficiency and cluster rate of chamber 45 at ABS0, ABS1, ABS2 and ABS5

RPC-CSC

First RE 1/2 production chamber assembled @ ISR lab coupled to one ME 1/2 CSC and tested in X5A (25 ns beam)

GOALS:

Validation of Link Board system
Link to Link Board and data flow (Warsaw)
RE 1/2 performance
Link Board monitoring capability
Mechanical Compatibility
Grounding and electronic compatibility
Possibly Trigger ambiguity resolution

RPC-CSC

LB monitoring HV = 9.1 kV

Conclusion

Endcap project on the way..

- Gap production at regime
- Assembly and test site at ISR ok
- 40 RE1 expected by the end of the year
- Pakistan site ready to go
- Most of the chamber components available

But..

- Endcap resources (manpower and budget) are limited
- Follow the start up of RE2, RE3 production
- Signal cable procurement

•HV/LV procurement

- Satisfactory long performance at GIF
- HF production and removal under study
- Close loop system operation is understood
- RPC/CSC test with 25 ns beam ok

	RE1/2	RE1/3
Should be installed	72	72
Shall be built	80	80
Target of 2004	20	20
Accomplished so far	23*	21**
Target of 2005	57	60